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1. Introduction

In this paper, we are concerned with a one-dimensional nonlinear parabolic integrodifferential
equation with Bessel operator, having the form

1 d *
et~ 1t = 0 max < fo fu(e, b, o) f, (1.1)

where (x,t) € Qr = (0,1) x (0, T).

Well posedness of the problem is proved in a weighted Sobolev space when the problem
data is a related weighted space. In [1], a model of a one-dimensional quasistatic contact
problem in thermoelasticity with appropriate boundary conditions is given and this work is
motivated by the work of Xie [1], where the author discussed the solvability of a class of
nonlinear integrodifferential equations which arise from a one-dimensional quasistatic contact
problem in thermoelasticity. The author studied the existence, uniqueness, and regularity of
solutions. We refer the reader to [1, 2], and references therein for additional information. In the
present paper, following the method used in [1], we will prove the existence and uniqueness
of Wgé(QT) (see below for definition) solutions of a nonlinear parabolic integrodifferential
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equation with Bessel operator supplemented with a one point boundary condition and an
initial condition. The proof is established by exploiting some a priori estimates and using a
tixed point argument.

2. The problem

We consider the following problem:

Up — Upx — %ux = %max <—[o u(¢, t)dé, 0> +f, (x,t)eQr=(0,1)x(0,7T), (2.1)

uy(1,t) =0, te(0,T), (2.2)
u(x,0) =g(x), x€(0,1), (2.3)

where g(x) and f(x,t) are given functions with assumptions that will be given later.

In this paper, || - ||i2 ©r) denotes the usual norm of the weighted space Lﬁ(QT), where we
u

use the weights y = 0, p and ¢ = x* while p = x. The respective inner products on L%(QT) and
L2(Qr) are given by

(u, U)L%(QT) = f xuv dx dt, (,0)12) = f x*uv dx dt, (2.4)
Q

T T

Let W;g (Qr) be the subspace of L*(Qr) with finite norm

2

_ 2 2
W;:g(QT) - “u”L(Z’(QT) + ””x”Lg(QTy (25)

[l

and V, = Wﬁ:;(QT) be the subspace of Wé‘; (Qr) whose elements satisfy u;, uyy € L2(Qr). In

general, a function in the space W;’,]p (Qr), with i, j nonnegative integers possesses x-derivatives
up to ith order in the LY (Qr), and tth derivatives up to jth order in L7 (Qr). We also use
weighted spaces in the interval (0,1) such as L2((0,1)) and HL((0,1)), whose definitions are
analogous to the spaces on Qr. We set

W2,((0,1)) =L2((0,1)), W2, ((0,1) =Hi((0,1)),  WX(Qr)=L3(Qr). (26)

For general references and proprieties of these spaces, the reader may consult [3].
Throughout this paper, the following tools will be used.

(1) Cauchy inequality with € (see, e.g., [4]),
£ o 1.0
<= — .
lab < Slaf* + 5 [bP, 27)

which holds for all € > 0 and for arbitrary a and b.
(2) An inequality of Poincaré type,

2 1 )
< E”u”LZ(Qr)’ (2.8)

_Kugxmg

~ 2
JxU =
” ) ||L2(QT) ’ L2(Qr)

where J.u = [ u(é, t)dé (see [5, Lemma 1]).

(3) The well-known Gronwall lemma (see, e.g., [6, Lemma 7.1].)
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Remark 2.1. The need of weighted spaces here is because of the singular term appearing in the
left-hand side of (2.1) and the annihilation of inconvenient terms during integration by parts.

3. Existence and uniqueness of the solution

We are now ready to establish the existence and uniqueness of V,; solutions of problem (2.1)-
(2.3). We first start with a uniqueness result.

Theorem 3.1. Let f € L2(Qr) and g(x) € W;lz((O,l)). Then problem (2.1)—(2.3), has at most one
solution in V.

Proof. Let u; and u, be two solutions of the problem (2.1)-(2.3) and let 6(x,t) = w;(x,t) -
wy(x,t), where

t
w;i(x,t) = f ui(x,t)dr, i=1,2, (3.1)
0

then the function 0(x, t) satisfies

L0 =0, - j—c(xex)x = max <J: Euq (é,1)d¢, 0> — max <J: Eup(é,1)d¢, 0>, (3.2)

0.(1,t) =0, (3.3)
B(x,0) = 0. (3.4)
If we denote by
Pi(x,t) = max <Ix Su; (¢, t)d¢, 0>, i=1,2, (3.5)
0

then calculating the two integrals IQT 2x20.L0 dx dt, IQT 2x260,.L0 dx dt, using conditions (3.3),
(3.4), and a combining with — J‘QT 2x6,L60 dx dt, we obtain

2||6;

2 2 2 2 2
2o T 2”996”L%,(QT) + ||6x||L2(QT) +10¢, T)”Lg((o,l)) +[|0x (-, T)”Lg((o,n)
(3.6)

= =2(0,0x) 130, + 2(01 Pr = P2) 1201y 2(0, P1 = 2) 12y = 2(0x P = P2) 120,

In light of inequalities (2.7) and (2.8), each term of the right-hand side of (3.6) is estimated as
follows:

2
~2(6,6x) 120y < 10132 g,y + 1621720,
” 1 2
2(0,B1 = P2) 2 0,) < U6z 0, + 51012 01
) (3.7)
2 2
Z(Qt,ﬁ1 - ﬁz)Lg(QT) = ||6t||L(2;(QT) * E”etllLﬁ(QT)’

2 1 2
~2(0x, p1 — ﬁZ)Lg(QT) < 4||GX||L5(QT) + g”ei”L%,(QT)'
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Therefore, using inequalities (3.7), we infer from (3.6)

2 2 2 2
101172 0r) + 110G D120 + 182 C D2 0,17y < 20”9“23,(@) +20[16x |20y (3:8)
By applying Gronwall’s lemma to (3.8), we conclude that
2
”9f”Lg(QT) =0. (3.9)

Hence u; = us. O

We now prove the existence theorem.
Theorem 3.2. Let f € L2(Qr) and g(x) € W;IQ((O, 1)) be given and satisfying
“f“i%(QT) + “g“[z/\/;z((orl)) S C%/ (310)
for ca > 0 small enough and that
gx(1) =0. (3.11)

Then there exists at least one solution u(x,t) € Wi’;(QT) of problem (2.1)—(2.3).

Proof. We define, for positive constants C and D which will be specified later, a class of
functions W = W(C, D) which consists of all functions v € L%(Qr) satisfying conditions (2.2),
(2.3), and

”v”VU S C/ ”Ut”LLzy(QT) S D. (312)

Given v € W(C, D), the problem

Uy — %(xux)x =Ju+f, (xt)€Qr,
u(1,6) =0, te(0,7), (3.13)
u(x,0) =g(x), x€(0,1),

where

Ju = % max < J:C ¢v(é, t)d§,0>, (3.14)

has a unique solution u € V,;. We define a mapping h such that u = ho.
Once it is proved that the mapping h has a fixed point u in the closed bounded convex
subset W(C, D), then u is the desired solution.
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We, first, show that h maps W (C, D) into itself. For this purpose we write u in the form
u = w + {, where w is a solution of the problem

Wy — Wy — %wx =Ju, (x,t) €Qr, (3.15)
we(1,t) =0, te(0,T), (3.16)
w(x,0)=0, xe(0,1), (3.17)

and ¢ is a solution of the problem

Q - gxx - igx = f(x/ t)/ (x/ t) € QT/ (318)
&x(Lt)=0, te(0,T), (3.19)
¢(x,0) =g(x), x€(0,1). (3.20)

By multiplying (3.15), (3.18), respectively, by the operators, Oyw = 2x*w + 2x*w; — 6xw, and
028 = 2x%{ + 2x%¢; — 6x¢y, then integrating over Qr, we obtain

2(Lw, )20, + 2(Lw, W) 2,y — 6(Lw, wx)L,%(QT)
(3.21)
=2(Ju,w)p2 0, +2(Jo, wt)L%,(QT) -6(Jo, wx)L%(QT),

2(L8, O 120y +2(L8,8t) 12,y — 6(L8, 6 20n)
(3.22)

=2(£,6) 1210y +2(f, Or2ion —6(f,6x) 12y

By using conditions (3.16), (3.17), (3.19), (3.20), an evaluation of the left-hand side of both
equalities (3.21) and (3.22) gives, respectively,

2 2 2
[|eo(x, T)“Lg((o.l)) + 2||WX||L§,(QT) +2(w, wx)Lf,(QT) + ||ox(x, T)“Lg((o.m
2 2
2|12 0p) + 2wt wx) 2oy + 3wkl ) ~6(wr W) 12 (3.23)
= 2(]'0, w)L%(QT) + 2(]7)/ wt)L%’,(QT) - 6(]'0, wX)L%(QT)’

and applying inequalities (2.7), (2.8), and Gronwall’s lemma, we obtain the following estimat-
es:

121, < 7expT) (I I r) + 1815y o1

< 7exp(7T) c%;

(3.24)

lwlly, <7exp@D)]|J]|5 0, (3.25)
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We also multiply by x and square both sides of (3.15), integrate over Qr, use the integral
-2 -[QT xwyLw dx dt, then integrate by parts and using inequality (2.7), we obtain

”wf”ig(QT) + ”wxxuif,(gr) + [|ox (-, T)”if,(QT) <2|[Jollr2 gy (3.26)

Direct computations yield
1
I ]v||i§ o0 <7 (2¢ + 7 exp(7T)c3). (3.27)
By choosing ¢; and ¢, small enough in the previous inequality, we obtain
1Jollzgr) < - (3.28)
Inequalities (3.21)—(3.25) then give

ully, < 2llwlly, +2l¢lly, < 14exp(7T)(c; +¢}),
.29
2 2 2 ) ) (3.29)
lell 2 00 < 2Mw0tll 20, + 2116 22 0,y 467 + 14 exp(7T)c5.

At this point we take C > \/ﬁexp(7T/2)\/(c% + c%) and D > \/4c% +14 exp(7T)c§, so that it
follows from the last two inequalities that [[u[|,, < Cand [ju|;2(o,) < D from which we deduce
that u € W = W(C, D), hence h maps W into itself. To show that h is a continuous mapping,
we consider v1, v, € W and their corresponding images u; and u,. It is straightforward to see
that U = u; — u, satisfies

U; - Uy, — %Ux = %max (f: ¢o1(¢,1)d¢, 0> - %max <J: Evn (¢, t)d§,0>,

(3.30)
U,(1,t) =0, U(x,0) =0.
Define the function p(x, t) by the formula
t
p(x,t) = j U(x, T)dr, (3.31)
0
then it follows from (3.26) and (3.28) that p(x, t) satisfies
1 X X
Pt — Pxx — ;px = F = max <f ¢vy(¢,t)d¢, O> — max (I vy (¢, 1)d¢, 0),
0 0 (3.32)
px(1,t) =0, p(x,0) =0.
Since
2
||F”i%(QT) < “Ul - UZ”L%(QT)’ (333)
then

”U”iﬁ(QT) < 6”01 - UZ”%%(QT)/ (334)
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or
2 2

||hvl - hv2”L?,(Qr) < 6”’01 - v2||L(2r(QT), (335)

hence the continuity of the mapping h. The compactness of the set W(C, D) is due to the

following. O

Theorem 3.3. Let Ey C E C E; with compact embedding (reflexive Banach spaces) (see [4, 7]). Suppose
that p,q € (1,00) and T > 0. Then

S={w:welP(0,T;E), wyeL0,T;E1)} (3.36)

is compactly embedded in LP(0,T; E), that is, the bounded sets are relatively compact in LP(0,T; E).

Note that L2(0,T; L2(0,1)) = L2(Qr), h(W(C, D)) c W(C, D) ¢ L2(Qr). By the Schauder
fixed point theorem the mapping h has a fixed point u in W(C, D).

Remark 3.4. For compactness of the set W(C, D), see also [8, 9].

Remark 3.5. The following theorem gives an a priori estimate which may be used in establishing
a regularity result for the solution of (2.1)—(2.3). More precisely, one should expect the solution
to be in ngrl,(QT) with p < co.

Theorem 3.6. Let u € V,; be a solution of problem (2.1)—(2.3), then the following a priori estimate
holds:

2 2 2 2
sup ||u(, T)“W}ﬂ((o,n) + || zion * ””xx”Lg(QT) + ””ang(Qﬂ

0<t<T

(3.37)
2 2
<80 exp(80T) (IIg1R,1 1)) * 111201
Proof. From (2.1), we have
2 2 2
”ut”Lg(QT) + ””xx”Lg(QT) + ||, T)”L?,((O,l)) = 2(us, Ux)12(Qp)
(3.38)

d x 2
= ||8x||ig((o,1)) + IQ x? [E max <f0 du(é, f)d§,0> + f] dx dt.

Multiplying (2.1) by 2x%u,, integrating over Qr, carrying out standard integrations by parts,
and using conditions (2.2) and (2.3) yields

2 2
2|z @ny + Nt C DIz 017y + 2Cuer ) 13
(3.39)

= ”gx”ig((o,l)) + ZfQ xzutf dx dt + ZI xzut% max <j0 u(é, t)d§,0> dx dt.
T

T
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Adding side to side equalities (3.38) and (3.39), then using inequalities (2.7) and (2.8) to
estimate the involved integral terms to get

1 2 2 2 2
4 llellz @y * Ntz gr) + 2l G D2 0,0 < 2085122 0,0 *+ Ol N2 0y (3.40)

Let be the elementary inequality

1 2 1 2 1 1
§||”(" Dz 0ay < g””f”Lé(QT) * g”””ié«gn * é”g”iéao,l))' (3.41)

Adding the quantity ||ux||i2 on both sides of (3.38), then combining the resulted inequality
with (3.39), we obtain

2 2 2 2 2
[luc, T)||L§((0,l)) + ||, T)”Lg((o,l)) + ””t”Lg(QT) + ||uxx||L§,(QT) + ””ang(QT)
(3.42)

2 2 2 2
s 48(”g”w;,2<<o,1)> 1A g * 1l ) + ””xllL%(Qr))'

Applying Gronwall’s lemma to (3.40) and then taking the supremum with respect to t over the
interval [0, T], we obtain the desired a priori bound (3.37). Ol
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