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1. Introduction

A key step in the study of second-order quasilinear parabolic equations is establishing
suitable a priori estimates for any solution of the equation. This fact is the theme of many
books on the subject [1-5] and our focus here is on one particular such estimate: a local
pointwise gradient estimate for solutions of equations in divergence form:

u; = divA(X,u,Du) + B(X,u,Du). (1.1)

The role of this divergence structure has been noted many times under varying hypothe-
ses on the functions A and B (see, in particular [6, Sections VIII.4 and VIIL5], [3, Section
V.4], [5, Section 11.5]). Our current interest is deriving this estimate using a surprising
variant (detailed below) of standard methods. Although this variant seems, at first, to be
a purely technical modification, we mention here two quite different types of estimates
which follow from this variant and which appear to be new. First, we derive a local gra-
dient estimate for a class of equations which includes the parabolic false mean curvature
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equation, that is, the equation with

Az, p) = exp (5 (1+1p1) ) p (1.2)

and some conditions on B. Such an operator does not fall under the hypotheses from,
for example, [3], and the present author has, previously, given an incorrect proof of this
estimate [7, page 569] (we will point out the error later), and then in [5, Section 11.5,
page 281] a correct but weaker version of the estimate. Second, we estimate the gradient
of a solution to a large class of equations only in terms of the structure of the equation
and a bound for the gradient of the initial function. (Ordinarily, a gradient estimate is
given in terms of a maximum estimate for the solution, which, in turn, depends on some
estimate on the boundary and initial data.) Such an estimate was first proved by Ecker for
the parabolic prescribed mean curvature equation [8, Theorem 3.1], but we also show
that such an estimate is valid for the parabolic p-Laplacian if p < 2, and this fact seems
to be new. (In [9], a corresponding estimate was given for the L7 norm of the solution in
terms of the L7 norm of the initial data, and this estimate can be used to infer a gradient
estimate, but our goal here is to give an estimate directly.) This gradient estimate provides
an interesting counterpoint to known results on these equations (see [6, Chapter XII] for
a detailed description of these results). In particular, it is known that for p >2n/(n+1),
solutions of this equation are bounded (and have Holder continuous spatial derivatives)
at any positive time for quite general initial data, in particular for L' initial data. On the
other hand, [6, Section XI1.13-(i)] provides an initial datum in L! for which the solution
is unbounded for all sufficiently small positive time. Although the counterexample is de-
scribed in all of R” x (0, ), it should be noted that it satisfies the boundary condition
u=0on {|x| =1, >0}, so the regularity of the solution is affected only by that of the
initial datum. An important point for our comparison is that the solution becomes infi-
nite only at x = 0 (for ¢ > 0 as well) and the initial function is smooth except at x = 0. Our
result shows that this is the only configuration in which the solution can be unbounded
since we obtain a gradient estimate at any x # 0. Of course, the additional surprise is that
our gradient estimate also applies to some equations with p >2n/(n+1).

The basic plan is to modify the Moser iteration technique [10] along the lines of Si-
mon’s estimate for elliptic equations [11]. Of course, this is the plan followed by the au-
thor before (especially [7]) but we add two important new twists. As in [12], we obtain
an estimate that does not use an upper bound on the maximum eigenvalue of the matrix
0A/dp. Such an approach is also useful in studying anisotropic problems (see [13, 14])
and we present the calculations for this case in [15]. In addition, we use a modified version
of the Sobolev inequality from [11]. This inequality will allow us to prove some unusual
estimates (in particular the estimates for parabolic p-Laplace equations) and also to use
some more standard notations, in particular, we will use a'l to denote the components
of the matrix dA/dp; in [7, 11, 16], a”/ denoted the components of a slightly different
matrix.

Following [11], we break the estimate into several steps. After giving some notation in
Section 2, we prove an energy-type inequality in Section 3. We then present the Sobolev



Gary M. Lieberman 3

inequality in Section 4, and we use the energy inequality along with the Sobolev inequal-
ity in Section 5 to bound the maximum of the gradient in terms of an integral:

Jw(lDul)un-AdX (1.3)

for some function w and some exponent g, which we will detail in that section. This in-
tegral is estimated in Section 6 in terms of the integral of Du - A, and this final integral is
easily estimated; we will quote [5, Lemma 11.13]. Section 7 contains some examples, es-
pecially the false mean curvature equation, to illustrate our structure conditions. We also
discuss some interesting variants of our estimate. In Section 8, we examine the applica-
tion of our Sobolev inequality to some equations satisfying structure conditions depend-
ing on the maximum eigenvalue of dA/dp; the most important of such equations are the
parabolic prescribed mean curvature equation and parabolic p-Laplacian with p < 2 de-
scribed above. Finally, we look at parabolic equations with faster than exponential growth
in Section 9; our method is only partially successful in dealing with such problems.

2. Notation

For the most part, we follow the notation in [5], so X = (x,t) denotes a point in R**! with

" 1/2
1X| = (Z(xf)2+|t|) : (2.1)

i=1
and, for R > 0, we write
Q(R) = {X e R™!': |x| <R, -R* < t< 0},

B(R) = {x € R": |x| < R}. (2.2)

We also use Q(R) to denote the parabolic boundary of Q(R), that is, the set of X such
that either

|x| =R, —R*<t=<0, (2.3)
or
|x| <R, t=—R% (2.4)

Moreover, we use N to denote 7 if n > 2 and an arbitrary constant greater than 2 if n = 2.
We always assume that u € C>!(Q(R)) for some R > 0 and we set

v=(1+Du?)"?, V=" gl =687 —v". (2.5)
We will also use this notation, without further comment, with p in place of Du to describe

structural conditions on the functions A and B (and their derivatives). We also set
_ 0A!

al = ,
ap;

©* = a''g" DyuDju, € =a’DivDjv, (2.6)
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where we use the Einstein summation convention that repeated indices are summed
from 1 to n. (Note that a'/, 62, and € are not quite the same as in [7, 11, 16].)
We also define the oscillation of u over a set S by

oscu = supu — inf u. (2.7)

In addition, for parameters 7 > 1 and r € (0,R], we write Q,(r) and g, (r,¢) for the
subsets of Q(r) and B(r) x {t}, respectively, on which v > 7.

3. The energy inequality

In this section, we prove an energy inequality, that is, an inequality which estimates in-
tegrals involving second spatial derivatives of u in terms of integrals involving only first
derivatives. Before stating this inequality, we present some preliminary structure condi-
tions. We suppose that there are matrices [C,i] and [D,i] such that D,"c is differentiable with
respect to (x,z, p) and

;o O0A 0A! ;
Ck+Dk:a_Zpk+W+BSk. (31)
For simplicity, we set
. 40D, oD},  dD;
ij _ k9% u~:< oDy k) k
9 y 3p;’ F pi 5 + i AR (3.2)

Our structure conditions are stated in terms of these expressions. We assume that there
are nonnegative constants 7o > 1, 81, and f3; along with positive functions A, A, and A,
such that

Cig*nij < ﬁlA(l)/z(aijﬂikY]jk)l/zy (3.3a)
Cirkg; < ﬂlA(l)/z(aijfifj)l/Z) (3.3b)
v@ijn,-j < [31A(1)/2 (aijniknjk)l/z, (3.3¢)
vF < iAo, (3.3d)

v|"* D} —vB| < BiAi, (3.3¢)
|Algnij < ﬁzAé/z(aijmkﬂjk)l/zy (3.3f)
|Alv- & < BAY (76", (3.3g)

for all n x n matrices #, all n-vectors &, and all (X,z,p) € Q(R) X R X R" such that z =
u(X) and v > 7y. Note that conditions (3.3a)—(3.3d) are exactly the same as [5, (11.41a—d)]
(except for a slight variation in notation).

Our energy estimate is then a variant of [5, Lemma 11.10] (which in turn comes from
[11,(2.11)]).
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LemMa 3.1. Let y be an increasing, nonnegative Lipschitz function defined on [T, ) for
some T > 1o and let { be a nonnegative C>'(Q(R)) function which vanishes in a neighbor-

hood of PQ(R). Suppose conditions (3.3) hold, and define

20) = | (&~ D). (3.4)

Then

J E(V)(zdx+J [(1— I>%2+%]XC2dX
q:(Rys) Q:(R) v

SZO/J)%J AO((V—T)X/+X)(2(JIX+4‘81J Ax(IDCIAX
Q(®) Q(R)
+4JQ o IAlx[lDZCIC+|D(|2]vdX+32ﬁ§J ( )Az((V_T)X,+X)|D(|de

+4J 800,dX
Q:(R)
(3.5)

forany s € (—R?,0). (Here, and in what follows, the argument v from y and E is suppressed.)

Proof. We begin just as in [5, Lemma 11.10]. Let 6 be a vector-valued C? function which
vanishes in a neighborhood of PQ(R), and set Q = B(R) x (—R?,s). If we multiply the
differential equation by div6 and then integrate by parts, we obtain

I [ — u, Dy + DA'D;6% + BD6*]dX = 0. (3.6)
Q

An easy approximation argument shows that this identity holds for any 8 which is only
Lipschitz (with respect to x only); in particular, we take

0=(v—1)x(v)?. (3.7)

Just as in [5, pages 270-271], we see that

J —uDi0*dX = B dx — 2J B(GdX. (3.8)
Q Q

qr (R,s)

Next, we have
J DyA'D;0% + BD 6% dX = J [DyA® + B8L]Di((v — 7)1 xv*) (2dX
Q Q
+ JQDkAi(v - T)+Xkai((2)dX (3.9)

+ JQB(v— 7). xv - D({%)dX.
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The first integral is handled as usual. We set

T:{(V—T)X’+X %fv>‘r, (3.10)
0 ifv<r,
and we note that
Di[(v - 1)x*] = YDk + <1 - %) xg" Djju. (3.11)
+
It follows that
. . T P
DAl + B8 |Di (v — 7)ax7) = (1 - —) €+ ClghiDyju
[Dx k] ( +X ) v +X( 154 j ) (3.12)
+W¥(€+2v*CiDw) + DiDi[(v — )4y ].
An integration by parts then yields
J DiD;[(v — 1) /*]2dX = - J (DYDiju+F)[(v— 1)1 x]¢*dX
< N (3.13)

- 2J Di(v— 1)y {Di{ dX.
Q
For the second integral, we integrate by parts again (cf. the proof of [12, Lemma 2.3]):

JQ DyAl(v — 1) xv*Di((?)dX

—) JQAka (v = 1)1 x¥){Di{dX -2 JQAi)((v — 1) [{Dy{ + Di{Dy(]dX.
(3.14)

To simplify the notation, we now set

I] ZI E{zdx,
(R,s
w0 (3.15)
12=J [(1—I)%Zx+%()('(v—‘r)+)()](2dX.
Q:(R) v

Then

10

L+ =2J E(GdX + > I, (3.16)
Q i
j=3
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where

T . .
I =—J (1——) Clyd"iD;iudX,
3 0 v, X8 Vij

I = —J YCivDv(?dX,
Q
Is = J DIDjjulv — 1) x(dX,
Q
= | -0,
Q
L= 2J [DL — B8 ](v - 1)y (D dX,
Q
Is = 2j (1 - 3) A'Dg" DyjudX,
Q V/+
Iy = 2[ Al(v— 1)y - Dv{D;{ dX,
Q

Io = 2 jQAw — 1), [{Did + Di{Di(]dX.

(3.17)

These terms are estimated as in [5, Lemma 11.10] using (3.3) and Cauchy’s inequality.

For the reader’s convenience, we give a brief estimate of each integral.
First, from (3.3a), we have

I; < ﬁlj A(l)/z(aijDikuDjk”)l/z (1 - I) x$PdX.
Q v/
Since
aijDikuDjku =G> +¢
and y’ = 0, we have
ij T T 2
a’DyuDjru(l—- - y<|1--) € +¥€.
Therefore, by Cauchy’s inequality,

1
I; < 3ﬂ% JQ AQ“P(ZdX + EIZ

Similarly, since €2 > 0, we see from (3.3b) and Cauchy’s inequality that
2 2 1
I < 3/51 J AQ\P( dX + —D.
Q 12
Next, we use (3.3¢), (3.20), and Cauchy’s inequality to obtain

Is < 3/3{J AoW(PdX + LIZ.
Q 12

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Moreover, (3.3d) gives
Is< B JQ AV PdX, (3.24)
and (3.3e) gives
I <28, JQAI A=), 0IDIdX. (3.25)
From (3.3f) and Cauchy’s inequality, we infer that
Is < 83 IQ AYID()PdX + élz, (3.26)
and, finally, (3.3g), (3.20), and Cauchy’s inequality imply that

Iy < 83 IQ MY |DEPdX + %Iz. (3.27)

It follows that

L+D szj E((,dX+10/3%J AO‘P{ZdX+2,81J Ax(ID¢|dX

¢ ¢ . 1 (3.28)

#166, [ AWIDIPAX+2 [ JAILIDC] ¢+ IDC )X + 21
Q Q

Then (3.5) follows from this inequality by simple algebra. O

In Section 6, we will need a sharper version of this lemma. To obtain this version, we
note that (3.3d) is only needed to estimate the positive part of &, so (3.5) also holds with
an additional term of

—J F_y(v— 1), 2dX (3.29)
Q(R)
on the right-hand side.

4. The Sobolev inequality

We now present our modified Sobolev inequality, which is an easy consequence of [17,
Theorem 2.1]; however, for notational reasons (in particular the use of n and m), we
quote a consequence of this theorem (see [5, Corollary 11.9]).

LemMA 4.1. Let n > 2, and let g € L*(Q(R)) be nonnegative. Set H' = Dj(g") and x =
(N +2)/N. Then

2N
J |h|?*g*NdX < C(N)( sup | h(x,s) |2g(x,s)dx)
Q(R) se(~R2,0) JB(R)
(4.1)
—n)/N

B n/N (N
« (I [g”DihDjhnLhlelz]dX) (J hzdx)
Q(R) Q(R)
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for any h € C(Q(R)) that vanishes on {|x| = R} and which is uniformly Lipschitz with re-
spect to x.

Proof. Let us set m =n+ 1 and U = B(R). We define v"*! = —1/v and extend the defini-
tion g/ = 87 — vy for i and j in {1,...,m}. With du = dx, it is easy to check that all the
hypotheses of [5, Corollary 11.9] are satisfied, and this corollary gives

2/N
J Ihlz“gZ/Ndst(N)<J |h|2gdx)
U U
L n/N (N-n)/N
x(J [g’JDihDjh+h2|H|2]dx> (J hzdx)
U U

for each t € (—R?,0). (In this equation, all functions are evaluated at (x,t).) The proof is
completed as in [5, Theorem 6.9]: note that

(4.2)

Ihzgdxs sup h(x,s)*g(x,s)dx, (4.3)
U

se(-R2,0)JU

integrate the resulting inequality with respect to ¢, and then apply Holder’s inequality if
n=2. (]

Note that the vector H is not quite the usual mean curvature vector. For later reference,
we observe that

v?|H|? < C(n)[¢" Dyug™Djmu+ g DivD;vv]. (4.4)

5. Estimate of the maximum in terms of an integral

From our energy inequality and the Sobolev inequality, we can now reduce our pointwise
estimate of |[Du| to an integral estimate of a suitable quantity. For this reduction, we
introduce three positive C! [19, o) functions w, A, and A. In addition to their smoothness,
the functions w, A, and A obey the following monotonicity properties:

w is increasing, (5.1a)
EPw(Z) is a decreasing function of , (5.1b)
N/2
w(&) P (%) is an increasing function of &, (5.1¢)
N/2
&p (f;((g) is a decreasing function of & (5.1d)

for some nonnegative constant 3. We also assume that

Ag < VA, (5.2a)
A < VA, Ay < VA, (5.2b)
A <A, (5.2¢)

1 <A, (5.2d)
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and that
|A] < B2A. (5.3)

Finally, we assume that

7\ 2
A(l-i— <Vi ) )gijf,fj < Vaijf,‘fj, (5.4)

where (as before) we suppress the argument v from A, A, and their derivatives. These
hypotheses imply a pointwise estimate for the gradient in terms of an integral.

LEMMA 5.1. Suppose that conditions (3.3), (5.1), (5.2), (5.3), and (5.4) hold. Then there is
a constant ¢\ (n, 3, 1R, B2) such that

£\ N2
sup (1 - —) w < clR_"_zJ

A)N/ZA
w( — —dX. (5.5)
Q.(R/2) v Q:(R) ( v

A

Proof. The proof is essentially the same as that of [5, Lemma 11.11], so we only give a
sketch.
First, for g > 1 + f3 a parameter at our disposal, we set

= (3) [(1-3),

Then conditions (5.1a), (5.1c) imply that y is increasing while conditions (5.1b), (5.1d)
imply that ¥ < C(8)g*x. Now let { be as in Lemma 3.1, and note that we can take { so that
|D{| < C/R, |D*C| +|{;| < C/R*>,and 0 < { < 1 in Q(R). It then follows from Lemma 3.1
with {N*29-N in place of {? that

(N+2)(g-1)
} V72, (5.6)

sup E(v)(zdx+J [(1—2)%2+%]x(2dX
te(—R2,0) Y q:(R;t) Q:(R) v
7 (5.7)
<C(B.AiR, —J AN @Dy gx
< C(BAIRB:2) 13 owX ¢ v
by taking (5.2a), (5.2b), (5.2¢), and (5.3) into account and observing that
1
B(v) < EX(V)(V —1)? (5.8)
(because y is increasing).
Now we define h by the equation
2
w= (1= 1) vy, (5.9)

SO

! 2 2
gijDihDjh < quC(N+2)(q71)X7’1 (Cz(l + (%) )gijDiijv+ %) (5.10)
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In addition, from conditions (5.1b), (5.1d), we infer that

>; (
= 2vcBg"”

1

(v) Vv —1)2 (5.11)
It then follows from (4.4) and (5.4) that

su J hzzderJ [gijDihDjh+h2|H|2]dXqu“R’ZJ XAvC(N”)(q*l)dX.
) J BR)x{t} Q(R) Q:(R)

te(—RIZ),O A
(5.12)
Lemma 4.1, with g = v/A, then yields
1/x
([.wau) < cq* | wiau (5.13)
b b
forw={(1-1/v):w,
2={X€Q:,(R):{(X)>0,v>1},
AV A . ~N-2 (5.14)
aw=(3) Sl0-7) ax
A standard iteration argument (based on [10]) completes the proof. ([
If we assume further that there are nonnegative constants 83 and 3, such that
A\ V2
W(X) As[)’3wﬁ4“Du-A (5.15)

(see [11, (1.5)] or [5, (11.50)]), then we have reduced the pointwise estimate to an esti-
mate of the integral

quDu CAdX (5.16)

for g = B4, and we estimate this integral in the next section. (Note that if 84 = 0, this
estimate is particularly simple.)

6. Estimate of the integral

We now examine the integral (5.16), and we provide an estimate specifically for the case
w = v. To this end, we make some basic assumptions relating the sizes of A, B, and Du - A:

v|Al < B5Du - A, (6.1a)
B < PsDu- A. (6.1b)

We also use a variant of (3.3e): we assume that there is a decreasing function ¢ such that

—v*Div; < e(v)Du - A. (6.2)
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Next, we suppose that the functions Ao, A1, and A; can be estimated suitably in terms of
Du - A:

Ao < e(v)*V*Du - A, (6.3a)

for the same function ¢ as in (6.2),

Ay <vDu- A, (6.3b)

A> <Du - A. (6.3¢)
Finally, we assume that

v < fB;Du - A. (6.4)

Under these hypotheses, we obtain an estimate for (5.16) provided that € can be made
sufficiently small when v is large.

LemMa 6.1. Suppose conditions (3.3), (6.1), (6.2), (6.3), and (6.4) are satisfied. Let q >
0 and set w = oscqr) U, E = exp(few), £ =1+ B7w/R, and qs = max{q,2}. If there is a
constant T, greater than max{t,2} such that

8we (1) + [ 10Boq2 +640Boq% +1280(B1gwwe(r1))’ +80g2 |Efi g w’e(n) <1, (6.5)

then there is a constant C determined only by Biwe(11), B2, Bs, and q such that

q
J ViDu - AdX < C(n +259) I Du- AdX. (6.6)
Q:(R) R/ Jo.cpr)

Proof. Suppose first that g > 2. Our proof in this case is a modification of the proof of
[11, Lemma 2]. First, we set

Glo) = {aq —qrito+(q—-1)11 %fa > 1, 67)

0 ifo<r,

and we observe that G'(0) = q(097! — 7971),. Hence
0<G(o) < %G'(o)a, (6.8a)
G'(0) < got™! (1 - 1) , (6.8b)
0/ +
G(o) < o (1 - 1) : (6.80)
0/ +

0<G'(0) <q*0T2 (6.8d)

In what follows, we suppress the argument v from G and its derivatives. Next, we set
i

Fe =5

(Bszexp (Bsz) +1 —exp (Bsz)) (6.9)
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and F;(z) = F(z) exp(—f¢z). We note that F;(0) = F{(0) = 0 and F{'(z) < 1 for z = 0, so
Fy(z) < (1/2)2* for z = 0. It follows that for z replaced by % = u — infgr) u, F satisfies the
properties

0<F< %wzﬁ < %sz, (6.10a)
0 < F' < wE < wE, (6.10b)
0<F" <(1+psw)E, (6.10¢)
F" —BF' =E, (6.10d)
where E = exp(fsii).
We also define
2
-1 (4] (i)
{(x) = [(1 )| () (6.11)
so that
Dl =X, D=L, (o] = (6.12)
2R R? 4R?
Now, we set
- —J (9F" GDu - AdX = -J [4GA] - D(F)dX, (6.13)
Q(2R) Q(2R)
and an integration by parts gives
I,=Il+12+l3 (614)

with

I = I (MF GdivAdX,
Q(2R)
L= f (*"F'G'A - DvdX, (6.15)
Q(2R)

L= ZqJ {2-1F'GA - D dX.
Q(2R)

The estimate for I; is, in the present situation, the most complex. First, we use the differ-
ential equation to see that I, = I + Is with

Iy = J (¥F GudX = J (*F,GdX,
Q(2R) Q2R)
(6.16)
Isz—J (*F'GBdX.
Q@R
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To estimate I;, we need some further integration by parts which is easily justified if A,
B, and u are smoother than we have assumed. The justification under our current hy-
potheses is to let (1) be a sequence of C* functions which converge in C*>! to u. Writing
v = (1+ |Du,y12)V? and G,, for G(v,,), we have

J (9F,GudX = —J (L49G,,) FdX +J (HEG,dx
Q(2R) Q(2R) B(R)x {0}

_ —ZqJ {71 GuFG,dX (6.17)
Q(2R)

- J (MG, (vim) FdX + J (*MFG,,dx.
Q(2R) B(R)x {0}

But (vin)¢ = v%,Dic(t4m)s, 50

—j 9G, (vm) FdX = I D[ (4G5 F] (1) dX. (6.18)
Q(2R) Q(2R)

Sending m — oo then gives

Dy[(MFG W JudX + J (MFGdx. (6.19)

L= —ij (I EGLAX + J
Q(2R) Q( B(2R)x {0}

2R)

Then we use the differential equation again to conclude that

L=-2g )ch-lpcc,derJQ

Di[C9FG v (DAl +B)dX + j (FGdx,
Q(2R

(2R) B(2R)x{0}
(6.20)

and another integration by parts (as in Lemma 3.1) gives us

J Dk[(zqFG’vk]DiAidX = Di[(zqFG’vk]DkAidX. (6.21)
Q(2R) Q(2R)

It follows that Iy = Is + I + Is + Iy with

Is = J Di[C¥FG v | DyA'dX,
Q(2R)

I = J D;[{*1FG ] 8. BdX,
Q(2R)
(6.22)
Iy = —ZqJ (M7 'FG(dX,
Q(2R)

19 = J C’ZqFG dx.
B(2R)x {0}



Gary M. Lieberman 15

Next, we write

Is = f Di((zqF)G’kakAidX+J (FD;(G v ) DrA'dX,
Q@R) Q@R)

(2R

and another integration by parts yields

J D;({*F)G' viDyA'dX = —J Dy ((*9F) G v AldX
Q(2R) Q(2R)

—j Dy ({9F) Dy (G'v+) AldX,
Q(2R)

SO
19
Iy= > I,
j=10
with

Iio=-2q JQ(ZR) (P12 FG* [{ D + (29 — 1)DIE D] A'dX,

I = —2qJ (91 F' G [(v- DO)(Du - A) + (v - Du)(D{ - A)]dX,
Q(2R)

I, =-1,

I; = —J (MF"G'y - DuDu - AdX,
Q(2R)
Iy = —ZqJ {2-1FG"y - DvD( - AdX,
Q(2R)
1 ..
115 = —qu CzqilFG’—gk]DjkuD( - AdX,
Q(2R) v
L = —J (MF'G"v-DvDu- AdX,
Q(2R)
1 ..
117= *J’ (ZqF'G'fgkajkuDu-AdX,
Q(2R) v

Ilg = J (2qFG”VkaiijkuDinX +J
Q(2R)

Q2
i i

Io = J (z’fFG”ka,-v<aADku+ 04 )dX
Q(2R) 0z oxk

1, 0A! 0A!
2qpG Zokip. .| 22 el
+JQ(2R){ FG 8 D,]u( e Dku+axk>dX.

G .
(?F Tgk’"Dim ua’DjudX,
R)

(6.23)

(6.24)

(6.25)

(6.26)
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We now combine some of these integrals:
Is+I;+1g = J {*FD;(G'%) (C}. + Di)dX
Q(2R)

+J Dk((zqF)G'kadX—J (Y GBdX (6.27)
Q(2R) Q(2R)

= Lo+ 11 + 1+ Iz + Ly + s+ D,

with
’ 1 i i
Ly = JQ(ZR) (¥FG ;CkngDijudX,
L = J (YFG"Y*CiDvdX,
Q@R)
Ly = —J (9F GV DiDudX,
Q(2R)
by = =24 JQ(ZR) {*'FG'[v*Dj — v:B]D,{ dX, (6.28)
Ly = —J (*FG' %Y DjjudX,
Q(2R)
Is = —f (MFG' FdX,
Q@R)
126 = J {2qF,(G,’V - Du— G)BdX
)
It follows that

11 18 26
I (F"(G'v-Du—-G)Du-AdX =I' =Lz =L+ > i+ > Li+ > I, (6.29)
Q(2R) j=8 j=14 j=20

If we assume now that 7 > 2, we have v - Du > (3/4)v for v > 7, and hence (6.8a) implies
that

G'v-Du—GziG'v=

NN

(vl —717ly),. (6.30)
From (6.1b) and (6.10d), we then conclude that

QJ (YME(v1—117'),Du- AdX < J (ME[G'v-Du— G]Du-AdX
4 Jaer) Q(2R)
11 18 25 (6.31)
SI3+ZI]'+ ZI]+ ZI]

j=8 j=14 j=20
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We are now ready to estimate the right-hand side of this inequality, one term at a time.
First, we define the measure y by

u(s) = J Du- AdX, (6.32)
Q:(2R)NS

so, for any function f, we have

J Fau= J F(X)Du - AdX, (6.33)
S :(2R)NS
then
I; < ﬁqugJ (sz)qfldy (6.34)
R Jaer)

by (6.1a), (6.8¢), and (6.10b);

Iy < 1ﬁ7qu—2J ()" du (6.35)
2 R? Jaem
by (6.4), (6.8¢), and (6.10a);
I < 2Ee? J G (v)dx (6.36)
2 B(R)x {0}
by (6.10a);
I < q3ﬁ5Ew—2 J ()1 d (6.37)
R? Jqer)
by (6.1a), (6.8b), and (6.10a);
Ly < 2Bs?ES J (@) du (6.38)
R Jaer

by (6.1a), (6.8b), (6.10b), and the observation that 85 > 1. Next

1 a)z 1/2 1/2
114 < —ﬁquE— (J (zqvq72% dX) (J (sz)qzdy> (639)
2 R \Ja.2p) QCR)

by (3.3g), (6.3¢), (6.8d), and (6.10a);

1 w2 . 172 2 12
et ([ o ) efr) (1, 0
15 < 2,82q R < Q,(ZR){ v ” + - (%) I
(6.40)

by (3.3f), (6.3¢), (6.8b), and (6.10a);

1/2

172
Il6 Sﬁzqza) (EJ {2qvq72% dX) (J E(KZV)qdy> (641)
Q:(2R) Q(2R)

T
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by (3.3g), (6.3¢), (6.8d), and (6.10b);

S R [ s et L

by (3.3f), (6.3¢), (6.8b), and (6.10b);

Iig < lquwzj (zqvq_2[<1—z>(€2+%]dX (6.43)
2 Q:(2R) v
by (6.8b), (6.8d), and (6.10b);

1/2

Ly < %ﬁlqwzs(r) (E JQT(zR) (Pay12 [ (1 - %)‘62 +%]dx> ” ( JQ(zR)E((zv)qdy)

(6.44)
by (3.3a), (6.3a), (6.8a), and (6.10b);
: 12 1/2
b < =p1g*w?e(7) (EJ P1y172¢ dX) <I E((zv)qdy) (6.45)
2 Q:(2R) Q(2R)
by (3.3b), (6.3a), (6.8d), and (6.10a);
Iy < we(r)qj E(Cv)1du (6.46)
Q(2R)
by (6.2), (6.8b), and (6.10b);
s < 1/3151215‘”—2 ()T dy (6.47)
2 R Jaew

by (3.3e), (6.3b), (6.8b), and (6.10a);
1 . 1/2 1/2
<1 2 2q.,9-2 A7 F(72.\1
by < 3 qa’e(@) (EJQT@R)( a8 [(1 V)<@ +%]dX> (JQ(ZR)E(( v) dy)
(6.48)

by (3.3¢), (6.3a), (6.8b), and (6.10a);

1
Is < —quzj F_0A2(y — 1), dX (6.49)
2 Q(2R)

by (6.8b) and (6.10a).
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Combining all these estimates and using Cauchy’s inequality, we find that
4 EC9(yd — 97!
EC*1 (vl — 197 ') du
4 Jaen

2
sKIZEgJ (czv)q”dwKzEzw—J ()" du
R Jaer )

RZ
ek (6.50)
+K3Ew2J (2%‘1’2[(1 - I)%2+‘é]dX+Ew2J G dx
Q:(2R) v B(R)x{0}
1 _ 1
+ <—+ws(r)q>J E(sz)qd‘u+—qu2J F_C17 (v —1).dX
4 Q@R) 2 Q2R)
with
1 1
Ky =4Bsq* + @’ prw’ +-q, Ky =Bsq’ +fagq’,
2 4 (6.51)

1 1
K3 = §ﬁ2q3 +4ﬁ%q4 + S(ﬁlwe(f)q)z + qu

We now use the remark after Lemma 3.1 with y = v4~2? and {4 in place of {. Since
G < gE and K3 = ¢, we infer from (6.1), (6.3), and (6.4) that

wZJ (zqux+K3w2J (quq-2[(1—3)<@2+%]dx
B(R)x {0} Q:(2R) v

w 2,)471 w? 2,142
<K32— ()" du+ Ks— (Cv)" “du (6.52)
R Ja@r) Q(2R)

+K6wze(r)2j (Pv)du+ ngj F_C12(y - 1),.dX
Q(2R) 2 Ja@r)

with
Ky = (2+2B10)K;,
Ks = (4B5q* +8B24%) K, (6.53)
Ko = 20q*B1Ks.

Since K3 = g/2, it follows that

q (2,04
= E d
2 Joon (¢Pv) du

2
< (K1+K4)2E9J (fzv)q’ldy+<Kz+Ks)E2w—2J () (6.54)
R Jqer R* Jqer)

+ (i +qwe(T) +K6szs(r)2) J

E((zv)qdy+qrq_1j (v du.
Q(2R) Q(2R)
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If we now replace 7 by 7; and write y; for the measure defined by replacing 7 by 7, in
(6.32), we infer that

J () du, < Crf71J (v)du
Q(2R)

Q(2R)
(6.55)
+CZE9J ((Zv)qfldlerCEzw—zJ’ () 2 duy.
R Joer) R* Joer)
Applying Young’s inequality yields
I (v)1d C( m‘”)qj d 6.56
< 71+ — , .
aer 1 R) oo™ (650
$O
q
J (v)"Du - AdX < c(T1 +2E9) J Du- AdX, (6.57)
Q, (2R) R7 Ja,en
and it is clear that
J ((*v) ' Du-AdX < (rl)"J Du - AdX. (6.58)
Q:(2R)\Qr, (2R) Q:(2R)\Qr, (2R)
Adding these last two inequalities gives the desired result.
The case g < 2 follows from this one via Holder’s inequality. O

Note that we can take € to be a constant provided that a modulus of continuity is
known for u; all we need is to take R small enough that (6.5) holds.

The estimate of [Du - AdX is given in [5, Lemma 11.13], so we give the estimate
without proof.

LEMMA 6.2. Suppose conditions (6.1) hold and set w = oscqryu. Also set T, = max{ty,
8fBsw/R} and

A=sup{(B—[36Du-A)++(Du-A)++%|A|}. (6.59)

V<Ty

Then

J Du - AdX < C(n)exp (Bsw)R"[w* + AR?]. (6.60)
Q-(R/2)

We can combine all of these results into a single estimate although we will see in the
next section that sometimes a different combination is more useful.

THEOREM 6.3. Suppose there are functions w, Ao, A1, Az, A, A, and € such that conditions
(3.3), (5.1), (5.2), (5.3), (5.4), (5.15), (6.1), (6.2), (6.3), and (6.4) hold for some nonnegative
constants B, Bi1,...,B7, and 71 = max{2,7y} with w = oscqr) 4 and qs = max{fs,2}. Set
Ty = max{1y,8B5w/R}, E = exp(few), and £ = 1 + f;w/R, and define A by (6.59). Then
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there is a constant C, determined only by n, 3, BiR, frwe(11), B2, B3> Pa> B5 such that

w Ba w?
sup w(v) < max W(ZTO),C(TI+ZE—> E[—+A] . (6.61)
QR/S) R R

7. Examples

We start by assuming that the functions A and B satisfy the conditions

Du-A = yov¥(v) — y1, Al <y, ¥ (v),
v .
yor e < g, 7.0

v|A,| +|Ac| + Bl <& (v)v¥(v)

for a positive constant y,, nonnegative constants y; and y,, an increasing function ¥ €
C'([1,00)) such that ¥(1) = 1 and

W (v) < yov* ' (v) (7.2)

for some nonnegative constants y and « and a decreasing, positive function &; such that
lim;_ & (7) = 0. Then conditions (3.3) are satisfied with D} = 0,

0= ﬁgl(y) VY(v), A= o a() VY(v), A = mV‘{’(V),
2 81(1) 2 81(1) 2 (7 3)
1) Y2 '
- (2n 1/2&) V-3 3
pi = (2n) v B2 v
In addition, we can take w = v, A = (1/2)yov*¥(v), and
Yo —2a
=4 ¥ 4
A 1+4oc2+1//§V ) (7.4)
to satisfy (5.1)—(5.4) with 5 = (1 + «)N. Condition (5.15) holds with
Bi= Cl1+4e +y3]) "D (7.5)

and 4 = (1 +a)N + 1 if 79 is sufficiently large. Finally, conditions (6.1)—(6.4) hold with

) _,a() _ 1
55 = 2)/() > ﬁ6 2 yo > ﬁ7 ))()’ (7 6)
e(v) = &av) .
e(1)

Since e(v) — 0 as v — oo, we have a gradient estimate under these hypotheses.
In particular, the equation

u, = div (exp (%vz)Du> +B(X,u,Du) (7.7)
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is included under these hypotheses if |B| = o(v? exp((1/2)v?)) as | p| — co: we take ¥(v) =
vexp((1/2)[v* — 1]), and note that (7.2) is satisfied with o = 2 and « = 2. It would be of
interest to know if a gradient estimate can be obtained for |B| = O(v? exp((1/2)v?)).

The difficulty with [7, Lemma 5.4] is easy to explain in terms of the notation here. We
write divA = g/ D;ju since, in this case, A is independent of z and x. Moreover, under the
hypotheses of that lemma, one needs to estimate the integral

I= I wq(l - f) (*aDyjudX (7.8)
Q(R) v/t

for some function w, which was claimed to equal v in [7]. The structure of the function
A shows that

a'Dyju < (€2 +¢€)"*(Du - A)"2, (7.9)

SO

1/2 1/2
Is(JQT(R)(CW)Q[(I—%)%z+%]dX> (JQ(R)(CW)W> . (7.10)

and the integral

J@(m(cw)q[(l_ %)(62%]‘”( (7.11)

cannot be estimated by a small multiple of

f (Cw)ldp. (7.12)
Q)

(Note that this estimation does not arise in the proof of [13, Lemma 2.3], so the latter
result is correct.)

Note also that when VW satisfies (7.2) with a = 0, we have the uniformly parabolic equa-
tions described in [16, Example 4] but without any assumptions on the maximum eigen-
value of the matrix [a”/]. In particular, we reproduce the usual gradient estimate for para-
bolic p-Laplacian equations once we observe that the condition ¥(1) = 1 can be replaced
by W(7*) = 1 for some 7* > 1. If we further assume that &;(v) = y3/v for some positive
constant y3 and that ¥(v) = v (which is the case if v¥'(v) = ¥(v)), then we can take as
structure functions

Ao=A = Ay = %V‘I’(v), (7.13)
and hence A =1 = (1/2)yo¥(v). With w = v2, (5.5) reads

sup v < C<12 +R‘"_2J v‘P(v)dX). (7.14)
Q:(R2) Q:(R)

The integral here can be estimated directly via Lemma 6.2 and our estimate has the same
form as [6, Equation VIIL.5.1] although we have used the choices o = 1/2, 6 = p* = R? for
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the parameters in [6]. Moreover, if ¥(v) = (v2 — 1)("~1/2 with m € (1,2), then we choose
r =2 so that n[m — 2] +2r > 2, and we take A = v, A = v 1 and w = v"*N2-m/2 T this
way, we also reproduce [6, Equation VIII.5.3] (with the same choice of parameters).

On the other hand, when A = v and B = 0, our method does not apply. To see why, we
examine (3.3g) and (6.3c) with & = v. First, |A]v - &£ > 1/8 for v sufficiently large, while
a'l&&; < v7?, so the structure function A, needs to be at least (some multiple of) v* and
this choice of A, clearly does not satisfy (6.3c). This example is important because it is the
motivating case for the structure described in [11]. Moreover, the hypotheses for gradient
estimates in [11] and [5] are clearly satisfied for this choice of A and B.

8. Gradient estimates without boundary data

In [8], Ecker showed that the gradient of a solution to a prescribed mean curvature equa-
tion can be estimated, locally in space, just in terms of its initial data. Here, we show
how that result follows from a simple modification of our estimates. In fact, we obtain a
corresponding estimate for a larger class of equations.

To this end, we need to adjust our notation slightly. First, for any R >0 and T > 0, we
set

QR,T)={X€R" :|x| <R 0<t< T}, (8.1)

and we write Q. (R, T) for the subset of Q(R, T) on which v > 7. We then have the follow-
ing form of the energy inequality.

LemMaA 8.1. Let x be a nonnegative Lipschitz function defined on [1, o) for some T = 1 and
let { be a nonnegative C*(B(R)) function which vanishes on dB(R). Suppose conditions (3.3)
hold, and define B by (3.4). If v(x,0) < 7 for all x € B(R), then

J E(v)(zdx+J [(1 - 1)%2 +%]XC2dX
Qr(R’S) Q:(R,T) v

szomj AO((V—T)X'+X)(2dX+4/31J AyCID¢1dX
Q:(R,T) Q:(R,T)
+4J |Alx[|D2(|(+|D(|2]vdX+32[32J A ((v—1)y +x)IDC|dX
Q:(R,T) - (R,T)

(8.2)

foranys € (0,T).

Proof. We proceed exactly as in Lemma 3.1 except that the integral involving (; is not
present. U

Next, we note (see, e.g., [5, Corollary 6.9]) that our Sobolev inequality (4.1) holds if
we replace Q(R) by Q(R, T) and (—R?,0) by (0, T). Then the proof of Lemma 5.1 gives the
following gradient bound.

LemMA 8.2. Suppose that all the hypotheses of Lemma 5.1 hold except for (5.2d), which
is replaced by the assumption that v(x,0) < 7 for all x € B(R). Then there is a constant
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c3(n, B, B1R, B2) such that

T N+2
sup (1 - 7) w< C3R*”*2J

A N/2 A
w<—) Aux. (8.3)
Q:(R/2,T) v Q:(RT) 4

A

Note that if A =1 = v? for some constant 6 < 1, then we can take w = v'~9 to infer
that the integrand in (8.3) is identically one, and hence we obtain a gradient bound di-
rectly which depends only on a gradient bound for the initial function and on data of the
equation. In particular, we have the following result for p-Laplacian equations.

CoRroLLARY 8.3. Let m € (1,2), and suppose u is a solution of the equation
—u;s +div (|Du|™2Du) =0 (8.4)

in some cylinder Q(R, T) with |Du| bounded on B(R) X {0}. Then

1/(2—m)
sup |Du| < C(m,n)(l + sup |Dul+ (RZ> ) (8.5)
B(R/2)x(0,T) B(R)x {0}

To include the mean curvature equations, we must modify our structure conditions to
include a condition on the maximum eigenvalue of the matrix dA/dp. Following [11], we
assume that there is a positive function g such that

alyE; < (F|I//|2)1/2(aijfifj)l/2 (8.6)

for all vectors & and y. Of course if [a'/] is symmetric, then we can take @ to be the
maximum eigenvalue of this matrix. With this hypothesis in hand, we have the following
version of the energy inequality.

LeMMA 8.4. Let y be a nonnegative Lipschitz function defined on [1,00) for some T = 19

and let { be a nonnegative C'(B(R)) function which vanishes on dB(R). Suppose conditions
(3.3a)—(3.3d) and (8.6) hold, and define 2 by (3.4). If v(x,0) < 7 for all x € B(R), then

J E(v)(zdx+J [(1 - 1)%2 +%]X(2dx
qr(R’S) Q:(R,T) 4

< 12ﬁfj

Q:(RT)

(8.7)
Ao((v—T)X'+X)CZdX+4JQ viu|D{12dX

foranys € (0,T).

Proof. This is an easy modification of the proof of Lemma 5.1. See [5, Lemma 11.10]
for details but note the differences in notation between that reference and the current
paper. (I

From this energy inequality, we obtain the following gradient estimate.

Lemma 8.5. Suppose that conditions (3.3a)—(3.3d), (5.1), (5.2a), (5.2d), (5.3), (8.6) and

vE<A (8.8)
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are satisfied and that v(x,0) < 1 for all x € B(R), then there is a constant c3(n, 3, 1R, 32)
such that (8.3) holds.

Note that Corollary 8.3 also follows from this lemma. Furthermore, in case A(X,z, p) =
v and B depends only on X and z, we suppose that B is nonincreasing as a function of z
and Lipschitz with respect to x, all the conditions of this lemma are satisfied (cf. [5, pages
279-280]) with C} =0,

Ao =, p=-, w=v, A=A=1,
v
2 (8.9)
B=2, Bi = (sup|B:|) ", To= sup v,
B(R)x{0}
and hence we infer that
sup v < C(n, R?sup | By|) < sup v+ TR2>, (8.10)
QR/2,T) B(R)x {0}

which is a sharper form of [8, Theorem 3.1] in case the constant & there is zero. To infer
the estimate for general ¥, we perform a simple transformation. In our notation, the
assumption involving ¥ is that B, <%, so let us note that & = exp(xt)u is a solution of the
equation

—u; +divA(X,u,Du) + B(X,u,Du) = 0 (8.11)
with
A(X,z,p) = exp(—%t)A(X, exp(xt)z, exp(xt)p), (3.12)
_ 8.12
B(X,z,p) = exp(—«t)B(x,exp(¥t)z) — kz.
Now the hypotheses of Lemma 8.5 are satisfied for #, A, and B with C} = 0,
Ao =, U= 1, W=, A = exp(—2KT), A=1,
v
_ 12 (8.13)
B=2, B1 =exp(xT)(sup | By|) 7, To= sup W
B(R)x {0}
The corresponding estimate for v(Du) then implies that
sup v < C(n,exp(xT), R*sup |By|) ( sup v+ TR_2> , (8.14)
QR/2,T) B(R)x {0}

which is a sharper version of the full force of [8, Theorem 3.1].

9. Equations with faster than exponential growth

An important element in the theory of a priori estimates is the question of what classes of
operators are encompassed. As we have already seen, if A(p) = W (v)» for some increasing
scalar function W, then our method provides a gradient estimate for some choices of ¥
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but not others. In particular, if ¥ grows too slowly (e.g., if ¥ is a constant), then our
method does not supply a gradient estimate. In this section, we examine this structure
when ¥ grows more rapidly than any exponential function.

Our first step is a positive one, reducing the pointwise gradient estimate to an integral
estimate. We only need a slight variant of the argument in Section 5.

We assume that there is a positive increasing function y with y(7y) = 1 such that

w(v) < @w(v),

N/2 N/2 (9.1)
d (A) _ ) (AW)
dv \ A(v) v \Aw) '
I\ 2 I\ 2
[(V))}/ ) + (%) +)/2:|)/Agijfifj < vaiffifj (9.2)
for all £ € R”. In addition, we assume that
Aoy < VA,
o (9.3)
Aoy <vA.

THEOREM 9.1. Suppose u is a solution of (1.1), and suppose that w, A, and A satisfy con-
ditions (3.3), (5.1a), (5.1c), (5.2), (5.3), (9.1), (9.2), and (9.3). Then (5.5) holds with ¢;
determined by n, B, 1R, and f3.

Proof. Take y as in Lemma 5.1 so that y is increasing. It is not hard to see that
(v =1 (v) < Y0)(v) (9.4)

for Y(v) = (n+2)qy(v), and hence

v 4 _ 2
Bv) = J (0 —1)x(0)do = J (UY(;)) X (0)do
! ‘ (9.5)
1 (v , 1 -
) J (0 =Y (0)do = i [(v=7x() =250
Simple rearrangement gives
S s
E(v) > Y(v)+2(v 7)*x(v) (9.6)
and a simple calculation (cf. [5, Lemma 6.15]) gives
E(v) < S (v = D). 9.7)
We now define & by
2
_ _r (N+2)g-N
h? —Xy/\(l v) p(N*2)q (9.8)

to infer (5.12). From this inequality, the proof is exactly the same as for Lemma 5.1. [J
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As a specific example, we suppose that
A(X,z,p) :exp(exp<%v2)>p, B(X,z,p) =0. (9.9)
Then (3.3) is easily checked with
Ag=A; =0, Ay =exp<exp<%v2>>, pi=0, (9.10)

and suitable f3,. The remainder of the hypotheses are satisfied with w = vK for any K >0
and

A=v’exp (exp (%vz)), A=v7exp(—v?)exp (exp (%vz)),
y=(N+1).

(9.11)

In particular, for K = 1, we thus obtain
AN+3 N , 1,
v exp (507 Jexp(exp (v dx ). (9.12)

To see why we cannot infer a complete gradient estimate for this example, we note that
(9.2) immediately implies that

supv < C(1+R_”_2J
Q

Asexp(exp(%v2>>exp(—v2)v_2 (9.13)

while (9.3) implies that A > exp(exp((1/2)v?)), so we must take y no less than some
constant times v2. Hence, the integral in (5.5) is at least

[ en(on(2)en((7)ox

and this integrand cannot be estimated by an expression of the form viDu - A for any
power g, so Lemma 6.1 does not apply to this example. If we note that the integrand can
be estimated by an expression of the form wiDu - A with w; = exp(v?), then it would
seem that the proof of that lemma could be modified. If we try to imitate the proof of
Lemma 6.1 but with G(w;) in place of G(v) (as was done in [11]), the integral I5 causes
problems since the integrand has the form

- twlAl (9.15)

and this cannot be estimated by Czq‘lwffeDu - A for any positive constant 6. Hence it is
not possible to adapt the proof of Lemma 6.1 to this situation.
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