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1. Introduction

Initial boundary-value problems for hyperbolic and parabolic type equations in a cylinder
with the base containing conical points have been developed sufficiently by us [1–4], themain
results of which are about the unique existence of the solution and asymptotic expansions of
the solution near a neighborhood of a conical point. However, those problems mentioned
above in cylinder with base containing cuspidal point, also interesting for applied sciences,
have not been studied yet.

In the present paper, we are concerned with the first initial boundary value problems
for higher hyperbolic equation in a cylinder, whose base containing cuspidal points.

In [5, 6] we showed the existence of a sequence of smooth domains {Ωε}ε>0 such that
Ωε ⊂ Ω and limε→ 0Ωε = Ω. Furthermore, we proved the existence, the uniqueness, and
the smoothness with respect to time variable of the generalized solution by approximating
boundary method, which can be applied for nonlinear equations. With the help of the results
in [5, 6] as well as the results for elliptic boundary value problems in [7, 8], we can deal with
the regularity with respect to both time variables and spatial ones of the solution.
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Our paper is organized as follows: in Section 2, we introduce exterior cusp domain
and weight Sobolev spaces. In Section 3, we will state the formulation of the problem. The
main results, Theorems 4.3, 4.6, and 4.7, are stated in Section 4, and examples are given in
Section 5.

2. Cusp Domain and Weighted Sobolev Spaces

Let ϕ be an infinitely differentiable positive function on the interval (0, 1] satisfying the
following conditions:

(i) limτ → 0ϕ(τ)
k−1ϕ(τ)(k) < ∞ for k = 1, 2, . . . ,

(ii)
∫1
0(dτ/ϕ(τ)) = +∞.

These conditions are satisfied; the function ϕ(τ) = τα if α ≥ 1 is an example. Obviously,
conditions (i) and (ii) imply ϕ(0) = 0. We assume thatΩ is a bounded domain in R

n, ∂Ω\{O}
is smooth, and

{x ∈ Ω : xn < 1} =
{
x ∈ R

n : xn < 1, x′ ∈ ϕ(xn)ω
}
, (2.1)

where x′ = (x1, . . . , xn−1) andω is a smooth domain in R
n−1. Then the mapping

yj =
xj

ϕ(xn)
, j = 1, . . . , n − 1,

yn =
∫1

xn

dτ

ϕ(τ)

(2.2)

takes the set {x ∈ Ω : xn < 1} onto the half-cylinder C+ = {y ∈ R
n : y′ ∈ ω, yn > 0} =

ω × (0,+∞). Moreover, it follows that

det

(
∂yj

∂xk

)

j,k=1,...,n

= ϕ(xn)−n. (2.3)

We extend the functions ϕ to an infinitely differentiable positive function on the interval
(0,+∞). The space Hl

β,γ(Ω) can be defined as the closure of the set C∞(Ω \ {O}) with respect
to the norm

‖u‖Hl
β,γ

(Ω) =

⎛

⎝
∫

Ω

∑

|α|≤l
e2βyn(xn)ϕ(xn)2(γ−l+|α|)|Dαu|2 dx

⎞

⎠

1/2

. (2.4)

It is known that u ∈ Hl
β,γ
(Ω), then ϕku ∈ Hl

β,γ−k(Ω) (see [7, Lemma 9.1.4]).
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We also denote byHl(Ω) the Sobolev space of functions u = u(x) and x ∈ Ω that have
generalized derivatives Dαu ∈ L2(Ω), |α| ≤ l. The norm in this space is defined as follows:

‖u‖Hl(Ω) =

⎛

⎝
∫

Ω

m∑

|α|=0
|Dαu|2dx

⎞

⎠

1/2

. (2.5)

The space
◦
Hl(Ω) is the completion of C∞

0 (Ω) in norm of the space Hl(Ω).
SetQT = Ω×(0, T); we proceed to introduce some functional spaces. LetX,Y be Banach

spaces, we denote by L2(0, T ;X) the spaces consisting of all measurable functions u : (0, T) →
X with norm

‖u‖L2(0,T ;X) =

(∫T

0
‖u(t)‖2Xdt

)1/2

, (2.6)

and by Hk(0, T ;X,Y ), k = 1, 2, the spaces consisting of all functions u ∈ L2(0, T ;X) such that
generalized derivatives utk = u(k) exist and belong to L2(0, T ;Y ), (see [9]), with norms

‖u‖Hk(0,T ;X,Y ) =

⎛

⎝‖u‖2L2(0,T ;X) +
k∑

j=1

‖utj‖2L2(0,T ;Y )

⎞

⎠

1/2

. (2.7)

For shortness, we set

V l(Ω) = Hl
0,0(Ω), V l,k(QT ) = Hk

(
0, T ;V l(Ω), L2(Ω)

)
,

Hl,1(QT ) = H1(0, T ;Hl(Ω), L2(Ω)
)
, Hl,k

β,γ(QT ) = Hk
(
0, T ;Hl

β,γ(Ω), L2(Ω)
)
.

(2.8)

Finally, we define the weighted Sobolev spaceHl
β,γ
(QT ) as a set of all functions defined inQT

such that

‖u‖Hl
β,γ

(QT ) =

⎛

⎝
∫

QT

∑

|α|+k≤l
e2βy(xn)ϕ(xn)

2(|γ−l+α|+k)|Dαutk |2dx dt

⎞

⎠

1/2

< +∞. (2.9)

To simplify notation, we continue to write V l(QT ) instead ofHl
0,0(QT ).

3. Formulation of the Problem

Let us consider the partial differential operator of order 2m

L(x, t;Dx) =
m∑

|α|,|β|=0
Dα

x

(
aαβ(x, t)D

β
x

)
, (3.1)
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where aαβ are functions with complex values, aαβ = (−1)|α|+|β|a∗
αβ (a∗

αβ denotes the trans-
posed conjugate of aαβ) and aαβ are infinitely differentiable in QT . Moreover, we assume that
the functions

âαβ

(
y, ·) = ϕ

(
x
(
y
))2m−|α|−|β|

aαβ

(
x
(
y
)
, ·) (3.2)

satisfy the condition of stabilization for yn → +∞ for a.e. t in (0, T) (see [7, Section 5.5]). Then
the coefficients of the operators L̂(y, t; Dy), which arise from operators ϕ(xn)

2mL(x, t;Dx) via
the coordinate change x → y, stabilize for yn → +∞. If we replace the coefficients of the
differential operator L̂(y, t; Dy) by their limits for yn → +∞, we get differential operator
which has coefficients depending only on y′ and t (for the convenience in use, we denote also
by L̂(y′, t; Dy′ , Dyn)).

In the paper, we usually use the following Green’s formula:

∫

Ω
L(x, t; Dx)u v dx = B(u, v ; t) (3.3)

which is valid for all u, v ∈ C∞
0 (Ω) and a.e. t ∈ (0, T), where

B(u, v ; t) =
m∑

|α|,|β|=0
(−1)|α|

∫

Ω
aαβ(·, t)Dβ

xu Dα
xv dx. (3.4)

We also suppose that the form B(·, ·; t) is Hm(Ω)-elliptic uniformly with respect to
t ∈ (0, T), that is, the inequality

(−1)mB(u, u ; t) ≥ γ0‖u‖2Hm(Ω) (3.5)

is valid for all u ∈
◦
Hm(Ω) and all t ∈ (0, T), where γ0 is the positive constant independent of

u and t. In this paper, we consider the following problem:

(−1)m−1Lu − utt = f in QT, (3.6)

u = 0, ut = 0 on Ω, (3.7)

∂
j
νu = 0 on ST , j = 0, 1, . . . , m − 1, (3.8)

where f ∈ L2(QT ) and ∂
j
νu are derivatives with respect to the outer unit normal of ST =

∂Ω \ {O} × (0, T).
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Definition 3.1. A function u is called a generalized solution of problem (3.6)–(3.8) if and only

if u belongs to
◦
Hm,1(QT ), u(x, 0) = 0, and the equality

(−1)m−1
m∑

|α|,|β|=0
(−1)|α|

∫

QT

aαβD
β
x uDα

xη dx dt +
∫

QT

ut ηt dx dt =
∫

QT

fη dx dt (3.9)

holds for all η ∈
◦
Hm,1(QT ), η(x, T) = 0.

The existence, the uniqueness and the smoothness with respect to the time variable

for the generalized solution of problem (3.6)–(3.8) in the Sobolev space
◦
Hm,1(QT ) were

established in [5, 6] according to following theorems:

Theorem 3.2. Assume that f ∈ L2(QT ), and there exists a positive number μ such that

sup

{∣∣∣∣∣
∂aαβ

∂t

∣∣∣∣∣
,
∣∣aαβ

∣∣ : (x, t) ∈ QT, 0 ≤ |α|, ∣∣β∣∣ ≤ m

}

≤ μ. (3.10)

Then problem (3.6), (3.8) has the unique generalized solution u ∈ Hm,1(QT ), and the following
estimate holds

‖u‖2m,1 ≤ C
∥∥f
∥∥2
L2(QT )

, (3.11)

where C is a constant independent of u and f .

Theorem 3.3. Suppose that the following hypotheses are satisfied:

(i) ∂kf/∂tk ∈ L2(QT ), k ≤ h;

(ii) ∂kf/∂tk|t=0 = 0, x ∈ Ω, k ≤ h − 1;

(iii) sup{|∂kaαβ/∂t
k|, k < h : (x, t) ∈ QT, 0 ≤ |α|, |β| ≤ m} ≤ μ.

Then the generalized solution u ∈ Hm,1(QT ) of problem (3.6), (3.8) has generalized derivatives with
respect to t up to order h inHm,1(QT ) and satisfies the following estimate:

‖uth‖2m,1 ≤ C
h∑

k=0

∥∥ftk
∥∥2
L2(QT )

, (3.12)

where C is a constant independent of u and f .

Owing to the support of the following proposition, we can apply the results of the
Dirichlet problem for elliptic equation in domains with exterior cusps.



6 Boundary Value Problems

Proposition 3.4. Suppose that u = u(x, t) is a generalized solution of problem (3.6)–(3.8) and utt ∈
L2(QT ). Then for a.e. t ∈ (0, T), u(t) = u(·, t) is a generalized solution in

◦
Hm(Ω) of the Dirichlet

problem for elliptic equation

L(·, t;Dx)u = f1(·, t), (3.13)

where f1 = (−1)m−1(utt + f).

Proof. Let {ψk}∞k=1 be an orthogonal basis of the space
◦
Hm(Ω). Setting η(x, t) = ψk(x)θ(t),

where θ ∈ C∞
0 (0, T), and substituting the function η(x, t) into (3.9), we conclude that

∫

QT

⎡

⎣
m∑

|α|,|β|=0
(−1)|α|aαβD

β
x uDα

xψk + (−1)m(utt ψk + fψk

)
⎤

⎦θ(t)dx dt = 0. (3.14)

We will denote by

ξ(t) =
∫

Ω

⎡

⎣
m∑

|α|,|β|=0
(−1)|α|aαβD

β
x uDα

xψk + (−1)m(utt ψk + fψk

)
⎤

⎦ dx, (3.15)

that ξ(t) ∈ L2(0, T). Noting that θ ∈ C∞
0 (0, T) and using Fubini’s theorem, we obtain from

(3.14) that ξ = 0 in (0, T) \ Ek, where Ek is a set of measure zero. Since {ψk}∞k=1 are dense in
◦
Hm(Ω), the following equality

∫

Ω

m∑

|α|,|β|=0
(−1)|α|aαβD

β
x uDα

xψ dx = (−1)m−1
∫

Ω

(
utt + f

)
ψ dx (3.16)

holds for all ψ ∈
◦
Hm(Ω), for all t ∈ (0, T)\⋃∞

k=1 Ek. It follows that u(t) is a generalized solution

in
◦
Hm(Ω) of the Dirichlet problem for elliptic equation (3.13), for a.e. t ∈ (0, T).

4. The Main Results

In this section, we would like to present the main results of the study which is based on our
previous results (cf. [5, 6]) and the results of elliptic equations in cusp domains (cf. [7]). For
the start of this section, we denote by U(λ, t) (λ ∈ C, t ∈ (0, T)) the operator corresponding to
the parameter-depending boundary value problem

L̂
(
y′, t; Dy′ , λ

)
u = 0 in ω; ∂

j
νu = 0 on ∂ω, j = 1, . . . , m − 1. (4.1)

For each t ∈ (0, T), we have the operator pencil U(λ, t) to be Fredholm, and its spectrum
consists of a countable number of isolated eigenvalues. Similarly to Theorem 9.1.4 in [7], we
have the following lemma.
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Lemma 4.1. Assume that f1 ∈ Hk
β,γ(Ω), where β, γ are real numbers. Additionally, the authors

suppose that no eigenvalues of U(λ, t), t ∈ (0, T) line in strips Reλ− ≤ Reλ ≤ Reλ+ and Reλ− <
β < Reλ+, where λ+ and λ− are eigenvalues of U(λ, t), and Reλ− < 0 < Reλ+. Then the generalized
solution u of the Dirichlet problem for elliptic equation (3.13), such that u ≡ 0 if xn > 1, belongs to
theH2m+k

β,γ
(Ω) and satisfies the inequality

‖u‖2
H2m+k

β,γ
(Ω) ≤ C

∥
∥f1

∥
∥2
Hk

β,γ
(Ω), (4.2)

where the constant C is independent of f1.

Proof. Setting

ωτ = ϕ(τ)ω (4.3)

by the Friederichs inequality, we have

∫

ωτ

|u|2dx′ ≤ Cϕ(τ)2k
∑

|γ|=k

∫

ωτ

∣∣∣D
γ

x′u
∣∣∣
2
dx′; (4.4)

therefore,

ϕ(xn)2(|γ |−m)
∫

ωxn

∣∣∣D
γ

x′u
∣∣∣
2
dx′ ≤ C

∑

|α|=m

∫

ωxn

∣∣Dα
x′u
∣∣2dx′

(4.5)

for all |γ | ≤ m. Hence,

∑

|γ |≤m

∫

Ω
ϕ(xn)2(|γ |−m)

∣∣∣D
γ
xu
∣∣∣
2
dx ≤ C

∑

|α|≤m

∫

Ω
|Dα

xu|2dx. (4.6)

Let v = v(y) be the function which arises from ϕ(xn)
m−n/2u(x) via the coordinate

change x → y. We set ϕ(yn) = ϕ(xn); then from the properties of the mapping (2.2) and from
inequality (4.6), it follows that (ϕ)−m+n/2v ∈ Hm(C+). Since (ϕ)−m+n/2v is the solution of an
elliptic equation in C+ with coefficients which stabilize for yn → +∞, that is,

L̂
(
ϕ
)−m+n/2

v = f̂1, (4.7)

where f̂1 = (ϕ)2mf1, we obtain (ϕ)−m+n/2v ∈ H2m+k(C+)(cf. [7, Lemma 5.5.3]). This implies
u ∈ H2m+k

0,m+k(Ω). Using the fact that

ϕ(xn)γ−m+ke−εyn(xn) −→ 0, (4.8)

as xn → 0, if 0 < ε < β, we conclude that u ∈ H2m+k
−ε,γ (Ω). From Corollary 9.1.1 in [7] it follows

that u ∈ H2m+k
β,γ

(Ω). Furthermore, (4.2) holds.



8 Boundary Value Problems

Lemma 4.2. Suppose that f, ft ∈ L2(QT ), f(x, 0) = 0, and the strip Reλ− ≤ Reλ ≤ Reλ+ does not
contain eigenvalues ofU(λ, t), t ∈ (0, T). Then the generalized solution u of problem (3.6)–(3.8), such
that u ≡ 0 if xn > 1, belongs to the V 2m,2(QT ) and satisfies the inequality

‖u‖2V 2m,2(QT ) ≤ C
[∥
∥f
∥
∥2
L2(QT )

+
∥
∥ft
∥
∥2
L2(QT )

]
, (4.9)

where the constant C is independent of f .

Proof. Using the smoothness of the generalized solution of problem (3.6)–(3.8) with respect

to t in Theorem 3.3 and Proposition 3.4, we can see that for a.e. t ∈ (0, T), u ∈
◦
Hm(Ω) is the

generalized solution of Dirichlet problem for (3.13) with f1 = utt + f ∈ L2(Ω) = H0
0,0(Ω) =

V 0(Ω). From Lemma 4.1, it implies that u ∈ V 2m(Ω) for a.e. t ∈ (0, T) and satisfies the
inequality

‖u‖2V 2m(Ω) ≤ C1
∥∥f1

∥∥2
L2(Ω) ≤ C

(∥∥f
∥∥2
L2(Ω) + ‖utt‖2L2(Ω)

)
. (4.10)

By integrating the inequality above with respect to t from 0 to T , and using the estimates for
derivatives of u with respect to t again, we obtain u ∈ V 2m,2(QT ), which satisfies inequality
(4.9).

Theorem 4.3. Let the assumptions of Lemma 4.2 be satisfied, and ftk ∈ L2(QT ), k ≤ 2m, ftk(x, 0) =
0, for k = 0, 1, . . . , 2m − 1. Then the generalized solution u of problem (3.6)–(3.8), such that u ≡ 0 if
xn > 1, belongs to the V 2m(QT ) and satisfies the inequality

‖u‖2V 2m(QT ) ≤ C
2m∑

k=0

∥∥ftk
∥∥2
L2(QT )

, (4.11)

where the constant C is independent of f .

Proof. Let us first prove that uts belong to the V 2m,0(QT ) for s = 0, . . . , 2m − 1 and satisfy

‖uts‖2V 2m,0(QT ) ≤ C
2m∑

k=0

∥∥ftk
∥∥2
L2(QT )

. (4.12)

The proof is an induction on s. According to Lemma 4.2, it is valid for s = 0. Now let this
assertion be true for s − 1; we will prove that this also holds for s. Due to Lemma 4.2, u
satisfies (3.6). By differentiating both sides of (3.6)with respect to t, s times, we obtain

Luts = (−1)m−1(fts + uts+2
)
+ (−1)m

s∑

k=1

(
s

k

)

Ltkuts−k , (4.13)
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where

Ltk = Ltk(x, t;Dx) =
m∑

α,β=0

Dα
x

(
∂kaαβ(x, t)

∂tk
D

β
x

)

. (4.14)

By the supposition of the theorem and the inductive assumption, the right-hand side of
(4.13) belongs to L2(QT ). By the arguments analogous to the proof of Lemma 4.2, we get
uts ∈ V 2m,0(QT ) and

‖uts‖2V 2m,0(QT ) ≤ C
2m∑

k=0

∥
∥ftk

∥
∥2
L2(QT )

, (4.15)

where C is a constant independent of u, f , and s ≤ m − 1.
By using (4.15) and estimates for derivatives of u with respect to t in Theorem 3.3, we

have

‖u‖2V 2m(QT ) ≤
2m−1∑

k=0

‖utk‖2V 2m,0(QT ) + ‖ut2m‖2L2(QT )

≤ C
2m∑

k=0

∥∥ftk
∥∥2
L2(QT )

.

(4.16)

Remark 4.4. Let β be a sufficiently small positive number. Suppose that eβyn(xn)f ∈ L2(QT ),
and the strip Reλ− ≤ Reλ ≤ Reλ+ contains no eigenvalues of U(λ, t), t ∈ (0, T)); then
the generalized solution u of problem (3.6)–(3.8), such that u ≡ 0 if xn > 1, belongs to the
H2m

β,0 (QT ). In fact, setting u = e−βyn(xn)U, we obtain the first initial boundary value problem

which differs little from (3.6)–(3.8). Therefore, U ∈ V 2m(QT ), and then u ∈ H2m
β,0 (QT ). Using

the remark above and Lemma 4.1, we obtain the following theorem.

Theorem 4.5. Let the assumptions of Lemma 4.1 be satisfied. Furthermore, the authors assume that
ftk ∈ H0

β,γ(QT ), k ≤ 2m, and ftk(x, 0) = 0, for k = 0, 1, . . . , 2m − 1. Then the generalized solution u

of problem (3.6)–(3.8), such that u ≡ 0 if xn > 1, belongs to theH2m
β,γ (QT ) and satisfies the inequality

‖u‖2
H2m

β,γ
(QT )

≤ C
2m∑

k=0

∥∥ftk
∥∥2
H0

β,γ
(QT )

, (4.17)

where the constant C is independent of f .

This theorem is proved by arguments analogous to those proofs of Lemma 4.2 and
Theorem 4.3. Next, we will prove the well regularity of the generalized solution of problem
(3.6)–(3.8).
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Theorem 4.6. Let the assumptions of Lemma 4.1 be satisfied. Furthermore, the authors assume that
ftk ∈ Hh

β,γ
(QT ), k ≤ 2m + h, and ftk(x, 0) = 0,for k = 0, 1, . . . , 2m + h − 1, h ∈ N. Then the

generalized solution u of problem (3.6)–(3.8), such that u ≡ 0 if xn > 1, belongs to the H2m+h
β,γ

(QT )
and satisfies the inequality

‖u‖2
H2m+h

β,γ
(QT )

≤ C
2m∑

k=0

∥
∥ftk

∥
∥2
Hh

β,γ
(QT )

, (4.18)

where the constant C is independent of u and f .

Proof. The theorem is proved by induction on h. Thanks to Theorem 4.5, this theorem is
obviously valid for h = 0. Assume that the theorem is true for h − 1, we will prove that it
also holds for h. It is only needed to show that

uts ∈ H2m+h−s,0
β,γ (QT ) for s = h, h − 1, . . . , 0,

‖uts‖2H2m+h−s
β,γ

(QT )
≤ C

2m∑

k=0

∥∥ftk
∥∥2
Hh

β,γ
(QT )

.
(4.19)

Differentiating both sides of (3.6) again with respect to t, h times, we obtain

Luth = (−1)m−1(fth + uth+2
)
+ (−1)m

h∑

k=1

(
h

k

)

Ltkuth−k . (4.20)

By the supposition of the theorem and the inductive assumption, the right-hand side of (4.20)
belongs to H0

β,γ(Ω) for a.e. t ∈ (0, T). Using Lemma 4.1, we conclude that uth ∈ H2m,0
β,γ (QT ). It

implies that (4.19) holds for s = h. Suppose that (4.19) is true for s = h, h − 1, . . . , j + 1, and set
v = utj , we obtain

Lv = Fj, (4.21)

where Fj = (−1)m−1(ftj + vtt) + (−1)m∑j

k=1

(
j

k

)
Ltkutj−k . By the inductive assumption with

respect to s, vtt belongs to H
h−j
β,γ

(Ω) for a.e. t ∈ (0, T). Thus, the right-hand side of (4.21)

belongs toH
h−j
β,γ (Ω). Applying Lemma 4.1 again for k = h−j, we get that v = utj ∈ H

2m+h−j
β,γ (Ω)

for a.e. t ∈ (0, T). It means that v = utj belongs toH
2m+h−j,0
β,γ

(QT ). Furthermore, we have

‖v‖2
H

2m+h−j,0
β,γ

(QT )
≤ C

∥∥Fj

∥∥
H

h−j,0
β,γ

(QT )
≤ C

2m∑

k=0

∥∥ftk
∥∥2
Hh

β,γ
(QT )

. (4.22)
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Therefore,

‖utj‖2H2m+h−j
β,γ

(QT )
≤ ‖utj+1‖2H2m+h−j−1

β,γ
(QT )

+ ‖utj‖2H2m+h−j,0
β,γ

(QT )

≤ C
2m∑

k=0

∥
∥ftk

∥
∥2
Hh

β,γ
(QT )

.

(4.23)

It implies that (4.19) holds for s = j. The proof is complete.

Now we will prove the global regularity of the solution.

Theorem 4.7. Let the hypotheses of Lemma 4.1 be satisfied. Furthermore, suppose ftk ∈ Hh
β,γ
(QT ),

k ≤ 2m + h, and ftk(x, 0) = 0,for k = 0, 1, . . . , 2m + h − 1, h ∈ N. Then the generalized solution u of
problem (3.6)–(3.8) belongs to the H2m+h

β,γ
(QT ) and satisfies the inequality

‖u‖2
H2m+h

β,γ
(QT )

≤ C
2m∑

k=0

∥∥ftk
∥∥2
Hh

β,γ
(QT )

, (4.24)

where the constant C is independent of u and f .

Proof. We denote by B the unit ball, and suppose that ζ ∈ C∞
0 (B), and ζ ≡ 1 in the

neighborhood of the origin O. It is easy to get that

(−1)m−1L(ζu) − (ζu)tt = ζf + L1u, (4.25)

where L1 is a differential operator, whose coefficients have compact support in a
neighborhood of the origin. By arguments analogous to the proof of Theorem 4.6, we obtain

‖ζu‖2
H2m+h

β,γ
(QT )

≤ C
2m∑

k=0

∥∥ftk
∥∥2
Hh

β,γ
(QT )

. (4.26)

Set ζ1u = (1−ζ)u, then ζ1u ≡ 0 in a neighborhood of the origin and u = ζu+(1−ζ)u, and using
the smoothness of the solution of this problem in domain with smooth boundary, we get

‖ζ1u‖2H2m+h(QT )
∼ ‖ζ1u‖2H2m+h

β,γ
(QT )

≤ C
2m∑

k=0

∥∥ftk
∥∥2
Hh

β,γ
(QT )

. (4.27)

The proof is complete.
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5. Examples

In this section, we apply the results of the previous section to the Cauchy-Dirichlet problem
for the wave equation. The assumptions can be described as follows: Ω is a bounded domain
in R

n, ∂Ω \ {O} is smooth,

{x ∈ Ω : 0 < xn < 1} ≡ {x ∈ R
n : 0 < xn < 1,

∣
∣x′∣∣ < ϕ(xn)

}
, (5.1)

where x′ = (x1, . . . , xn−1), ϕ ∈ C∞[0, 1), ϕ′(xn) → 0, ϕ(xn)ϕ′′(xn) → 0 as xn → 0 and ϕ(0) = 0,
and QT = Ω × (0, T), ST = ∂Ω \ {O} × (0, T).

We consider the Cauchy-Dirichlet problem for the wave equation in QT :

Δu − utt = f in QT,

u = 0, ut = 0 on Ω,

u = 0 on ST , j = 0, 1, . . . , m − 1,

(5.2)

where f ∈ H0
β,γ
(QT ). It follows the results of Section 4 that if |β| < z+, where z+ is the least

positive root of the Bessel function J(n−3)/2(z), then problem (5.2) has a unique solution u in
H2

β,γ
(QT ) and we have the estimate

‖u‖2
H2

β,γ
(QT )

≤ C

∥∥∥∥∥
exp

(

β

∫1

xn

dτ

ϕ(τ)

)

ϕγ(xn)f

∥∥∥∥∥

2

L2(QT )

. (5.3)

Moreover, if ftk ∈ Hh
β,γ(QT ), k ≤ 2+h, and ftk(x, 0) = 0 for k = 0, 1, . . . , 1+h, then u ∈ H2+h

β,γ (QT )
and satisfies

‖u‖2
H2+h

β,γ
(QT )

≤ C
2∑

k=0

∥∥ftk
∥∥2
Hh

β,γ
(QT )

. (5.4)

For the two-dimensional case (n = 2), and letting ϕ(τ) = τ2, we consider problem (5.2)
in the cylinder QT = Ω × (0, T), where Ω is a bounded domain in R

2, ∂Ω \ {O} is smooth, and

{(
x, y

) ∈ Ω : 0 < x < 1
} ≡

{(
x, y

) ∈ R
2 : 0 < x < 1,

∣∣y
∣∣ < x2

}
. (5.5)

Thus, the change of variables

ξ =
∫1

x

dτ

τ2
= x−1 − 1, η = yx−2 (5.6)

transforms

{(
x, y

) ∈ Ω : 0 < x < 1
}

on to C+ :=
{(

ξ, η
)
: ξ > 0, η ∈ (−1, 1)}. (5.7)
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With notations v(ξ, η, t) = u(x, y, t), we have

u
(
x, y

)
= v
(
x−1 − 1, yx−2), (5.8)

∂yu = x−2∂ηv, ∂2yyu = x−4∂2ηηv, ∂xu = −x−2∂ξv − 2yx−3∂ηv,

∂2xxu = x−3∂ξv + 6yx−4∂ηv + x−4∂2ξξv + 4yx−5∂2ξηv + 4y2x−6∂2ηηv

= x−4
[
x∂ξv + 6y∂ηv + ∂2ξξv + 4yx−1∂2ξηv + 4y2x−3∂2ηηv

]

= x−4
[
∂2ξξv + 4η(ξ + 1)−1∂2ξηv + 4η2(ξ + 1)−2∂2ηηv

+ (ξ + 1)−1∂ξv + 6η(ξ + 1)−2∂ηv
]
.

(5.9)

Hence, the differential operator Δ̂, which arises from the differential operator x4Δu via the
coordinate change (x, y) → (ξ, η), turns out to be

Δ̂v = ∂2ξξv + ∂2ηηv + 4η(ξ + 1)−1∂2ξηv + 4η2(ξ + 1)−2∂2ηηv

+ (ξ + 1)−1∂ξv + 6η(ξ + 1)−2∂ηv.
(5.10)

Clearly, coefficients of differential operator Δ̂ stabilize for ξ → +∞, and the limit differential
operator of Δ̂ (denoted by Δ̂ for convenience) is

Δ̂v = ∂2ξξv + ∂2ηηv. (5.11)

We denote also by U(λ) (λ ∈ C), the operator corresponding to the parameter-depending
boundary value problem

v̂ηη + λ2v̂ = 0, v̂(−1) = v̂(1) = 0. (5.12)

Eigenvalues of U(λ) are roots of the Bessel function

J−1/2(z) =
(

2
πz

)1/2

cos z; (5.13)

Jν, ν > −1 has only real roots (see [10, Theorem 1, page 94]). Therefore, they are

λk =
π

2
+ kπ, k ∈ Z. (5.14)

It is easy to see that λ+ = π/2 is the least positive root of the Bessel function J−1/2(z). From
arguments above in combination with Theorems 4.6 and 4.7, we obtain the following results:
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Theorem 5.1. Suppose that ftk ∈ H0
β,γ(QT ), k ≤ 2, |β| < π/2, γ is a real number and ftk(x, 0) = 0,

for k = 0, 1. Then problem (5.2) has a unique solution u inH2
β,γ
(QT ), and we have the estimate

‖u‖2
H2

β,γ
(QT )

≤ C
2∑

k=0

∥
∥
∥eβ(1/x−1)x2γftk

∥
∥
∥
2

L2(QT )
. (5.15)

Moreover, if ftk ∈ Hh
β,γ(QT ), k ≤ 2 + h, and ftk(x, 0) = 0 for k = 0, 1, . . . , 1 + h, then u ∈ H2+h

β,γ (QT )
and satisfies

‖u‖2
H2+h

β,γ
(QT )

≤ C
2∑

k=0

∥
∥ftk

∥
∥2
Hh

β,γ
(QT )

. (5.16)

In case that boundary of Ω has some cuspidal points, then by arguments analogous to
Section 4, we consequently obtain the similar results.
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