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1 Introduction

One of the most famous inequalities for convex functions is Hermite—Hadamard-type
inequality on account of its rich geometrical importance and applications. Thus, remark-
able number of mathematicians have considered the Hermite—Hadamard-type inequali-
ties and related these inequalities such as trapezoid, midpoint, and Simpson’s inequality.
In last decades, the fractional calculus has application areas in various fields such as engi-
neering, chemistry, and physics as well as mathematics. Because of its basic properties and
applications in domains of science, fractional calculus has been the center of attraction in
applied and pure mathematics. The application of arithmetic carried out in classical anal-
ysis in fractional analysis is very significant in order to obtain more realistic results in the
solution of many problems. It can be established the bounds of new formulas by using not
only Hermite—Hadamard and Simpson type inequalities but also Newton-type inequal-
ities. Because of the importance of fractional calculus mentioned in this paragraph, one
can examined distinct fractional integral inequalities extensively. While integer orders are
amodel that is not suitable for nature in classical analysis, fractional computation in which
arbitrary orders are examined enables us to obtain more realistic approaches.

Simpson’s second rule has the rule of three-point Newton—Cotes quadrature, thus eval-
uations for the case of three steps quadratic kernel are generally called Newton-type re-
sults. These results are also known as Newton-type inequalities in the literature. Many
researchers have been investigated to Newton-type inequalities extensively. For example,
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in paper [1], some Newton-type inequalities for the case of functions whose first deriva-
tive in absolute value at certain power are arithmetically-harmonically convex. In addition
to this, some new Newton-type inequalities for the case of differentiable convex functions
involving Riemann-Liouville fractional integrals were proved in paper [2]. Moreover, the
authors also presented some Newton-type inequalities including Riemann-Liouville frac-
tional integrals for functions of bounded variation. Furthermore, new Newton-type in-
equalities based on convexity were given in paper [3]. It can be referred to [4—11], and the
references therein to the case of more informations.

Tempered fractional calculus can be specified as the generalization of fractional calcu-
lus. The definitions of fractional integration with weak singular and exponential kernels
were firstly reported in Buschman’s earlier work [12]. See the books [13—15] and refer-
ences therein for more information about the different definitions of the tempered frac-
tional integration. Mohammed et al. [16] established several Hermite—Hadamard-type
inequalities connected with the tempered fractional integrals for the case of convex func-
tions, which cover the previously published result such as, Riemann—Liouville fractional
integrals.

This paper is organized with respect to the following plans: In Sect. 2, the fundamental
definitions of fractional calculus and other relevant research in this discipline are pre-
sented. In Sect. 3, we prove an integral equality that is critical in establishing our primary
results. With the help of this identity, we establish several Newton-type inequalities involv-
ing the tempered fractional integrals. In Sect. 4, we provide our results by using special
cases of obtained theorems. In other words, we find the error bound of Newton’s rule with
the help of the obtained results. Finally, in Sect. 5, summary and concluding remarks are
noted.

2 Preliminaries
Simpson-type inequalities are inequalities that are created from Simpson’s following rules:
i. Simpson’s quadrature formula (Simpson’s 1/3 rule) is formulated as follows:

/ " S da "2;"1 [3(09 +4s("1 ;"2) +3(oz>]. 1)

ii. Simpson’s second formula or Newton—Cotes quadrature formula (Simpson’s 3/8 rule
(cf. [17])) is formulated as follows:

/ " S da oo [3(01) + 3&(@) . ss(%zaﬂ . 3(0»]. @)

Formulae (1) and (2) are satisfied for any function § with continuous 4*” derivative on
[o1,02].

The most popular and familiar Newton—Cotes quadrature involving three-point is
Simpson-type inequality is as follows:

Theorem 1 If § : [01,02] — R is a four times continuously differentiable function on
(01,02), and | T oo = SUP,c(g, 0y ISP ()| < 00, then the following inequality holds:

H&(m) +4s("1 “’2) +5(<72)] S ! / " S dx

2 Oy — 01

1
= M”%M) ”OC(UZ —o)*.
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One of the classical closed type quadrature rules is the Simpson 3/8 rule based on the
Simpson 3/8 inequality as follows:

Theorem 2 (See [17]) Let us consider that § : [01,02] — R is a four times continuously
differentiable function on (o1,0), and ||« = SUDe(01,09) IE@(x)| < co. Then, one has

the inequality

‘%[%(01) N SS<2613+ @) +3%(cn +3202) +3(62)] 1 /”2 30 dx
02 =01 Jo;

= 5480 ”3(4 looto2 = o0)".

Recall that the gamma function, incomplete gamma function, h-incomplete gamma func-
tion are described by

o0
') ::/ u et dpu,
0
X
Y(a,x)::/ u et du,
0
and
X
Y (a, %) ::/ u e du,
0

respectively. Here, 0 < @ < oo and A > 0.
Remark 1 [16] For the real numbers « > 0; x, A > 0 and 07 < 0, we readily have
. 1 ool —i(or—
i Yaoy-op (e, 1) = f nle Moz=o1)u du = W Y (@, 00 — 01),
ii. fol YA_(”Z o) (a x)dx— Yolaop-01) _ Yj(et+l,op— 0'1).

(02-01)* (02—01)0“1
Recall also that the Riemann—Liouville integrals of order « > 0 are given by

X

2500 = s [ -0 S dn, w o 3

1

and
1 72
12, 56 = s / (-2 ) s, % <o, @

for § € L1[o1,03]. See [18, 19] for further information and unexplained subjects. Note that
the Riemann-Liouville integrals reduce classical integrals for the condition o = 1.
We shall now give the basic definitions and new notations of tempered fractional oper-

ators.

Definition 1 [20, 21] The fractional tempered integral operators J;f;”&’ and \7{%’1'*)3 of
order « >0 and A > 0 are given by

TEeNF) = / (6= e NF () dp, w € [o1,00] 5)

T(e)
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and
T f (- NF W dp, € [o1,00], ©)

respectively for § € L[o1,03].

If we choose A = 0, then the fractional integrals in (5) and (6) are equal to the Riemann—
Liouville fractional integrals in (3) and (4), respectively.

3 Main results
Lemma 1 Let § : [01,02] — R be an absolutely continuous mapping on (o1,07) so that
§' € Li[01,03]. Then, the following equality holds:

é [s(ol) ¥ 33(2”1; ”2) ¥ 35("1 +32"2> + S(Oz)}

I'(a)
B 2 Y (O[,O'z —01)

(a,1) (or,1) :
[T8528(2) + TP §(00] = 5 § j 3 )
Here,

I = [ ¥ oy (@ 1) = & Voo (0 )}

X [ (noy + (1 = o) = §' (o + (1 - p)oz)l dp,
b= [ stoy-o0(@1) = § Vi) (D)

X [§(noy + (1 = o) = §' (o1 + (1 - p)oz)l dp,
I = f%l{yk(ag—al)(arﬂ) = 2 Y xor-op) (@, 1)}

x [§(nor + (1 = p)or) = §'(nor + (1 - p)oa)] du

Proof From fundamental rules of integration by parts, we have

1

3 1
Il :/ {Y)u (00— (Tl)(a /“L) Y)\ (02-01) ((X 1)}
0

x [§ (noz + (1 - wo1) = ' (no1 + (1 - wos) | du

1

- 0y — 01 {YA(UZ_UI)(O[’M) -

1
g Y)L((Tz—al) (Ol, 1)}

1
3

x [§(nor + (1 - woy) +F(noy + (1 - w)oy)|

0

02 — 01

1 1 1 201 + 0y o1 + 209
= 0y — 0 {YA(UQUI) (a’ g) - g YA(O’zfal) (a’ 1)} |:S'( 3 ) + 3'( 3 >]

L e @ D[F(01) + 3(02)]

+ e
8(oy —01)
1

- [ [+ (1= ) 4 S+ (1= ). 9

02 — 01

- / T U O [F (1 + (1= o) + (o + (1 - W) dia
0
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In a similar manner, applying the fundamental rules of integration by parts, we obtain

1 2 1
12 = 0y — 07 YA(az—Ul) o, g - 5 Yk(ag—al) (Ol, 1)
20’1 + Oy o1 + 20’2
X + —_—
[3( 3 ) 3( 3 ﬂ
v 2 Vst (@)
- 09—0 o, = Moy—o o,
(02 —o1) Moz~01) 2-01)

(¢3
8 [g(Zol +02) +$<Gl +202>]

B 1 /13 e 1,-4o2-01 M[S(MUZ"'(I M)Ul) +3(lfv‘71 +(1- M)UZ)] (9)

03 — 01

and

1

I = gor o Voo (@ D[S(0) + §(02)]

1 2 7 20'1 + Oy o1 + 20’2
- 0y — 0 {YA(Uz—al) ((X, g) - g Yk(o’g—al) ((X, 1)} [S( 3 ) + S( 3 )]

1
1 3
_ Ma—le—k(az—al)u
09 — 01 %

x [§(noy + (1= wor) +F(uoy + (1 - p)oz) | dp. (10)

Let us collect from the equality (8) to (10). Then, it yields

3

Zli _ Y a(og-op) (&6, 02 — 07) [3( D+ 35(201 + 02> .\ 33(01 + 202) +3(02)}

Py 4o —07)**! 3

1 1
_ / Ma—le—k(az—al)u
02— 01 Jo

x [§(noy + (1 - w)or) +F(noy + (1 - woz) ] du. (11)

By using the equality (11) and with the help of the change of the variable x = oy + (1 — )0y

and x = oy + (1 — p)o, for w € [0, 1] respectively, it can be rewritten as follows

ZIL’ _ Yk(az—ﬂ)(a’GZ o1) I:S( D+ 33(201 + UZ) 3S<0'1 + 202) + S(O'Z)i|

P 4(0y — 07)2*!

~ I'(a)
(o9 — o7)*+

(TN (01) + TLEPF(02)]. (12)

If we multiply both sides of (12) by 2(@# then the equality (7) is obtained readily.

Y (a,00-01)"

This finishes the proof of Lemma 1. d
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Theorem 3 Let us consider that the assumptions of Lemma 1 are valid and the function

|§'| is convex on [01,02]. Then, the following Newton’s rule inequality holds:

| [&(m) . 3&(2"‘ * "2) . 3@("1 f""‘) . @(oz)]

) &) [T F(02) + Jéil“mm)]‘

2Y; (a,00 — 01

(o9 — 01)‘”1

T 2Y, (@00 —01)

(Ql(ai)\) + 92(0[’)‘-) + Q3(“¢)\))[|g/(01)| + |g/ ]r (13)

where

1
Ql(ark) = f03 | Yk(az—al) (05;,“«) - % Y)L(az—ol) (Ol, 1)| d/‘L;
2
S-22(051)‘) = fg | YA(Gz—al) (05, ,LL) - % Yk(az—al) (O[, 1)| d/,L, (14‘)

(@, 2) = [7 1 Vatoa-o0) (@ 1) = § Yy (@, D) e
Proof We shall first take modulus in Lemma 1. Then, we get

‘ [3(01) . 33(2‘” * "2) . 3&("1 f‘”) . &(oz)]

')

2Y; (a,00 —01)

(4250020 + T2 5000

(02 —07)**!
T 2Y, (@00 —01)
1

3 1
X { f YA(UQ—UI)(ar ,LL) - g Y)L(az—al) (O[, l)l
0

x |3 (o2 + (1= wor) = (nor + (1 - p)oy) | du

2

3
+
1

3

1
YA(GZ*Ul)(a’ M) - 5 Y Mog-01) (o, 1)’

x |3 (no2 + (1= wor) = (noy + (1 - p)oz) | du

1
+
2

3

x |§ (no2 + (1 = wor) = § (nor + (1 = wos)| du}. (15)

7
YA(“Z*‘H)(O{’ W) = g Y a(o2-01) (o, 1)‘

With the aid of the convexity of ||, it follows

| [3(01) . 33(2"1 + "2) . 3@(“1 +32°2) . 3(02)]

B Mo +1)
2(0y — 01)”

(0 —07)** {

T 2Y, (@,00—01)

D2 3(o2) +J2_(o1)] ’

1
Y og-on) (0 1) = g VHoron) (o, 1)’
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x [1|F (02)] + (1 = w)[F (01| + 1|F (01| + (1 - w)|F (02)|] de

2
3
+
1

3

x 1| (02)] + (1 = w)|F'(01)| + 1|F (01)| + (1 = w)|F (02)| ] die

1
+
2

3

X[M@@M+ﬂ—uWWmM+M§WM+ﬂ—MWﬂ@MdM}

1
Y}»(Uz—ol)(a! M) - 5 Y)L(G'z—o'l) (a’ l)‘

7
Y}»(Gz—cl)(ar /’L) - g Y)L((Tz—o'l) (a’ 1)‘

o+l

- 2 (i) + Dale )+ Sl )T 0] [F )]

This completes the proof of Theorem 3. O

Theorem 4 Suppose that the assumptions of Lemma 1 hold. Suppose also that the function
|59, g > 1 is convex on [o1,03). Then, we have the following Newton’s rule inequality

‘%[S(Gl) + 33(201; 02) + 33<01 +3202) + 5(02)]

I(a)

2 Y. (a, 00 — 01)

(TP F(02) + J;;%(m)]’

(02 —01)**!

=3, @y o)) { (o1(, 1, p) + @3, 4, )

§ [(Smal)'q : '3’<<fz)|q>% + <'3/(ol)|q . 5|&’(o2>|q>ﬂ

18 18

1§ ()] + |s'<oz)|q) 1 }
. .

+ 22 (a, A,p)<

Here, 1% +==1and

1
q

1 1
e1(a, A, p) = (fo3 | Y aop-oy) (0, ) = % Y r(op-or) (@, D)IP dpi)?,
2 1
(02(01, )\';p) = (!/1%3 | YA(O’g—o’l) (ar :LL) - % Y)L((Tz—(fl) (a1 1)|P dﬂ)pr

1
903(“))\:17) = (f%l | Yk(ag—al) (‘LM) - % Yk(az—al) (O[, 1)|p d/'L)p'

Proof Now, applying Holder inequality in inequality (15), it follows

‘%[S(m) . 33(2‘”; "2) . 33("1 +32"2) . s(az)]

')
B 2 Y (Ol,(fz —01)

(715 (02) + J;g;“swl)]‘

(02 —07)**!

-2 Y)L (O[,O'g —0’1)

ro\»
du)

1
3 1
x {(/ ’Yx(az—m)(%ﬂ) — g (Hor-o) (e, 1)
0
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X /|3 oy + (1= poy)|” dﬂ>_

1

» 1
du)

+

1
YA (09— 01)(0[ l,(,) YA (09-01) (‘X 1)

1

X /IS por+ (1 - p)os)|” du)

1
Y i(on- al)a H)__YAGQ -01) (05 1)

» o\
d//,)

x /I@ poy + (1 - o) |! du)

(
(
(
()
(
() o)
(
-,
(
(

1
Y i(on— 01) o, ) — Y a(o2-01) (a, 1)

x /|S poy + (1= p)os)|” du)

PN
du)

7
Y)» (09-01) a M) )»(0'2—(71) (C(, 1)

x /IS nos + (1 - por)|” du)

b\
du)

7
Y)\. (09-01) a lu) )»(02—01) (C(, 1)

1

x (/%l|g’(,w1 +(1- ,L)az)}"du) ’ }

It is known that |§’|7 is convex. Then, we have

‘%[S(ol) + 3&(2‘“; "2) + 33("1 +32"2) . :s'(oz)]

')
27, (@, 09— 01)

[TEPF(02) + T2 (o )]‘

(02— 01)‘“1

T 2Y; (a,00—01)

A

« ( u|s<o—2>|q - m|s<al>|qdu)

1

» 1
du)

il

1
YA (09— 01)(05 [L) YA (09-01) (‘X 1)

1

([ M|s @+ 1=l an)'|
Y
o )

1
Y)»(Uz—al) (a! 1)

Y)\. (09— 0'1) o, H’) 2
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[( M|s<a2>|’f (1- m|s(al>|qdu,)l
(/ ul§ 0]+ (1 - w[F (@) m)l}
+(/1 Y aog—op) (@ ) — ; Gz—al)(a,l)pd“')%
X[( M\S o) (1_M)’%/(Ul)‘qdﬂ>q
( [ nlel+a- M)|3(02)|qdu>1“

ol

Y
d,u)

(03 —01)**! / 1
TN, @0y —o1) Y ior—on) (@ 1) = = Y a0y (@0, 1
2Y, (a,00 —01) 0 Mo-an) (@ 1) g Mo op) (@, 1)
1
+(/
2

P\
)]
3

. Ksm’(al)rf ' |§’(02)|q)‘1’ . (|@'(al>|q +5|3/(az>|q>é}

7
Y)L(az—al)(a’ M) - g Y)\.(O'z—ﬂl) (Ol, 1)

18 18

5 1 p ’
+ (/; Y A(oy— 01)(05 u) — YA(Uz -o1) ( o, 1) dﬂ)
3
1 1
y I3 (017 + 1§ (02) 17\ 7 . 3" (o) + 1§ (02) |7 7
6 6 '
This ends the proof of Theorem 4. d

Theorem 5 Assume that the assumptions of Lemma 1 are valid. Assume also that the
Sfunction |§'|1, q > 1is convex on (01, 03]. Then, the following Newton's rule inequality holds:

‘%[S(m) + 33(201; 02) + 33<G1 +3202) + 5(02)]

INGY
2 Y; (0,09 — 07)

(TP F(02) + TEPF(01)]

_ a+l 1
022" (00, 10) F (@l ] 02)

T 2Y,(@,00—01)

Q=

+ (1 2) = Qe 1)) [F (01)|7)
+ (e W)[F o)+ (1) - (e, ) [F(02)]7) 7]

+ (e 1) [ (Rse0 1) [F (02| + (Rl ) — Qe 1) |3 (01)[) 7

(

(
+ (25l V]F @]+ (Rale 1) - 2, 1) [§ (0)|) 7]
+ (e 1) (e 1)[F (02| + (R0, 1) — Qe 1) |3 (01)[) 7
(

+ (Q6(a, 1) |S (71)|q (93((1’)‘)_Q6(“,)\))|3'/(0-2)|q)711]}.
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Here, Q1(a, 1), Qy(c, A) and Q3(a, L) are described in (14) and

1

Qqler, A) = foB ] Yioz-o1) (o, ) — é Y i(o2-01) (o, 1)l dp,
2

QS(a’)L) = f%B /J'| Y)L(az—al) (O(’ ,IL) - % Yk(az—al) (05’ l)l d,bb,
1

Qﬁ(a’)‘-) = f% ,LL| Yk(az—al) (O‘nu') - % Yk(az—al) (05’ l)l d,bL

Proof Let us start with applying power-mean inequality in inequality (15). Then, we have

‘%[s«n)+33(”“;°9)+3s<”1;m”)-+sww}

I'(x)
2 Y. (00 — 01)

(f
(0l
([
(]
(
(]
(
(
<
(
()

[ﬂwmm+ﬂymmw

1
q

il

1
Yk(az—al)(a, ,LL) - g Yk(az—al) (O[, 1)’ d:u/>

il

1
Y r(o3—01) (O[ W) — g Y a(oy—o01) (0‘ 1)‘ dﬂ)

Y)»Uz —-01) (X,U/) 8

1
Y)» (02-01) ((X IU/) - 5 Y}»(O‘z -01) ((X 1)‘dﬂ>

1
Y)\. (09-01) (a M) Yk(o'z—o'l (a l)ldlu‘>

7
YA (09-01) (O{ M) . Y)L(az —-o01) (0{ 1)‘d:u>

Y)» (02—-01) a M)

8

1-1
q

7
YA (09-01) (Ol ,U') . Y)L(az —-o01) (O[ l)ldll'l’>

Y)» (02—-01) C( I"L)

8

1 q q
YA(Uz o1) (Ol M) YA (09-01) (05 1) |8: MUZ + (1 /’L)Ol)| d//L

1
Y)» (02-01) (a ]- I’S Mno1 +(1 n 0’2)’qu>

1
Y)» (02—-01) (X M)_ a Y)\. (o2—-01) (a 1)‘|'3: /’LU2+(1 M)01)| d“)

1
Y)» (02—-01) a M) Y)\. (o2—-01) (a 1)||S /’LUI +(1 /’L)O'Z)’ d“’)

7
Y i(oy-oy) (0t 1)‘|5 poy + (1 - poy)|” dﬂ)

7
Yk(o‘z -o1) (X 1)"% Mno1 +(1 n 0’2)’qu>

1
q

1

1
q

1
q

I

Page 10 of 15
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From the fact of convexity of |§'|?, we can readily obtain

’%[S(m) . 3&(2"‘; "2) 3&("1 f""‘) . &(oz)]

')

27, (@00 —01)

(03 —0p)**! 3
= 25 (a,02—01){<f0

() |

x [1]§ @)+ 1 - w)]F (0n)|'] du)q

(TP F(02) + TEPF (o1 )]‘

1 g
Y)»(o'z—o'l)(al M) - g Y}»(Uz—al) (ai 1)‘ dM)

1
YA(og—al)(a: M) - g Yk(ag—al) (ar 1)'

1

3 1
+ (/ Yk(az—ol)(a: M) - g Yk(ag—al) (Ol, 1)'
0

x [1[8' @)+ 1~ w)[F (02)|] du)q]
: [(

x [1[§ (@) + (1= w[F ()] du>q

2

(]

3

1

1

1-
2 Y)»(Uz—al) (C(, 1)' dM)

Y)\. (09— 0'1) o, H’)

1
Y)\ (09— (Tl)(a M)— " Y)\ (02-01) ((X 1)’

1
YA(Jz—cn)(O(: M) - 5 Y a(og-01) (ax, 1))

1

< [1fF @07 + (- ) [§ o2)|] du)"}
(f
4(0A

< [[F e[+ (1 - ]§(00)|] du>q

(;

3

7
Y)\ (09-01) a lu‘) Y)\. (02-01) (a 1)’d/"l’)

7
8 Mog—01) (Ot, 1)'

Y)\ (09-01) C{ lu‘)

7
Yk(az—cn)(a’ M) - g Y r(oy—o01) (o, 1)’

X [1[8' @)+ 1= w)[F (©2)]] du)q]}'

_ (02 _Gl)oHl {(Ql(a’k))l—

2Y; (o0, 00 —01)

+ (Ql(a,)») - 94(%)»)) |S/(Ul)’q)%

Q=

[(Qa(e, V)| (02)|*
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+ (Qulo |F (00| + (R, 1) - ule 1)) |3 (02)|) 7]

Q-

+ (e, 1)’ 5[(95(a,x>|s/(az)!q+(Qz(a,m—szs(a,x))|3/(ol)|q)

Q-

(

(
+ (s 0)[F (00| + (Rl 1) - s, ))[F(02)]7) 7]
+(Qs(a, ) 5[(96(a,k)|§’(02)’q+(Qg(a,k)—526(a,k))|3/(01)|q)
(

+ (el M)[F (0| + (D@, 1) - Qe 1) [F (0|1 7] 0

4 Special cases

Remark?2 Letus consider A = 0in Theorem 3. Then, the following Newton-type inequality
holds:

‘%[s«n) . 33(2‘”; "2) . 33("1 +32"2) . 3(02)]

Mo +1)

- m[]gﬁg(fh) +]§2_§(0’1)]‘
a(oy —o1)
< T{sz 1(e, 0) + 2a(at, 0) + Q3(et, 0)}[|F (01)| + [§ (02)|]-
Here,
] 2 (1y1+1 1 1 In(g)
1 3 o 1 m(§) o+ 30+l (a+1) ~ 24« O<a = ]n(%)
Q1(a,0) = - w = —ldpu= 1
a Jo 8 1 o1 o> ]n(g)
24a 3¢+ 1y (a+1) ln(%)’
ol+a_q 1 ln(%)
2 30t g (q+l) 60 O<a= ln(%)
1 3 1 1 1+a ln(l) ln(l)
— @__ ) 1 (yg o 277" 1 2 2
(e,0) = afl WS =1 1) * Tl ~ %)) U= g
1 olter_y 1“(2)
b0 ~ 3 laasD) 2 Gy
and
gl+a_ol+a 7 ln(%)
1 1 o 7 30+l (a+1) T 24« O<a = ln(%)
Qg(Oé,O) = — 22 dM = 1 1+a , ol+a In(Z
a )2 8 2 (g 4 23T 35 n(g)
3 T+a ‘8 3etly(a+l) 24w ln(%)'

This result is established by Hezenci et al. in [2, Theorem 7].

Remark 3 1f we choose o = 1 and A = 0 in Theorem 3, then the following Newton-type

inequality holds:
’ [0 +35(2757% ) w35 75 ) 0o | - ‘
MHS(C&H ],

which is given by [9, Remark 3]. This inequality helps us to find the error bound of New-
ton’s rule.
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Remark 4 Consider A = 0 in Theorem 4. Then, the following Newton-type inequality
holds:

‘%[S(ol) ¥ 3&(2“1; “2) + 33(”1 +32"2) ¥ :s'(oz)]

B IMNa+1)
2(0y —01)*

U, 5(0s) + /:;;_s(ol)]’

[(EEe |§’(02)|q>; (B +5|3/(02)|q);i|
18 18

1§ (01)]4 + m’(oz)w) 1 }

+ 20 (ct, 0,19)( 5

which is presented by [2, Theorem 10].

Remark 5 If we assign o = 1 and A = 0 in Theorem 4, then we have the following Newton-
type inequality

‘%[S(m) + 33(@) 33<G1 ! 202) + 5(02)] i " 3(M)du‘

3 03— 01 o1
1
<(72—0'1 5p+1+3p+1 p
=9 8 (p+ 1)

§ [(%’(Gl)'q ' '5’<<fz)|q>% . ('%mq . 5|3/(02)|q>%1:|

6 6

(50 )%<|5'<m)|q+|s'<oz)|q)%}
2 (p+1) 2 ’

which is given by Sitthiwirattham et al. in [9, Remark 5].

Remark 6 If we choose A = 0 in Theorem 5, then we have the following Newton-type
inequality

‘ [S(ol) . 3&(2‘” * "2) . 33("1 +32"2) . 3(02)]

Ma+1) [, .
- m[fcﬁg(oﬂ +](,2_§(O'1)]‘

< a(oy —o1)
- 2

Q=
Q-

{(21(,0)) 71 [(Qale, 0)|F (02)|” + (R (e, 0) - Qu(e, 0)) [F(01)])
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+ (Q6(at, 0)[F (01)| " + (Q23(et, 0) — Q6(ex, 0)) |g/(02)|f1)%]},

Here, Q1(a,0), 25(a,0), and Q23(r,0) are defined in Remark 2 and

—

1 1 (1y1+2 1 1 In(g)
1 3 o 1 m(g) Yo+ 30+2g(a+2)  144a O<a= ]n(%)
Qu4(e,0) = — wu = =ldu = In(d)
@ Jo 8 1 o> 28
1440 39+2¢(x+2) ln(%) ’
22+ 1 In(})
3020 (a+2) 12« O<a=< ln(%)
1 3 1 2 2+a ln(l) ln(l)
_ a_ — ) 1 (1\1+5 1+2 _ 5 2 3
Qs5(a,0) = - /1 mp = dn=175G)"" + w03~ % ) <@ < e
3 2+00 _ 1n(l)
1271 2
120 3%+2¢(a+2) a> n(3)’
and
32+ _o2+a 35 ln(%)
e 0) = L [ e = 7|y = | e T O<or=id)
ol B ="—1, M 3 M= L(Z)“% L NN in(3)
3 2+a '8 30+ 2q(q+2) | 14da n(%)’

This result is proved by Hezenci et al. in [2, Theorem 12].

Remark7 For o =1and A = 0in Theorem 5, we have the following Newton-type inequal-

ity
‘%[3(01) + 3&(@) +3{§<%202) +3(02)] - /”2 S(M)du‘
02 =01 Joy
<02—O’1{ 17
- 2 32-9

25115 (02)|7 + 973IF (0)|7\ 4 (251§ (01)|1 + 973|F (02)|7\ 7
| (PR ) (B R )

N < 1 (00)|7 + |3’(oz)|q) }
18 2 ’

which is proved by [9, Remark 4]. This inequality helps us to find the error bound of New-
ton’s rule.

5 Summary & concluding remarks
In this paper, we first establish an integral equality connected with tempered fractional op-
erators. With the help of this equality, we have found the error bounds for Simpson’s sec-
ond formula, namely Newton—Cotes quadrature formula for differentiable convex func-
tions in the framework of tempered fractional integrals and classical calculus. More pre-
cisely, with the help of the Holder and power-mean inequality, we prove several Newton-
type inequalities involving tempered fractional operators. Furthermore, some results are
presented by using special choices of obtained inequalities.

These type of inequalities will inspire new studies in various fields of mathematics. In
the future works, mathematicians can try to generalize our results by utilizing a different
version of convex function classes or another type fractional integral operators. Moreover,
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the researchers may derive new inequalities of different fractional types related to these
Newton’s rule type inequality. Furthermore, one can obtain these type of inequalities by
tempered fractional integrals for convex functions by using quantum calculus.
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