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1. Introduction

The multidimensional isothermal Euler equation with relaxation describing the perfect
gas flow is given by

nt +∇· (nu)= 0,

(nu)t +∇· (nu⊗u) +∇p(n)=−1
τ
nu

(1.1)

for (t,x) ∈ [0,+∞)×Rd, d ≥ 3, where n, u = (u1,u2, . . . ,ud)� (� represents transpose)
denote the density and velocity of the flow, respectively, and the constant τ is the mo-
mentum relaxation time for some physical flow. Here, we assume that 0 < τ ≤ 1. The
pressure p(n) satisfies p(n)= An, and A > 0 is a physical constant. The symbols∇, ⊗ are
the gradient operator and the symbol for the tensor products of two vectors, respectively.
The system is supplemented with the initial data

(n,u)(x,0)= (n0,u0
)
(x), x ∈Rd. (1.2)



2 Boundary Value Problems

To be concerned with the small relaxation-time analysis, we define the scaled variables

(
nτ ,uτ

)
(x,s)= (n,u)

(
x,

s

τ

)
. (1.3)

Then the new variables satisfy the following equations:

nτs +∇·
(
nτuτ

τ

)
= 0,

τ2
(
nτuτ

τ

)

s
+ τ2

(
nτuτ ⊗uτ

τ2

)
+
nτuτ

τ
=−A∇nτ

(1.4)

with initial data

(
nτ ,uτ

)
(x,0)= (n0,u0

)
. (1.5)

Let τ → 0, formally, we obtain the heat equation

�s−AΔ�= 0,

�(x,0)= n0.
(1.6)

The above formal derivation of heat equation has been justified by many authors, see
[1–3] and the references therein. In [2], Junca and Rascle studied the convergence of the
solutions to (1.1) towards those of (1.6) for arbitrary large initial data in BV(R) space.
Marcati andMilani [3] showed the derivation of the porousmedia equation as the limit of
the isentropic Euler equations in one space dimension. Recently, Coulombel and Goudon
[1] constructed the uniform smooth solutions to (1.1) in the multidimensional case and
proved this relaxation-time limit in some Sobolev space Hk(Rd) (k > 1+ d/2, k ∈N). In
this paper, weweaken the regularity assumptions on the initial data and establish a similar
relaxation result in the more general Sobolev space of fractional order (Hσ+ε(Rd), σ =
1+d/2, ε > 0) with the aid of Littlewood-Paley decomposition theory.

If fixed τ > 0, there are some efforts on the global existence of smooth solutions to the
system (1.1)-(1.2) for the isentropic gas or the general hyperbolic system, the interested
readers can refer to [4–7]. Now, we state main results as follows.

Theorem 1.1. Let n be a constant reference density. Suppose that n0−n and u0∈Hσ+ε(Rd),
there exist two positive constants δ0 and C0 independent of τ such that if

∥
∥(n0−n,u0

)∥∥2
Hσ+ε(Rd) ≤ δ0, (1.7)

then the system (1.1)-(1.2) admits a unique global solution (n,u) satisfying

(n−n,u)∈�
(
[0,∞),Hσ+ε(Rd

))
. (1.8)
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Moreover, the uniform energy inequality holds:

∥
∥(n−n,u)(·, t)∥∥2Hσ+ε(Rd) +

1
τ

∫ t

0

∥
∥u(·,σ)∥∥2Hσ+ε(Rd)dσ+ τ

∫ t

0

∥
∥(∇n,∇u)(·,σ)∥∥2Hσ−1+ε(Rd)dσ

≤ C0
∥
∥(n0−n,u0

)∥∥2
Hσ+ε(Rd), t ≥ 0.

(1.9)

Based on Theorem 1.1, using the standard weak convergence method and compact-
ness theorem [8], we can obtain the following relaxation-time limit immediately.

Corollary 1.2. Let (n,u) be the global solution of Theorem 1.1, then

nτ −n is uniformly bounded in �
(
[0,∞),Hσ+ε(Rd

))
,

nτuτ

τ
is uniformly bounded in L2

(
[0,∞),Hσ+ε(Rd

))
.

(1.10)

Furthermore, there exists some function � ∈ �([0,∞),n +Hσ+ε(Rd)) which is a global
weak solution of (1.6). For any time T > 0, we have nτ(x,s) strongly converges to �(x,s)
in �([0,T],(Hσ ′+ε(Rd))loc) (σ ′ < σ) as τ → 0.

2. Preliminary lemmas

On the Littlewood-Paley decomposition and the definitions of Besov space, for brevity,
we omit the details, see [9] or [7]. Here, we only present some useful lemmas.

Lemma 2.1 ([9, 7]). Let s > 0 and 1≤ p,r ≤∞. Then Bs
p,r ∩L∞ is an algebra and one has

‖ f g‖Bs
p,r � ‖ f ‖L∞‖g‖Bs

p,r +‖g‖L∞‖ f ‖Bs
p,r if f ,g ∈ Bs

p,r ∩L∞. (2.1)

Lemma 2.2 [9, 7]. Let 1≤ p,r ≤∞, and I be open interval ofR. Let s > 0 and � be the small-
est integer such that � ≥ s. Let F : I →R satisfy F(0)= 0 and F′ ∈W�,∞(I ;R). Assume that
v ∈ Bs

p,r takes values in J ⊂⊂ I . Then F(v) ∈ Bs
p,r and there exists a constant C depending

only on s, I , J , and d such that

∥
∥F(v)

∥
∥
Bs
p,r
≤ C

(
1+‖v‖L∞

)�‖F′‖W�,∞(I)‖v‖Bs
p,r . (2.2)

Lemma 2.3 [7]. Let s > 0, 1 < p <∞, the following inequalities hold.
(I) q ≥−1:

2qs
∥
∥[ f ,Δq

]
�g

∥
∥
Lp ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ccq‖ f ‖Bs
p,2
‖g‖Bs

p,2
, f ,g ∈ Bs

p,2, s= 1+
d

p
+ ε (ε > 0),

Ccq‖ f ‖Bs
p,2
‖g‖Bs+1

p,2
, f ∈ Bs

p,2, g ∈ Bs+1
p,2 , s=

d

p
+ ε (ε > 0),

Ccq‖ f ‖Bs+1
p,2
‖g‖Bs

p,2
, f ∈ Bs+1

p,2 , g ∈ Bs
p,2, s=

d

p
+ ε (ε > 0).

(2.3)
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If f = g, then

2qs
∥
∥[ f ,Δq

]
�g

∥
∥
Lp ≤ Ccq‖∇ f ‖L∞‖g‖Bs

p,2
, s > 0. (2.4)

(II) q =−1:

2−s
∥
∥[ f ,Δq

]
�g

∥
∥
L2d/(d+2) ≤ Cc−1‖ f ‖Bs

2,2
‖g‖Bs

2,2
, f ,g ∈ Bs

2,2, s= 1+
d

2
+ ε (ε > 0),

(2.5)

where the operator � = div or ∇, the commutator [ f ,h] = f h− h f , C is a harmless con-
stant, and cq denotes a sequence such that ‖(cq)‖l1 ≤ 1. (In particular, Besov space Bs

2,2 ≡
Hs.)

3. Reformulation and local existence

Let us introduce the enthalpy �(ρ)= A lnρ (ρ > 0), and set

m(t,x)= A−1/2
(
�
(
n(t,x)

)−�(n)
)
. (3.1)

Then (1.1) can be transformed into the symmetric hyperbolic form

∂tU +
d∑

j=1
Aj(u)∂xjU =−

1
τ

(
0
u

)

, (3.2)

where

U =
(
m
u

)

, Aj(u)=
(

uj
√
Ae�j√

Aej uj

)

. (3.3)

The initial data (1.2) become into

U0 =
(√

A
(
lnn0− lnn

)
,u0

)�
. (3.4)

Remark 1. The variable change is from the open set {(n,u)∈ (0,+∞)×Rd} to the whole
space {(m,u) ∈ Rd ×Rd}. It is easy to show that the system (1.1)-(1.2) is equivalent to
(3.2)–(3.4) for classical solutions (n,u) away from vacuum.

First, we recall a local existence and uniqueness result of classical solutions to (3.2)–
(3.4) which has been obtained in [7].

Proposition 3.1. For any fixed relaxation time τ > 0, assume that U0 ∈ Bσ
2,1, then there

exist a time T0 > 0 (only depending on the initial data U0) and a unique solution U(t,x) to
(3.2)–(3.4) such that U ∈�1([0,T0]×Rd) and U ∈�([0,T0],Bσ

2,1)∩�1([0,T0],Bσ−1
2,1 ).
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4. A priori estimate and global existence

In this section, we will establish a uniform a priori estimate, which is used to derive the
global existence of classical solutions to (3.2)–(3.4). Defining the energy function

Eτ(T)2 := sup
0≤t≤T

∥
∥U(t)

∥
∥2
Hσ+ε +

1
τ

∫ T

0

∥
∥u(t)

∥
∥2
Hσ+εdt+ τ

∫ T

0

∥
∥∇xU(t)

∥
∥2
Hσ−1+εdt, (4.1)

then we have the following a priori estimate.

Proposition 4.1. For any given time T > 0, if U ∈ �([0,T],Hσ+ε) is a solution to the
system (3.2)–(3.4), then the following inequality holds:

Eτ(T)2 ≤ C
(
S(T)

)(
Eτ(0)2 +Eτ(T)2 +Eτ(T)4

)
, (4.2)

where S(T) = sup0≤t≤T ‖U(·, t)‖Hσ+ε , C(S(T)) denotes an increasing function from R+ to
R+, which is independent of τ,T ,U .

Proof. The proof of Proposition 4.1 is divided into two steps. First, we estimate the
L∞([0,T],Hσ+ε) norm of U , and the L2([0,T],Hσ+ε) one of u. Then, we estimate the
L2([0,T],Hσ−1+ε) norm of∇U .

Step 1. Applying the operator Δq to (3.2), multiplying the resulting equations by Δqm
and Δqu, respectively, and then integrating them over Rd, we get

1
2

(∥
∥Δqm

∥
∥2
L2 +

∥
∥Δqu

∥
∥2
L2

)∣∣
∣
t

0
+
1
τ

∫ t

0

∥
∥Δqu(σ)

∥
∥2
L2dσ

= 1
2

∫ t

0

∫

Rd
divu

(∣
∣Δqm

∣
∣2 +

∣
∣Δqu

∣
∣2
)
dxdσ

+
∫ t

0

∫

Rd

{[
u,Δq

] ·∇mΔqm+
[
u,Δq

] ·∇uΔqu
}
dxdσ.

(4.3)

In what follows, we first deal with the low-frequency case. By performing integration by
parts, then using Hölder- and Gagliardo-Nirenberg-Sobolev inequality, we have (d ≥ 3)

(∥
∥Δ−1m

∥
∥2
L2 +

∥
∥Δ−1u

∥
∥2
L2

)∣∣
∣
t

0
+
2
τ

∫ t

0

∥
∥Δ−1u(σ)

∥
∥2
L2dσ

≤
∫ t

0

(
2‖u‖Ld

∥
∥Δ−1m

∥
∥
L2d/(d−2)

∥
∥Δ−1∇m

∥
∥
L2 +‖∇u‖L∞

∥
∥Δ−1u

∥
∥2
L2

)
dσ

+2
∫ t

0

(∥
∥[u,Δ−1

] ·∇m∥∥L2d/(d+2)
∥
∥Δ−1m

∥
∥
L2d/(d−2) +

∥
∥[u,Δ−1

] ·∇u∥∥L2
∥
∥Δ−1u

∥
∥
L2

)
dσ

≤
∫ t

0

(
2
∥
∥u
∥
∥
Ld
∥
∥Δ−1∇m

∥
∥2
L2 +

∥
∥∇u∥∥L∞

∥
∥Δ−1u

∥
∥2
L2

)
dσ

+2
∫ t

0

(∥
∥[u,Δ−1

] ·∇m∥∥L2d/(d+2)
∥
∥Δ−1∇m

∥
∥
L2 +

∥
∥[u,Δ−1

] ·∇u∥∥L2
∥
∥Δ−1u

∥
∥
L2

)
dσ.

(4.4)
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Multiplying the factor 2−2(σ+ε) on both sides of (4.4), from Lemma 2.3 and Young in-
equality, we obtain

2−2(σ+ε)
(∥
∥Δ−1m

∥
∥2
L2 +

∥
∥Δ−1u

∥
∥2
L2

)∣∣
∣
t

0
+
2
τ

∫ t

0
2−2(σ+ε)

∥
∥Δ−1u(σ)

∥
∥2
L2dσ

≤
∫ t

0

(
1
2
‖u‖Ld2−2(σ−1+ε)

∥
∥Δ−1∇m

∥
∥2
L2 +‖∇u‖L∞2−2(σ+ε)

∥
∥Δ−1u

∥
∥2
L2

)
dσ

+C
∫ t

0

(
c−1‖u‖Hσ+ε‖m‖Hσ+ε2−(σ−1+ε)

∥
∥Δ−1∇m

∥
∥
L2 + c−1‖u‖2Hσ+ε2−(σ+ε)

∥
∥Δ−1u

∥
∥
L2

)
dσ

≤
∫ t

0

(
1
2
‖u‖Ld2−2(σ−1+ε)

∥
∥Δ−1∇m

∥
∥2
L2 +‖∇u‖L∞2−2(σ+ε)‖Δ−1u‖2L2

)
dσ

+C
∫ t

0
‖m‖Hσ+ε

(
1
τ
c2−1‖u‖2Hσ+ε + τ2−2(σ−1+ε)

∥
∥Δ−1∇m

∥
∥2
L2

)
dσ

+C
∫ t

0
‖u‖Hσ+ε

(
1
τ
c2−1‖u‖2Hσ+ε +

1
τ
2−2(σ+ε)

∥
∥Δ−1u

∥
∥2
L2

)
dσ

(
τ ≤ 1

τ

)
,

(4.5)

where C is some positive constant independent of τ. For the high-frequency case, we can
also achieve the similar inequality:

22q(σ+ε)
(∥
∥Δqm

∥
∥2
L2 +

∥
∥Δqu

∥
∥2
L2

)∣∣
∣
t

0
+
2
τ

∫ t

0
22q(σ+ε)

∥
∥Δqu(σ)

∥
∥2
L2dσ

≤ C
∫ t

0
‖∇u‖L∞

(
22q(σ−1+ε)

∥
∥Δq∇m

∥
∥2
L2 + 22q(σ+ε)

∥
∥Δqu

∥
∥2
L2

)
dσ

+C
∫ t

0
‖m‖Hσ+ε

(
1
τ
c2q‖u‖2Hσ+ε + τ22q(σ−1+ε)

∥
∥Δq∇m

∥
∥2
L2

)
dσ

+C
∫ t

0
‖u‖Hσ+ε

(
1
τ
c2q‖u‖2Hσ+ε +

1
τ
22q(σ+ε)

∥
∥Δqu

∥
∥2
L2

)
dσ

(
τ ≤ 1

τ

)
,

(4.6)

where we have taken the advantage of the fact ‖Δq∇m‖L2 ≈ 2q‖Δqm‖L2 (q ≥ 0).
By summing (4.6) on q ∈ N∪ {0} and adding (4.5) together, then according to the

imbedding property in Sobolev space, we have

(‖m‖2Hσ+ε +‖u‖2Hσ+ε

)∣∣t
0 +

2
τ

∫ t

0
‖u‖2Hσ+εdσ

≤ C
∫ t

0
‖m‖Hσ+ε

(
1
τ
‖u‖2Hσ+ε + τ‖∇m‖2Hσ−1+ε

)
dσ+C

∫ t

0
‖u‖Hσ+ε

1
τ
‖u‖2Hσ+εdσ

+C
∫ t

0
‖m‖Hσ+ε

(
1
τ
‖u‖2Hσ+ε + τ‖∇m‖2Hσ−1+ε

)
dσ

+C
∫ t

0
‖u‖Hσ+ε

(
1
τ
‖u‖2Hσ+ε +

1
τ
‖u‖2Hσ+ε

)
dσ.

(4.7)
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Therefore, for any t ∈ [0,T], the following inequality holds:

∥
∥U(t)

∥
∥2
Hσ+ε +

2
τ

∫ t

0
‖u‖2Hσ+εdσ≤ C

(
S(t)

)(
Eτ(0)2 +Eτ(t)2

)
. (4.8)

Step 2. Thanks to the important skew-symmetric lemma developed in [1, 6, 10], we are
going to estimate the L2([0,T],Hσ−1+ε) norm of∇U .

Lemma 4.2 (Shizuta-Kawashima). For all ξ ∈ Rd, ξ �= 0, the system (3.2) admits a real
skew-symmetric smooth matrix K(ξ) which is defined in the unit sphere Sd−1:

K(ξ)=

⎛

⎜
⎜
⎝

0
ξ�

|ξ|
− ξ

|ξ| 0

⎞

⎟
⎟
⎠ , (4.9)

then

K(ξ)
d∑

j=1
ξjAj(0)=

⎛

⎜
⎝

√
A|ξ| 0

0 −√Aξ ⊗ ξ

|ξ|

⎞

⎟
⎠ . (4.10)

The system (3.2) can be written as the linearized form

∂tU +
d∑

j=1
Aj(0)∂xjU =

d∑

j=1

{
Aj(0)−Aj(u)

}
∂xjU −

1
τ

(
0
u

)

. (4.11)

Let

� =
d∑

j=1

{
Aj(0)−Aj(u)

}
∂xjU. (4.12)

From Lemma 2.1, we have

‖�‖Hσ−1+ε ≤ C‖u‖Hσ−1+ε‖∇U‖Hσ−1+ε . (4.13)

Apply the operator Δq to the system (4.11) to get

∂tΔqU +
d∑

j=1
Aj(0)∂xjΔqU = Δq�− 1

τ

(
0

Δqu

)

. (4.14)

By performing the Fourier transform with respect to the space variable x for (4.14) and
multiplying the resulting equation by −iτ(�ΔqU)∗K(ξ), “∗” represents transpose and
conjugator, then taking the real part of each term in the equality, we can obtain

τ Im
(
(
�ΔqU

)∗
K(ξ)

d

dt
�ΔqU

)
+ τ
(
�ΔqU

)∗
K(ξ)

( d∑

j=1
ξjAj(0)

)

�ΔqU

=−Im
((
�Δqm

)∗ ξ�

|ξ| Δ̂qu
)
+ τ Im

((
�ΔqU

)∗
K(ξ)

(
�Δq�

))
.

(4.15)
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Using the skew-symmetry of K(ξ), we have

Im
(
(
�ΔqU

)∗
K(ξ)

d

dt
�ΔqU

)
= 1

2
d

dt
Im
((
�ΔqU

)∗
K(ξ)�ΔqU

)
. (4.16)

Substituting (4.10) into the second term on the left-hand side of (4.15), it is not difficult
to get

τ Im
(
(
�ΔqU

)∗
K(ξ)

d

dt
�ΔqU

)
+ τ
(
�ΔqU

)∗
K(ξ)

( d∑

j=1
ξjAj(0)

)

�ΔqU

≥ τ

2
d

dt
Im
((
�ΔqU

)∗
K(ξ)�ΔqU

)
+ τ
√
A|ξ|∣∣�ΔqU

∣
∣2− 2

√
A|ξ|∣∣Δ̂qu

∣
∣2.

(4.17)

With the help of Young inequality, the right-hand side of (4.15) can be estimated as

− Im
(
(
�Δqm

)∗ ξ�

|ξ| Δ̂qu
)
+ τ Im

((
�ΔqU

)∗
K(ξ)

(
�Δq�

))

≤ τ

√
A

2
|ξ|∣∣�ΔqU

∣
∣2 +

C

τ|ξ|
∣
∣Δ̂qu

∣
∣2 +

Cτ

|ξ|
∣
∣(�Δq�

)∣∣2,

(4.18)

where the positive constant C is independent of τ. Combining with the equality (4.15)
and the inequalities (4.17)-(4.18), we deduce

τ

√
A

2
|ξ|∣∣�ΔqU

∣
∣2 ≤ C

τ

(
|ξ|+ 1

|ξ|
)∣
∣Δ̂qu

∣
∣2 +

Cτ

|ξ|
∣
∣(�Δq�

)∣∣2− τ

2
d

dt
Im
((
�ΔqU

)∗
K(ξ)�ΔqU

)
.

(4.19)

Multiplying (4.19) by |ξ| and integrating it over [0, t]×Rd, from Plancherel’s theorem,
we reach

τ
∫ t

0

∥
∥Δq∇U

∥
∥2
L2dσ≤ C

τ

∫ t

0

(∥
∥Δqu

∥
∥2
L2 +

∥
∥Δq∇u

∥
∥2
L2

)
dσ+Cτ

∫ t

0

∥
∥Δq�

∥
∥2
L2dσ

− τ

2
Im
∫

Rd
|ξ|((�ΔqU

)∗
K(ξ)�ΔqU

)
dξ
∣
∣
∣
t

0

≤ C

τ

∫ t

0
22q
∥
∥Δqu

∥
∥2
L2dσ+Cτ

∫ t

0

∥
∥Δq�

∥
∥2
L2dσ

+Cτ22q
(∥
∥ΔqU(t)

∥
∥2
L2 +

∥
∥ΔqU(0)

∥
∥2
L2

)
,

(4.20)

where we have used the uniform boundedness of the matrix K(ξ) (ξ �= 0).
Multiplying the factor 22q(σ−1+ε) (q ≥−1) on both sides of (4.20) and summing it on

q, we have

τ
∫ t

0
‖∇U‖2Hσ−1+εdσ≤ C

τ

∫ t

0
‖u‖2Hσ+εdσ+Cτ

∫ t

0
‖�‖2Hσ−1+ε dσ+Cτ

(∥
∥U(t)

∥
∥2
Hσ+ε +

∥
∥U(0)

∥
∥2
Hσ+ε

)

≤ C
(
S(t)

)(
Eτ(0)2 +Eτ(t)2 +Eτ(t)4

)
.

(4.21)
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Together with the inequalities (4.8) and (4.21), (4.2) follows immediately, which com-
pletes the proof of Proposition 4.1. �

Proof of Theorem 1.1. In fact, Proposition 3.1 also holds on the framework of the func-
tional space Hσ+ε(≡ Bσ+ε

2,2 ). There exists a sufficiently small number ε0 independent of τ
such that Eτ(T)≤ ε0 ≤ 1 from (4.1), we have

Eτ(T)2 ≤ C̃
(
Eτ(0)2 +Eτ(T)3

)
, (4.22)

where the constant C̃ is independent of τ. Without loss of generality, we may assume
C̃ ≥ 1. Similar to that in [1], we achieve that

Eτ(t)≤min
{
ε0,

1

2C̃
,
√

2C̃Eτ(0)
}

(4.23)

for any t ≥ 0 if

∥
∥U0

∥
∥
Hσ+ε ≤ 1

2(2C̃)3/2
. (4.24)

Note that the density

n−n= n
{
exp

(
A−1/2m

)− 1
}
; (4.25)

from Lemma 2.2, the definition of Eτ(t), and the standard continuity argument, we can
obtain the following result: there exist two positive constants δ0, C0 independent of τ if
the initial data satisfy

∥
∥n0−n

∥
∥2
Hσ+ε +

∥
∥u0

∥
∥2
Hσ+ε ≤ δ0, (4.26)

then the system (1.1)-(1.2) exists as a unique global solution (n,u). Moreover, the uni-
form energy estimate holds:

∥
∥(n−n,u)(·, t)∥∥2Hσ+ε +

1
τ

∫ t

0

∥
∥u(·,σ)∥∥2Hσ+εdσ+ τ

∫ t

0

∥
∥(∇n,∇u)(·,σ)∥∥2Hσ−1+ε dσ

≤ C0
∥
∥(n0−n,u0

)∥∥2
Hσ+ε , t ≥ 0,

(4.27)

which completes the proof of Theorem 1.1. �

The proof of Corollary 1.2 is similar to that in [1]; here, we omit the details, the inter-
ested readers can refer to [1].
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