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The classic Kalman filtering equations for independent and correlated white noises are ordinary
differential equations (deterministic or stochastic) with the respective initial conditions. Changing
the noise processes by taking them to be more realistic wide band noises or delayed white noises
creates challenging partial differential equations with initial and boundary conditions. In this
paper, we are aimed to give a survey of this connection between Kalman filtering and boundary
value problems, bringing them into the attention of mathematicians as well as engineers dealing
with Kalman filtering and boundary value problems.
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1. Introduction

In 1960-1961 Kalman [1] and Kalman and Bucy [2] proposed a method of estimation, called
Kalman filtering, for linear dynamical systems corrupted by white noise processes. Briefly,
Kalman filtering provides equations for the best estimate x; of x; based on z;, 0 < 5 < ¢,
where x is treated as an unobservable signal process, satisfying

x; = Ax;+Bw;, t>0,

L (1.1)
Xo is given,
and z as an observation process, depending on the signal in the linear form
zy=Cxi+wy, t>0,
(1.2)

ZOZO.
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However, (1.1)-(1.2) form a starting point for Kalman filtering problem, where A, B and C
are matrices (resp., x and z are vector-valued) and w is the so called vector-valued Gaussian
white noise process with zero mean and covariance to be an identity matrix, all them of
respective dimensions. It is assumed that xq is a Gaussian random vector with zero mean
and known covariance cov xg and independent on w.

The essence of Kalman filtering is that it presents X as a dynamical process to be a
solution of the linear equation

5C\,t :Ak\t'f' (PtC*+B)(Z;—CJACt), t>0/

(1.3)
X0 =0,
where C* is the transpose of C and P is a solution of the matrix Riccati equation
P, = AP, + DA* + BB* - (PC*+B)(CP:+B*), t>0,
(1.4)

Py = cov xg.

Here (1.4) can be solved a priori and the values of P stored in a memory. Then (1.3) provides
a linear transformation of the observation data z;, 0 < s < ¢, into the best estimate x; for every
t > 0. This transformation is called a Kalman filter. In applications the Kalman filter allows
the replacement of the unknown signal x;, which is very roughly expressed as a solution of
(1.1), by its best possible estimate (in the mean square sense), which can be drawn from the
available observations.

This result found wide applications in many applied areas, especially in space
engineering. For the mathematical and engineering aspects of Kalman filtering we refer to
Davis [3], Fleming and Rishel [4], Bensoussan [5], Liptser and Shiryayev [6], Curtain and
Pritchard [7], Bucy and Joseph [8], Crassidis and Junkins [9].

In this paper, we give a survey of new results on Kalman filtering leading to boundary
value problems. Such a connection between Kalman filtering and boundary value problems
arise in cases when the noises involved to the Kalman filtering problem are delayed in time.

A delay of noises is not only a mathematical generalization of the basic Kalman
filtering equations (1.3)-(1.4), but has a practical significance as well. It is well known that
a white noise is an ideal process, approximating the noises in reality with more or less
adequacy. In this regard, the remark in [4, page 126] by Fleming and Rishel is spectacular,
where the authors describe wide band noises as a most adequate mathematical model of real
noises. The issue on wide band noise was handled in Bashirov [10], where a wide band noise
was represented in the form of distributed delay of a white noise, and on the base of this
representation the Kalman filtering equations for the wide band noise model were derived.
Now (1.3)-(1.4) of Kalman filtering change their form becoming two systems of equations
combining as ordinary as well as partial differential equations with respective initial and
boundary conditions.

Representation of wide band noises as a distributed delay of white noises became
fruitful in order to derive Kalman filtering equations for pointwise delayed white noises as
well. Such noises arise in real cases when a communication between the observer and the
object takes considerable time. For example, in [11, 12] the case when the signal is corrupted
by pointwise delayed white noise is suggested for the improvement of the preciseness of
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the Global Positioning Systems. A basic tool for derivation of Kalman filtering equations for
pointwise delayed white noises, used in [11, 13], is an approximation of a white noise by
wide band noises.

Our aim in this paper is to bring all these boundary value problems to the attention
of the community of scientists dealing with boundary value problems and suggest the
investigation of numerical methods for them.

2. The signal corrupted by wide band noise

The wide band noise Kalman filtering equations (8.60)—(8.66) from Bashirov [10] are too
heavy since they are derived in Hilbert space case compressing two essentially different cases:
wide band noise corrupting the signal and observations simultaneously. Here we delineate
these cases, which lead to distinct patterns of boundary value problems and, respectively,
require different numerical approaches. This essentially reduces the complication of these
equations from [10], making a proper concentration on numerical methods.

Assume that the system (1.1) is disturbed by the wide band noise ¢, represented as a
distributed delay of the white noise w in the form

t
P = f Dg_wpdo, (2.1)

min(0,t—¢)
where @ is a differentiable function on [—¢, 0], satisfying @_, = 0, and ¢ > 0 is a constant:

X, =Axp+¢, t>0,

(2.2)
Xp is given.
Then the Kalman filtering equations for the systems (2.2) and (1.2) are
X, = A% + g0 + BC* (2, - C%;), t>0,
X0 =0,
a a » . , R (2.3)
<&+@)([}t,9 = (Qt,QC +®9)(Zt—cx}), —€<9S0, t>0,
¢0,9=(Pt,—£=0/ _ESGSO/ t>0/
Ptl = APt + PtA* + Qt,O + QZO — PtC*CPt, t>0,
Py = cov xy,
o 0 .
=+ =5 )Quo = AQip + Rigp — PC*(CQ1p +‘I’9), -£<0<0,t>0,
ot 00 / ! w / (2.4)

QO,QZQt,—&‘:O/ _‘ESQSO/ t>0/

o o0 0
<a tag g)Rtﬂ,r = Q@ — (QyC* + @) (CQir +@F), -e<T<OL0, >0,
Roor =Rip-e=0, —-e<7<6<0,t>0.
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Thus a distributed delay of white noise splits the stochastic ordinary differential equation
(1.3) into two equations, given in (2.3), the first one being again a stochastic ordinary dif-
ferential equation, and the second one a stochastic partial differential equation. Respectively,
the Riccati equation (1.4) is split into three equations, given in (2.4), the first one being again
a deterministic ordinary differential equation, and the second and third ones a deterministic
partial differential equation. These partial differential equations serve for transformation of
the zero initial and boundary values of ¢ and Q along the boundary lines t = 0 and 0 = —¢
into their values along the other boundary line 6 = 0.

3. The observations corrupted by wide band noise

Now disturb the observation system (1.2) by the sum of white and wide band noises w and
¢, respectively:

zp=Cxi+wi+¢, t>0,
3.1)
zp =0,

where again € > 0 is fixed and ¢ is defined by (2.1), satisfying the same conditions as in
Section 2, but the dimensions of the matrix @y is consistent with the dimension of z(f). Here
the presence of non-degenerate white noise in observations is a restriction coming from the
nature of Kalman filtering.

The Kalman filtering equations for the systems (1.1) and (3.1) have been derived in
the form

5('\; = A5C\t + (PtC* + Qt,O + B) (Z; — Cft — (P'tro), t>0,

550 = O/

o 0 (3.2)

(& " @)"% = (Q1pC" + Ri g+ Do) (2 — CXt —¢r0), —£<6<0, >0,
wop=t¢1--=0, —e<0<0,t>0,

where

P! = AP, + P,A* + BB* - (P.C* + Q19 + B) (CP: + Qo+ B*), t>0,

Py = cov xp,

(% + a—%)Qt,e = AQyp + B} — (P.C*+ Q10+ B) (CQ1o + Ripp + D), —-£<60<0,t>0,

Qoo =Q1-=0, -£<0<0,t>0,

a a a * * * * *
(a T 6_T>Rt’9’7 = @p®; - (Qt,ec +Rige * ®o) (CQur + Rior +07),

—-£e<T<0<L0, t>0,

Roor=Rip-e=0, —-e<7<0<L0,t>0.
(3.3)
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Again, (1.3) and (1.4) are split into two and three equations containing partial differential
equations, but now they are different from (2.3)-(2.4).

4. The signal corrupted by pointwise delayed white noise

Originally, the equations of Kalman filtering for pointwise delayed white noises were
conjectured in [10] and then they were proved in [11, 13] with some corrections in boundary
conditions. But the equations from [11] still contain a misprint which is corrected in [12].

The Kalman filtering equations from Sections 2 and 3 include zero boundary
conditions. In cases when the delay of noises is pointwise some terms fall from the partial
differential equations to boundary conditions, creating challenging patterns of boundary
conditions.

Change the signal system (1.1) by replacing w; by its delay w;_., where ¢ > 0 is a
constant:

!
X, = Ax + Qwy_,, t>0,

(4.1)
Xp is given.
Then the Kalman filtering equations for the systems (4.1) and (1.2) are
X, = A% + g0 + BC* (2, - C%x;), t>0,
Xo =0,
0,0 . i
&_{_@ (Pt/f):Qt,QC (zt—Cxt), —€<9S0,t>9+8, ()
(Pt,ezol _ESQSO/OStSG—'_E/
Wt,— = (D(Z't - Cft), t>0,
Ptl = APt + PtA* + Qt,O + Q;O + (I)(I)*I(Orgl (t) — PtC*CPt, t>0,
Py = cov xy,
o 0
FTRFT Qio = AQto + Riop — PIC*'CQrp, -£<60<0,t>0+¢,
Qt,ezol _SSGSOIOStSQ-'_EI
(4.3)

Qt,,g = —PtC*(I)*, t>0,

o o0 0

Zr— 4 — =-Q*,C* - <0<

<6t+66+afr>Rt’6’T QLGCCQW, e<T<OL0, t>T+¢,
Ripr =0, -e<17<0<0,0<t<T+e¢,

Rig-c = ~DCQ; . — Qf,C'D*, —£<0<0, t>0,

where I (g is the indicator function of the interval (0, €].
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5. The observations corrupted by pointwise delayed white noise

Finally, we consider the case when the observations are corrupted by delayed white noise.
Replace the system (1.2) by

zp = Cxp + wy + Qw0 (1), >0,
(5.1)
zp =0,

where the delayed white noise effects to the observations starting the instant € > 0. Then the
Kalman filtering equations for the systems (1.1) and (5.1) are

X, = A% + (P.C* + Quo + B) (2, - CXi — grrp), t>0,

Xo=0,

o 0 _
<& + @)qrt,g = (Q:‘,GC* + R:,o,e) (z; - Cxi—q¢r0), —€<60<0,t>0+¢, (5.2)

(Ift,QZO, _£S6§0/0St§9+€/
Wt,— = (D(Z; - C./X\t - (I)'tlo), t>0,
P! = AP, + D,A* + BB* — (P.C* + Q19 + B) (CP; + Qo+ B*), t>0,

Py = cov xg,

(% + a—ae>Qt,e = AQto - (PtC* + Qo + B) (CQt,e + Rt,O,G)/ -£<0<0,t>0+¢,

Qt,9=01 —€SGSO,OStSQ+5,
(5.3)
Q1 =—(PC*+Q10)D*, t>0,

o o0 0
(& tagt E)RLQ,T = —(Q;‘,QC* + R;‘/O,e)(CQt,T +Rior), -e<T<0<L0, t>T+e,
Rt,Q,T:O/ _SSTSQSO/OStST+S/

Rip-c = ~D(CQp-c + Reo-c) = (QfyC* + R}

f00) @, —e<6<0, t>0.

6. Remarks on numerical solutions

Numerical solution of the Riccati systems of equations (2.4), (3.3), (4.3), and (5.3), which
replace the Riccati equation (1.4) for delay cases, is very important for realization of the
Kalman filters defined by systems (2.3), (3.2), (4.2), and (5.2), respectively. Note that the
existence of the unique symmetric and positive solutions of these systems has been proved.
This additionally makes these systems interesting in the light of increasing demand to
investigations of positive solutions of boundary value problems (see, e.g., [14, 15]).

Each of the systems (2.4), (3.3), (4.3), and (5.3) consists of three equations; the first of
them being a modification of the Riccati equation (1.4) and the other two for generation the
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D\D; D\D; - D

Figure 1: Transformation of D onto D and Gonto G.

values of Q. Let D (a plane region) and G (a solid) be the domains of the functions Q and R.
They are

D={(t0):-e<0<0, t>0},
(6.1)
G={(t0,T1):-e<T<0<0, t>0},

and pictured in Figure 1 (two regions on the left), where both D and G are unbounded from
the right hand side. In all the cases Q and R satisty zero initial conditions on the line segment

{(t,0) : =<0 <0, t=0]} (6.2)
and on the triangle
{(t,0,T): —e<T<0<0, t=0}, (6.3)

respectively. The essence of the second and third equations in (2.4), (3.3), (4.3), and (5.3) is
that they transform the boundary conditions on the line

{(£,0): 0 =—¢, t >0} (6.4)
and on the rectangle
{(t,0,T):—e=7<60<0, t>0} (6.5)
onto the values of Q interior of D and on the other boundary line
{(t,0):0=0, t>0} (6.6)

of D.
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One can observe that the systems (2.4), (3.3), (4.3), and (5.3) obey different kinds of
boundary conditions. The boundary conditions of the systems (2.4) and (3.3) are constantly
zero. Therefore, for numerical solution of them it suffices to use rectangular grids on D and G.

Whereas the boundary conditions of (4.3) and (5.3) are complicated for numerical
solution by rectangular grids; they require data which are not yet calculated. But this
complication can be removed by use of continuity: if a step of the grid is too small, then the
required data Py, Qy,¢,, and Ry, 00, on grid points can be approximated by already calculated
data P, Qe and R, op,. This idea was used in Bashirov and Mazhar [12] for the
system (4.3) in one dimensional case, where some significant conclusions were obtained. In
particular, it was demonstrated that neglecting the delay in (4.3) causes a loss of information,
which is not recovered as time increases.

But applied problems require a consideration of (4.3) and (5.3) in a multidimensional
case and a development of fast computational methods for them. In this regard the following
observation may be useful. One can see that on the interval (0, €] the values of X and P from
(4.2)-(4.3) and (5.2)-(5.3) can be calculated without any contribution of ¢, Q and R because
they are identically zero on the lightly colored subregions on the left hand side of D and G;
on the triangle

Dy ={(t,6):-e<6<0, 0<t<O+¢} (6.7)

and on the tetrahedron

G ={(t,0):—e<T<0<0, 0<t<T+e}. (6.8)

Therefore, a rhombic grid seems to be more natural for the systems (4.3) and (5.3). For this,
it is suitable to consider P from (4.3) and (5.3) on the interval [0, ¢] and transform the rest of
its domain, that is, (¢, o0), onto (0,00) by t — t — €. This suggests also a transformation of

D\D;, G\G (6.9)

onto

D={(0):-e<60<0,t>0}, G={(6,7):-e<T<6<0,t>0)}, (6.10)

respectively, by

(t,0) — (t—-0-¢,0), (t,0,1T) — (t—-T-¢,0,7T). (6.11)
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Letting P; = P, ét,e = Qpigrep and ﬁtlgﬂ- = Ryirie0,,, We can write (4.3) in terms of new
functions P, @, and R in the form

P = AP, + BA* + ®D* - P,C*CP, 0<t<e,
, Py = cov*xo,
D, = AP + D;A* + Q,0 + Q; - DiC'CP;, >0,
Py =Py, -e<t<0,
O Qo= Ay + Rupo - PaoC'CQya, ~£ <00, 150,

Qup=0, -£<60<0, (6.12)
Q=P .C*®*, >0,
<% + a%>ﬁt,9,r = —Q1r-00CCQ,r, —£<T<O<0, t>0,
Rygr=0, -e<7<0<0,
Rig-c = -DCQ, . — Q1o oC'D*, -£<60<0, t>0.
In a similar way, (5.3) can be written in the form
P/ = AP, + P,A* + BB* - (P,C*+ B)(CP, + B*), 0<t<g,
Py = cov xy,
D, = AP, + P,A* + BB" - (PiC* + Q0+ B)(CP; + Q0+ B*), t>0,
Pi =Py, -£<t<0,
9 Qo = Ay~ (ProC* + Qhuon + B)(CQy+ Rigg), ~£ <00, £>0, .
6.13

Quo=0, -£<60<0,

5 5 Gt,—s = _(ﬁt—EC* + @t_&o)cD*, t> 0,
(@ * a_T>Et’9'T = _(§:+T—6,9C* + ﬁ>tk+’r—€',0,6) (Cét,r + El.‘,O,T)/ O0<t< 0 < 0, > 0,
Ropr=0, -e<T<0Z0,

Rip-e = —®(CQ,_, + Rio-e) - (Grfefs,ec* + E;efg,o,e)‘b*/ -£<0<0, t>0.

A numerical solution of (4.3) and (5.3) by rhombic grid in fact means a numerical
solution of (6.12) and (6.13) by rectangular grid, respectively.

7. Conclusion

The paper surveys new Kalman filtering results leading to boundary value problems. We
consider simplest cases, stressing on partial differential equation nature of the Kalman
filtering equations under delayed noises. Numerical solution of the Riccati equations is an
integral part of Kalman filters. Its complexity increases very fast if the dimension of the
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signal and observation systems increases. In case of ordinary Riccati differential equation
(1.4), efficient algorithms are already developed. But the Riccati systems in (2.4), (3.3), (4.3),
and (5.3) are awaiting. A simple trial has been done in [12] for the system (4.3) in one-
dimensional case. The paper is a call to the community of mathematicians and engineers,
dealing with Kalman filtering and boundary value problems, to attract their attention to the
new kinds of boundary value problems awaiting numerical solution methods.
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