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1. Introduction

In recent years, boundary value problems of differential and difference equations have
been studied widely and there are many excellent results (see Erbe and Wang [1], Grimm
and Schmitt [2], Gustafson and Schmitt [3], Weng and Jiang [4], Weng and Tian [5],
Wong [6], and Yang et al. [7]). Weng and Guo [8] considered two-point boundary value
problem of a nonlinear functional difference equation with p-Laplacian operator

AD, (Ax(t)) +r(t) f(x:) =0, te[0,T],

1.1
xo=¢eC", Ax(T+1) =0, (LD

where @, (u) = lulP=2u, p>1,¢(0)=0,C*={p |9 e C, ¢(k) =0, k€ [-7,0]}.
Ntouyas et al. [9] investigated the existence of solutions of a boundary value problem
for functional differential equations

X”(t) = f(t’xtax’(t))) te [0> T])
aoxo — a1x"(0) = ¢, (1.2)
Box(T) +p1x'(T) = A,
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where f:[0,T] x C, x R" — R" is a continuous function, ¢ € C,, A € R", C, =

C([_r>0])RH)'
Let
Rt={x|xeR, x>0},
(1.3)
[aab]:{a)--->b}) [a)b):{aa---)b_l}) [a)oo):{aaa+1)~--}
fora,beNanda<b.Forr,T € Nand 0 < 7 < T, we define
Cr={pl¢:[-1,0] — R}, Cr={peC 9@ =0,9€[-1,0]}. (1.4)
Then C; and C! are both Banach spaces endowed with the max-norm
.= k)|. 1.5
lpll: = max oK) (15)

For any real function x defined on the interval [—7,T] and any ¢ € [0, T], we denote by
x¢ an element of C; defined by x¢(k) = x(t + k), k € [—7,0].

In this paper, we consider the following nonlinear difference boundary value prob-
lems:

AD, (Ax(t)) +r(t) f (x(t),x:) =0, te[1,T],
apxo — 1Ax(0) =h, te[-1,0], (1.6)
Box(T+1)+p1Ax(T+1) =A,
where @, (u) = |u|P~2u, p > 1, g > 1 are positive constants satisfying 1/p + 1/q =1, Ax(t) =

x(t+1) —x(t), f: Rx C; — R is a continuous function, h € C¥ and h(t) = h(0) = 0,
te [-1,0], A € R*, ap, a1, fo < B1 are nonnegative real constants such that

(X()ﬂ()T-l—(X()ﬂl +(X1ﬂ0 #0. (1.7)

At this point, it is necessary to make some remarks on the first boundary condition in
(1.6). This condition is a generalization of the classical condition

apx(0) — a1 Ax(0) = ¢ (1.8)

from ordinary difference equations. Here this condition connects the history x, with the
single value Ax(0). This is suggested by the well posedness of the BVP (1.6), since the
function f depends on the terms x; and x(¢).

The case ap = 0 must be treated separately, since in this case, the BVP (1.6) is not well
posed. Indeed, if ay = 0, the first boundary condition yields

- Ax(0) = h, (1.9)
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where now h must be a constantin R and «; # 0, because of (1.7). In this case, we consider
the next boundary conditions instead of the two boundary conditions in (1.6):

xo = x(0),
-1 Ax(0) = h, (1.10)
Box(T) + B1Ax(T +1) = A.

As usual, a sequence {u(—1),...,u(T +2)} is said to be a positive solution of BVP (1.6)
if it satisfies (1.6) with u(k) >0 fork € {1,...,T+1}.
We will need the following well-known lemma (See Guo [10]).

LemMA 1.1. Assume that X is a Banach space and K C X is a cone in X. Qy, Q, are two
open sets in X with 0 € Q; C Q. Furthermore, assume that W : K N (Q,\ Q) — K isa
completely continuous operator and satisfies one of the following two conditions:
(1) 1'Px]l < lIx]l for x € K N oQy, IWx| = |Ix]| for x € K N 0Qy;
(2) 1'Px]l < lIx]l for x € K N0y, Wx|| = |Ix]| for x € K N 0Q;.
Then ¥ has a fixed point in K 0 (Q, \ Q).

2. Main results

Suppose that x(¢) is a solution of BVP (1.6).
If h(0) = 0, then
(1) if(X() ‘li_ 03 ﬁl 7_/: 03

t—1 T
§:®q<§:mnnxmnxma> ifte[1,T+1],
m=0 n=m
M) ift=0,
dp=10Tn 2.1)
a1Ax(0) +h(t) ifre[-1,0),
o
1 Bi—Po el .
kﬁ1A+ A x(T+1) ift=T+2;

(i) if ap # 0, 1 = 0,

(t—1 T

Z cD‘f( z r(n)f(x(n),xn)> ift e [1,T],

m=0 n=m

L x(1) ift=0,

x()=q7"" (2.2)
M ift e [-1,0),
0

%A ift=T+1;
L )P0
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(iii) if atg = 0, B1 # 0,

( T
Zd)q(Zr(n )f (x (n),xn)> ifte 1, T+1],
x(t) = - x(1)+ih ift e [-1,0], (2.3)
241
1. Bi—-p e _ .
~ﬁ1A+ A x(T+1) ift=T+2;

(IV) if(x() = 0, ﬁl = 0)

(t—1 T
Zcbq(z r(n) f(x n)) ifte[1,T],
m=0

x(t) = - x(1)+aih ifte [-1,0], (2.4)
1
1
— ift=T+2.
L Bo '

We only prove (i), the proofs of (ii)—(iv) are similar and we will omit them.
Assume that f = 0, then BVP (1.6) may be rewritten as

AD,(Ax(t)) =0, te[L,T],
aoxo — a1Ax(0) = h, te][-1,0], (2.5)
Pox(T+1)+p1Ax(T+1) = A.

Assume that X(t) is a solution of system (2.5), then
0 ifte[0,T+1],

X = 1 —h(t) ifte[-1,0), 2.6)

060

A ift=T+2.
B

Assume that x(¢) is a solution of BVP (1.6). Let u(t) = x(t) — x(t). Then for t € [1,T + 1],
we have u(t) = x(t), and

f(n)f(u(n)+x(n),un+xn)> ifte1,T+1],

m=0 n=m

u(t) =1 —2—y(1) ift e [-1,0], (2.7)
oy + o
B ﬂou(T+1) ift=T+2.
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Let
lull = max |u(t)|,
te[—1,T+2]
E={yly:[-1,T+2] — R},
_ . ! B (2.8)
K- {ylyeE.y(t) - Sy fort e [-n,0),
)/(t)_ﬁﬂ —fo Syl for e 11, T+2]}
Then E is a Banach space endowed with norm || - || and K is a cone in E.
For y € K, we have y(t) = (a1/(ap + 1)) y(1) for t € [—71,0]. So,
Iyl=  max, O] = max, LyO) 29)
Define an operator ¥ : K — E,
Shlo@g(Sar(m) f (y(n) +%(n), yu+ %)) ift € [1,T+1],
o )
Yy () = ot o Yy(1) ifte[-1,0], (2.10)
%w(ﬂl) ifr=T+2.
1

Then we may transform our existence problem of BVP (1.6) into a fixed point problem
of the operator (2.10).

By (2.10), we have

T T
Iyl = (Ty)(T+1) = > <Dq< > r(n) f(y(n)+x(n),yn+xn)>
m=0

n=m

. (2.11)
(T+1)® (Z ”l)f (n) +x(n yn+xn)>
Lemma 2.1. ¥(K) C K.
Proof. Ift € [—71,0], then Wy(t) = (a1/(ap + 1)) ¥ y(1).
Ift € [1,T + 1], then by (2.10) and (2.11), we have
T
y(t) = D, (Z n) +x(n), yn+xn)>
=0 (2.12)

Bi—Po [30
T+1 — ¥yl > BT+ ||‘I’y||-
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Ift = T+2, then

Wy(T +2) = ﬂl/):lﬁo‘Py(T+l) > l%ll\l’yl. (2.13)

So, by the definition of K, we have ¥(K) C K. O
LemMma 2.2. ¥ : K — K is completely continuous.

Proof. Notice that y, +%, = (y(n—1)+X(n—1),...,y(n) +x(n)). So f : R™? — R. Then
by [10, Theorem 2.6, page 33], f is completely continuous. Hence, ¥ is completely con-
tinuous. ]

In this paper, we always assume that

(H1) Spepir r(n) >0,
(Hy) f:R*xCf - R*
hold.
Then we have the following main results.

THEOREM 2.3. Assume that (H,), (H,) hold. Then BVP (1.6) has at least one positive solu-
tion if the following conditions are satisfied:
(H3) there exist 01 > 0, such that if |||l < o1 + 0o, then

flo(m),n) < (bor)" s (2.14)
(Hy) there exists 02 > 01 +2, such that if ||| = 02, then

f(9(n),9.) = (Bos)" ™ (2.15)

or
(Hs) there exists 0 < r1 < o1, such that if ||| = r1, then

flp(n),¢a) = (Br)"™; (2.16)

(Hg) there exists Ry > 02, such that if |@ll < Ry + o, then

f((n),9,) < (BR)) ™, (2.17)
where
1Al 1 1
= ; b= , B=———. (2.18)
" T (T+ 1) (3o 7(n)) Dy (Shor(n))

TaEOREM 2.4. Assume that (H,), (H,) hold. Then BVP (1.6) has at least one positive solu-
tion if one of the following conditions is satisfied:
(H7) 1im5up\|(,,nHﬁo(f(?(ﬂ),fpn)/ll(pn ||£_1) <mP~1, hminfl\%l\ﬁ&(f(‘l’(”))(Pn)/”(Pn|
MP=1K(9) =0,9 € [-1,0];
(Hs) liminf g, ~o(f @(1), )/ lgull?)>MP limsupy, | oo (f (9(n) @)/ lgull? ™) <
mb~1,

-1
27>
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where
1 ﬂl T + 1)
- - , M= .
(T+ 1) (S r(m)) (B1 = Bo) @y (Zherir ()
THEOREM 2.5. Assume that (H,), (H,) hold. Then BVP (1.6) has at least two positive solu-
tions if the conditions (H3)—(Hs) or (Hs), (Hs), and (Hg) hold.

THEOREM 2.6. Assume that (H,), (H,) hold. Then BVP (1.6) has at least three positive
solutions if the conditions (Hs )—(Hg) hold.

(2.19)

3. Proofs of the theorems

Proof of Theorem 2.3. Assume that (H3) and (Hy4) hold.
For every y € KN dQy,, llyll = 01, Iy + x|l < Iyl + [IX]l < 01+ 00, then by (2.10) and
(HS))

T
¥yl = Z o (Z f(y(n)+X(n),yn+xn)>
) (3.1)

T T
oq( > r(n)(bel)‘”) < bgl<T+1)<Dq<Z r(n)) =01 = llyll.

m n=0

T
<2
m=0

For every y € K N 0dQy,, lyll = g2, Iy + %I = max{pz,00} > 02, then by (2.10) and
(H4))

T T
¥yl = Z d)q( Z r(n) f (y(n) +x(n), yn+xn)>

>i®<§ )(Bo2)"~ ) (3.2)

m=0

T
> Bgz(bq<z r(n)) =0 =1yl

n=0

So by (3.1), (3.2) and Lemma 1.1, there exists one positive fixed point y; of operator ¥
with y1 € KN (Q,, \ Q).

Assume that (Hs) and (He) hold. Similar to the above proof, we have that for every
y € KnoQ,,

¥yl =yl (3.3)
and for every y € K N 0Qg,,
Iyl < Iyl (3.4)

So by (3.3) and (3.4), there exists one positive fixed point y, of operator ¥ with y, €
KN (Qg, \ Q). Consequently, x; = y; +X or x = y, +X is a positive solution of BVP
(1.6). O
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Proof of Theorem 2.4. Assume that (H7) holds. By h(9) = 0,9 € [—7,0], we have X(n) = 0
forne -1, T+1].
From

Fo:gn) o pes (3.5)

limsup -
lgale—0 ||@nll? ™" ’

there exists a constant g; > 0, such that for [|¢,|l; < o1,
f(p(n),04) < (mllgall,)” (3.6)

Let Q, = {y €K | [yl <p}.
For every y € K N 9Qy,, llyull: < Iyl < o1, then by (2.10) and (3.6),

1yl = zm (ir(nfy(n y,,) <o (i gl 1)

n=m m=0
(3.7)
T T T
Z ( > r(n)mP~ 1Iyllf”l) < m(T+1)|y||<Dq(Zr(n)> =yl
m=0 n=m n=0
Furthermore, by
liminf flp(m),9n) >MP (3.8)

lgalle=e ||| |27
there exists a positive constant g, > o1, such that for |@,ll: = ((f1 — Bo)/B1(T +1))p2,

f(@(n),90) = (Ml[gall,)" " (3.9)

For y € K, we have y(t) = (1 — Bo)/Bi(T+ 1)yl for t € [1,T+2]. So, if n € [7+
1,T+1], then

ynll, = ﬂﬂsz(i Iyl = /)’ﬁéTf(i)Qz (3.10)

For y € K N 0Q,, by (2.10) and (3.9),

Wyl = i%(éﬂr(ﬂ)f(y(n),yn)) > i ch(i r(n)f(y n),yn))

m=1+1 n=m

= 3 o Srminll)) 2o, 3 (SEB )"

/3(?}+/130) Iyll®g ( >. r(n)) = lyll.

n=t+1

(3.11)



S.J. Yangetal. 9

So, by (3.7), (3.11), and Lemma 1.1, there exists a positive fixed point y; of operator
¥ with y3 € K 0 (Q,, \ Qp,), such that

0<o <yl <o (3.12)

Assume that (Hg) holds. From

liming £ 0 0) o1, (3.13)
lenlle=0" |y ] |7

there exists a constant g; > 0, such that for [|¢,|l; < o1,
£((n),@n) = (M||gull,)" . (3.14)

For every y € KN dQy,, llyull: < Iyl < o1, then by (2.10), (3.10), and (3.14),

¥yl = Zd) (im f(y(n)+x(n),yn+xn)> zm_im@ (Zm n)>

imr (M fﬂ}jg’)u H) )

i (ir(n ) (MlIyll-)” ) Z o (

n=m m=1+1

T
ﬁ(f’%j‘)) lyll®g ( > r(n)) = Iyl

n=t1+1
(3.15)
Furthermore, by
limsup f((i)pﬂn) <mP1, (3.16)
lgalli=co  ||@nll7
there exists a positive constant N > max{p1, || hll;}, such that for |¢,ll: = N,
Flo(n), ) < (m||gall,)? (3.17)
Let
CN+2 1Al
Xo

1Al

[2%)

)’%(maX{f(stJ(n )s¢n) : [ @all, 92+”h”’})}
(3.18)

+m_1max{m<gz +
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For y € K N 0€,, by (2.10), (3.17),

T
z r n)f( (n)+x(n )))’n +En)>

n

T
Wyl = > ch(
m=0

>, r(m) f (y(n) +%(n), yn +fn)>

llynllz>N+lhllz/ao  llyall: KN+Ihll+/a0

[
<(T+1)<Dq[ > + > ) (n) f (y(n) +x(n), yn+xn)}
[

Xmax{m<92+m),(Dq(max{f((p(n b9n) < llgall, Q2+”h”7})}

4% Xo

(3.19)

So, by (3.15), (3.19), and Lemma 1.1, there exists a positive fixed point y, of operator
¥ with y4 € K 0 (Q,, \ Qp,), such that

0<o1 <yl <pa. (3.20)

Hence, x3(t) = y3(t) +x(t) or x4(t) = y4(t) +X(t) is a positive solution of BVP (1.6).
If h(0) # 0, then by the transformation

z=x——2, (3.21)

the BVP (1.6) is reduced to the following BVP:

AqDP(AZ(t))+r(t)f(Z(t)+& t+@>=0, te[1,T)
Xo Xo

a0zo — a1 Az(0) = h=h—h(0), te[-1,0] (3.22)
N Boh(0)

Pox(T+1)+p1Ax(T+1)=A o
0

where obviously h(0) = 0.
Similar to the above proof, we can prove that BVP (3.22) has at least one positive
solution. Consequently, BVP (1.6) has at least one positive solution. O

Proof of Theorem 2.5. By (3.1)—(3.3) and Lemma 1.1, or by (3.1), (3.2), (3.4), and
Lemma 1.1, it is easy to see that BVP (1.6) has two positive solutions. O
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Proof of Theorem 2.6. By (3.1)—(3.4) and Lemma 1.1, it is easy to see that BVP (1.6) has

three positive solutions. O
4. An example
Consider BVP
A3/ (Ax(t)) +tf (x(t),x:) =0, te[1,4],
x9—Ax(0) =h, te[-2,0], (4.1)
Ax(5) =1,

where h(t) = —t, for (¢(t),¢;) € R* X Cf,

(1072, 0<s<3,
441074
To(s—3)2+10—2, 3<s<8,
Flp(),91) = 17956 x 10~4(s — 8), 8<s<09, (4.2)

1072[100 — 19(s — 52)2], 9<s<52,

|1, 52<s,

where s = [|¢]|.

InBVP (4.1), p=3/2,q=3,T=41=2,r(t) =t,ap =1L a1 =1, B =0, f1 = 1,
A= 1,90=2,b=0.02,B=0.1.
Letr; = 1,01 = 6,02 =9, R; = 50. Then by simple computation, we can show that

> (Br;)? ' = 0.01 ifs>r =1,
< (bo1)" ' =1.44x1072 ifs<pi+p0 =8,
fo(t), ) ¢ p-1 . erre
> (Bpy)” =0.81 ifs=p,=9,
<Brn) =1 if s <Ry +0p = 52, 43)
0 ifte[0,T+1],
x(t) =1 -t ifte[-1,0),
1 ift=T+2.
By Theorem 2.6, BVP (4.1) has three positive solutions
X1 = y1+X%, Xy = Yo +%, X3 = y3 +%, (4.4)

with
y1€KN(Qp \Qr), y2 €K (Qp, \ Q) y3 € KN (Qr \ Q). (4.5)
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