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Abstract

The present paper deals with the inverse problem for linear elliptic equations of second
order from Dirichlet to Neumann map in multiply connected domains. Firstly the formulation
and the complex form of the problem for the equations are given, and then the existence
and global uniqueness of solutions for the above problem are proved by the complex
analytic method, where we absorb the advantage of the methods in previous works and give
some improvement and development.

1. Formulation of the Inverse Problem
for Second-Order Elliptic Equations from
Dirichlet to Neumann Map

In [1-9], the authors posed and discussed the inverse problem of second-order elliptic
equations. In this paper, by using the complex analytic method, the corresponding problem for
linear elliptic complex equations of first-order in multiply connected domains is firstly
discussed, afterwards the existence and global uniqueness of solutions of the inverse problem
for the elliptic equations of second-order are obtained.

Let & be an &+ 1-connected domain bounded domain in the complex plane C with the

EIG=."_=L_J?=D."_}-E Ch (D<= 1)

boundary , Where Lyi=1,....N are inside of £0. Consider the

linear elliptic equation of second-order:

UEE+Ung +a-u£+.tlu,;. =0 In g, (11)

in which @ =2(Z}, b=5(7) are real functions of {=Z -+, and #1811 & LplG), PL= 2] s 5 positive
constant. Moreover let =£=0in €™ =, The above condition is called Condition <. In this
paper the notations are the same as those in [10] or [11].

Denote



(12)

(13)

=—_[{z3+ibIW + (3 - ib )]

= AW - BIOIW
= -2Re[4A{{I] in G,

where A=Ai{)=8({)=E=[2+ib1/ 4 We choose a conformal mapping Z=Z({J from the above
: : : : F=u® T

general domain = onto the circular domain £ with the boundary = =0 4

l=Tya=ilzl=1h Ty=Alz-z;l=r;k i=1,...N and z=0e O, In this case, the complex

equation (1.3) is reduced to the complex equation

=
k4l

= - (M ALZ(Z) W + B[Z{z) 1A, (14)
Wz =uUzz=-2Re{A[{(2)]{ (Z)u;} =-2Re{A[{(z)HzIw]} inD,

2 r — —
where “27 = 422 |27, Wig) =tz=uzz" (£), wiz) =tz ¢=C12) is the inverse function of Z=Z{{),

and {'(z)=1/z'(Z1= 3z} in D is a known Holder continuously differentiable function (see [10,
Section 2, Chapter 1]), hence the above requirement can be realized.

Introduce the Dirichlet boundary condition for (1.1) as follows:

w=f(Z) oni=8G, w=Ffz)] onT=2z(L), (15)



where fif} e CA(L), fIZiz)] e CHT), ol (0-2)/0)is 4 positive constant, which is called Problem

2 z
& for (1.1) or (1.4). By [10, 11], Problem & has a unique solution “ £ Wp(G) (or W.E":D:')
satisfying (1.1) (or (1.4)) and the Dirichlet boundary condition (1.5). From this solution, we
can define the Dirichlet to Neumann map & Ca(L) = Call) o & 1 CHT) = Coll) py Af=bu fan,

Our inverse problem is to determine the coefficient 2 and & of (1.1) (or 4} in (1.3)) from the
map L. In the following, we will transform the Dirichlet to Neumann map - into a equivalent
boundary condition. In fact, if we find the derivative of positive tangent direction with respect
to the unit arc length parameter 5= araz{zeIp) ang 5 =-argiz-z (zeni=1,...,N) 5t the
boundary I" with ${0)}=argz=arg(1+0)=0 then

P i 145)
5 ds

- U-Ze +UTEs = UAZ - USHZ = 2Relizuz], on I,
—— (16)
Lolz - EJ":Is +uzlz - zj-js
=-uUddlz-z;l+uslz-z5)
=-2Re[iz - zj.-}luz], onTpi=1,..,M

It is clear that the equivalent boundary value problem is to find a solution [z}, tid(z]1] of
the complex equation (1.4) with the boundary conditions

3

L Relizwiz]] = > zelp,
RelA(ziwiz)] = . (17)
Re[ilz - zj.-jlw{z}l] = —Ef, zely j=1,.. N,
Li1)=7F[E(1)]=bq,
and the relation
wiz)= 2Re_[iw[zjdz+b,;, in o, (18)

in which #{z1 =12, Ze I ang A2 =flz- 2}, e Ty J=1,...,N. s easy to see that



2Re], WOl = 2Re _[l-j_uz dz

55 19
=—ERE_[D'?."I:E—EJ':IUEIJ'G"S (19)

I’
= 0 fser'S = I:I_l

where 7= 2 U=1,....Nlis the arc length of 1= {lz-zjl=rytU=1,...¥ gnqg applying the
Green formula, we can see that the function %{Z} determined by the integral in (1.8) in D is
single-valued.

Under the above condition, the corresponding Neumann boundary condition is

i =
Yn =g, THzfntUEE,

- - : (110)
UoZm +UsEn =U-ZUSE = 2Im[izu ;] an I,

=g(z) = —
—U-lz- zj.-]l - uslz - zj.-]l =-2Im[fz - zj.-jluz] onlyd=1,... 4,

where 1 is the unit outwards normal vector of I'. The boundary value problem (1.1) (or (1.4)),
(1.10) will be called Problem #&. Taking into account the partial indexes of

Ko=bpyarg[Az)]=Anara iz 5 4589 Z 510 equal to -1 and

Ko=Ar.arg[Alz)]=Ar.argilz-z; Arargiz-za(=1,... N :
jrbraraltz)l=arargiz-z;) o brarolz-z;0 :'areequaltol, thus the index

of the above boundary value problem is “=#o+&1+ -~ +&y=4-1 |n general the above
Problem & is not solvable, we need to give the modified boundary conditions as follows:

1 — Fiz) ;
Stin= RelA(z)us]= =—+0n, Zely i=0,1,.N, (111)
wily=by onT,

where J:'||:E:|=E_. EE]._'D_. and MEj:E—E;} £E r__i'.l _ii= 1.! _.|""'|'I_. gl:z:l E Clii'l:..r.':l and QD=|:| on

Iy i=1,...,¥) 20 on T is an undetermined real constant (see [11, Chapter VI]). Hence, the

Dirichlet to Neumann map can be transformed into the boundary conditions as follows:



2Relizu-]+ 2iImlizuz] = 2izw(z), zelp,

e+l =
* & —E."l{z—zj]lw(z]l, zely j=1,.. .M,
[ . (112)
S
i
wiz) =hizl= [ +iu,]
_ b i) =
2{_{3_3}_}, zel},_; 1,... M,

which will be called Problem £:# for the complex equation (1.4) (or (1.1)) with the relation
(1.8), where hiz) (e CalTis a complex function satisfying the condition

Ir}_Re[a'cz— zh(Z)ds =0, j=1,.. M. (113)

For any function f1£(2)] (e CZ(T'1) in the Dirichlet boundary condition (1.5), there is a set {2(z)}
of the functions of Neumann boundary condition (1.10), where 22} is corresponding to the
complex equation (1.4) one by one, namely if we know the boundary value f[£{z1] and one

complex equation in (1.4), then the boundary value 9'Z} can be determined. Inversely if the
giz) in (1.10) is given, then one complex equation in (1.4) can be determined, which will be

verified later on. We denote the set of functions 1&™Z(z)} by R4, where & is a complex
number and f1{2} is as stated in (1.12).

2. Some Relations of Inverse Problem
for Second-Order Elliptic Equations from
Dirichlet to Neumann Map

According to [10], introduce the notations
(21)

in which 712} & Lpl2), P> 2 gunnose that Fiz)=0in €™ £, Obviously (71z=7(z) in €. we



consider the complex equation

gz +7A0 +e,(Z)EJT=0, gz+J740 +ek(zj_?ﬁl_g =0 in C, (22)

s bz iz
where 9021 =&"%w, e;(2) = gflkzHiz) and ¥ is a complex number. On the basis of the Pompeiu

formula (see [10, Chapters | and Il1]), the corresponding integral equation of the complex
equation (2.2) is as follows:

gz, k) - T[7Ag +&.,7Agq] = Ei." r gg’?_’f}dﬁ' in o, (23)

For simplicity we can only consider the following integral equation

qiz, k) - T[PAg +e,7Ag]=1 or | inD (24)

later on.

Lemma 2.1.

If flz)elnlD) (o> E]I’ then

lirm may | (Teyfiiz) |= 0. (25)
ko zed

Proof.

It suffices to prove that for any small positive number &, there exists a sufficiently large
positive number & such that

[(Teyfiiz) |<e forzeD, |kEM. (26)

In fact, noting that %) = gliRekz _ g2l kzlicos(g+araz) s argk, ey (z) |= 1

Holder inequality, we have

, and using the



[(Te filz)| 2L.F
RS 25 (27)

where M1=1+L5f, 1<q=p/lp-11<2 Now we estimate the integral
(28)

We choose two sufficiently small positive constants & and *#, and divide the domain £ into
three parts: 1= 11 { |8}, Dp={D~Diini{{largl+¢leniuilarg{+g-nl=n}l and

Dz=D> 101w D2} such that for the above positive number £, we can get

771

|71 < —

251 (29)

3

|72| = TR

where &= arg{. Moreover noting that |9{& + ¢} |=| dcos( + ¢) / sin(f + ¢) |£| dcosif + 6) / sinn || if
¢e D3 and then



72

3
(210)
<[V, IIgle == for kpw
= 3M1 1 3l= SMl '
Thus we obtain
[(Tepfiizi] 2l Lpf iy |+ Lpfiz |+ Laf 73] (211)

M I+ T2 |+ ]33 ))<e foarzed, |k |zN.

This shows that the formula (2.6) is true.

Lemma 2.2.

If LolA, D)2k, p= 2
the estimate

, Where %0 is a positive constant, then the solution 9{Z, &} of (2.2) satisfies

Calalz, k), D] Mz =Mz(p,a, kg, D), (212)

in which ™z is a positive constant.

Proof.

First of all, we verify that any solution 9{Z.%] of (2.2) satisfies the boundedness estimate

Clgiz, &),D] € M3 = M3(p,a, kg, O, (213)

where #3 is a positive constant. Suppose that (2.13) is not true, then there exists a sequence
of coefficients 1Am{Z} T which satisfy the same condition of coefficient Az} and weakly
converges to AnlZ) and the corresponding integral equations



Oz +IAmGm + et A8, =0 inD, m=1,2,.. (214)

possess the solutions FmiZ, ) im=1,2,..0 pyt Clemlz.£),0] (= 1,2,...) are unbounded.
Hence we can choose a subsequence of 1@mlz, &1} denoted by 1Gmlz, k) again, such that
fim = Clamiz, £),0] == a5 m — e, and can assume 7= = 1. Obviously

Gnlz, k)= 0mlz, k) f R M =1,2, ] gre solutions of the integral equations

Bz + IAmbm + e 0AmBm=0 InD, m=1,2,.... (215)
Noting that LolAmbm] £ ko, LplegAmdm, D1< ko, we can derive the estimate
Cal TPAmBm + Tt A b, D] £ Ma = Malp, @, kn, D), (216)
(see [10, 11]), thus
(217)

Ca[ﬁm,ﬁ]£ME=M5mJﬂlkﬂ,ﬂj.

Hence from 18miZ,%)} we can choose a subsequence denoted by 1@mliz, k)] again, which
uniformly converges to G0lz)in D, it is clear that 902} is a solution of the equation

Gz + Agdn=0, or Hgi2)+ PApfa=0 inD. (218)

On the basis of the result in [10, Section 5, Chapter I11], the solution Gnlz)=0in T, however,
from Cl@miz,&1,D]1= 1 there exists a point z* € 5, such that S[Galz*)L2]1=1 which is
impossible. This shows that (2.13) and then the estimate (2.12) are true.

Lemma 2.3.

Under the above conditions, one has

lim giz,k1=gglz) inD, (219)
d — 00



where 202} is a unique solution of the equation

Goz+7A30=0 inD. (220)

Proof.

Denote by 9Z,%] the solution of (2.2) in &. From Lemma 2.2, we know that the solution 92, %]
satisfies the estimate (2.12). Moreover by using (2.5), that is,

| ——— 221
Jim max | (Te,JAg)z) = O, (221)

we can choose subsequences 1kntand 1202550} where ¥n =% as 1 = w, such that 1902, %p) )
in & uniformly converges to 20(Z) as » —w, which is a solution of (2.20) in D (see [11]). The

uniqueness of solutions of (2.20) can be seen from the proof of Lemma 2.4 below.

Lemma 2.4.

The solution 202} of (2.20) can be expressed as

gplzi=d(ze ™ inD, (222)
where 2iZj=1in D,
Proof.
On the basis of the results as in [10, Section 5, Chapter I11], we know that the integral
equations
1inD, (223)

golZ) - A3 = .
1 inCc

have the unique solutions 02} in & and C respectively, this shows that the function 902} in &
can be extended in C. Moreover by the result in [10, 11], the solution 20(Z) can be expressed



as Wiz)=ao(z) = 2(2)e"™ iy ¢ Note that 774 = 0 as z — w0, and the entire function ¥z} in C

. y . 774 —
satisfies the condition #(2) = 1 as z — =, hence ®{2)= 1in €, and then 90%Zi=&""""in D,

Theorem 2.5.

For the inverse problem of the equation

[2p(z)]s+7Agp=10 in D, (224)

with the boundary condition

gplzii= 0) onT, (225)

one can obtain

7A=-Ingpiz) onT, (226)
which is a known function.
Proof.

From the expression (2.22) of the solution 202} in & and #{z) = 1 in T, it follows that (2.26) is
true.

3. The Inverse Scattering Method for
Second-Order Elliptic Equations from
Dirichlet to Neumann Map

A

For the complex equation (1.4), through the transformation W1{z) = w(z}e"~" we can obtain that

the function W1ZJ satisfies the complex equation

W=+ C(zIW=0 inC, (31)



where C= C(z) = B[{(2)1(2)e™ T = AT} H2)e™4 74 anq €= €(2) = D in € \.D, in this case

every function #(z1e*Z in R4 is reduced to (287 hance later on it suffices to discuss the

complex equation (3.1) and system of complex equations

§ i+ (-1 C@ey(2)F5=0 inC, i=1,2. (32)

ez k= :
where 2&{2) = o'z z:'. In the following we will find two solutions #1(2) and #2(2) of complex

equation [#]z + C1Zleg (282} = U \ith the conditions #1(2) = 1 and ##2(2) =/ as 7 =,

Now we find two solutions #1(Z) and Wz(2) in € of (3.1) with the conditions W1(2) ~ &% and

o . . .
Waiz) ~ g™ for sufficiently large |Z]. In other words, there exist two solutions

#1(2) = ™21 (2) and #2(2) =% AWz} in ¢ of (3.2) with the conditions #1(Z) = 1 and #z2(2) =+ 1
as Z —+wm, Denote

mliz_.uffj — [Fﬁll:z} +;ﬁ2|:.?_':|] )

[#z(z)—¢102]] (33)
2 1

2

mMziZ, k)= ez

obviously M1tz k1, mz(z, k] satisfy the system of first-order complex equations

[mlz=Cmz,  [mzl—ikmp=Cmy,  eplepma] = Cmy,
551 (34)
2= ¢ - = .
[zl = ek[T]szmg = CHq +ikms,

such that M1(Z.k) = 1 gng Mzlz, k) = 0 (| mziz, &) = eplzhmelz, &) | = 0) 35 7 5 o0, According to
the way in [8], we can obtain the following two lemmas.
Lemma 3.1.

Under the above conditions, there exist two functions 71(2,%1, mz(Z, k] satisfying the system
of complex equations:



[rrqlz, )] + Tk ez iz, k)
[ralz, k)] + Tk ezl iz, k)

where

Tik]

Proof.

In the following we verify the (3.5). From (3.4), we have

E_ig{mg
Ekm_g

ek[e__g{ml]@

L I |

—Tlkley(zhmglz, k),

=z - - Z+Zm

=z - (7 — Ty - F2m,

T = ek[e_kmg]g +IiZms

=T (& e(ZiFr .

(35)

(36)

(37)



In addition, from (3.5) it follows that

[alz, k) +mzlz,k)]p =-Tikleg(zilmylz, k) +mzlz, kil (38)
[ilz, k) = mplz, k)]p = Tikegiz)lmy iz, k) - mpiz, k)]

It is easy to see that

Wtz k) =mylz, k) +malz, k), (39)
WEEEJ k:' = mll:':—'r; 'f‘:.:l - mz':-i';-ff:'

satisfy the system of complex equations

wipHTiRe(zig1=0, w,p-Tlkle,(2)Ez=0 (310)
with the conditions ¥/1=8"#¥1 ~ 1 and wz=-e™2¥z ~ 1 for sufficient large %1, and
Wy =8 Eyy, Wy = ie Wy, are the solutions of the complex equation

[¥lz +T(k)F=0 forkeC, (311)

Later on we will verify 7i%) & LlC],
Similarly to the way from (3.2) to (3.6), we can obtain the following result.
Lemma 3.2.

Under the above conditions, there exist two functions W1(2, &), Wz(2,%) satisfying the system
of complex equations:

[Wyz, kY] + G2z, i = 0, [Walz,kilz+Cl2iWa(z,E1=0 inC, (312)

where



iz

(313)
Proof.
Now we verify that (3.12) and (3.13) are true. Denote
."‘.'1= [Wl(ka:';wzlink:']J |"-|'2=E'If{-|:.f:| [Q"—"E(z.l'f‘f:';';"-"ll:zﬂff:'].l (314)
we see that 711(Z, k), nalz, k) satisfy the system of first-order complex equations
[nilp =Tz,  [R2],—izne =TEIng, eple_phzl, = TNy,
(315)

[nz]y = ek[wzgwl]k +izns = TRy +izns,

such that 71t&.&) =1 3nd nelZ k) = 00 nelz, k) =l ep(Zinziz, k) |=0) as & — oo, Thus we have



[r1]5 (316)

= ~C(Z)ey(z)nz(z, k),

e_1z

UF:
eple_prils =rz- ik —k+kny

=iz — ik - Eng - ikn,

rez =elegnzls+ikng

=-C(Zlep i z0r .

In addition, from (3.12) it follows that

[rilz, k) +nziz k)]s + Clzdegizilnglz k) +nglz, k)] =0, (317)
[ralz, k) - nalz, k)5 - Clzdey(z)nglz, k) - nalz, )] = 0.

It is obvious that

$1(z,k) = nylz, b+ nolz, k), $2lz,k) = nylz,k) - nglz, k) (318)
satisfy the system of complex equations
$1z+ClZIeL (201 =0,  $oz- Clzley(2)fz=0 (319)



. . i o ..
with the conditions #1=2"“W1 ~ 1 gnd #z=—re"““Wz ~ 1 for sufficient large |2l, and

ik i . :
Wy =758y, W2=1e""%$2 are the solutions of the complex equation

Ws+ ClZ)iviz)=0 forzeC, (320)

From (3.6) and Lemma 3.3 below, the functions #1(Z.&1=W1lz,k), Hzlz,k)=Wzlz,k) on T can
be obtained, then

Tik)
(321)
i if_ - —_ —
- e Fm - iwR)a7
i N
= ek - iw)ds,
Here we use the Green formula
(322)

and forTo=1lzl=1}, #=z=e"F=p7araz _

Ti={lz-z;|=r;}, 7= 77/ Zir= _gm8 - _gfarglz-z;)

j=1,.. M, dZ=-Vd5, 5=, ze I, —G"f=—G"I:f—E_j:I=."FG"5, 5‘=rﬁJ zelpd=1,.. J.-H-'_ This
shows that the function 7i%] for & £ C is known, and then we can solve the solutions 7*1: ¥z of
equations in (3.5). On the basis of Lemma 3.2, we can obtain the system of complex

equations in (3.12) and the coefficient C{z} = &(z)H(z)e™ = of (3 1). This is just the so-called

inverse scattering method. We mention that sometimes Wqlz, k), Walz, k) are written as
Wylz), Walz)

Lemma 3.3.

Under the above conditions, the functions #1(Z); 1z(Z) a5 stated in (1.12) are the solutions of
the system of integral equations



2 s ) Y (323)

We first prove one lemma (see [7]).

Lemma 3.4.

= @Iy - : . . :
The function 9% %1 =875 j{z) (e Ry, J= 1,2} g 3 solution of the integral equations

qQiz, k) + 7249 + Te, JAg = 1 in o,
!

(324)
ez,
gz k=] ¢ M onp
E"'ffzhglizj
if and only if it is a solution of the integral equation
w7
1 1 [ gl k) 1, e"eh (),
Sz, k) + o di=y gl kl=
: itz #*¢ha(2),
(325)
aiz) , 3 hlcr::'e*‘*'if ) ikz
2.".'."[ af =87,
ho(@) | L[ hzce}e**ffv’ e e onr

Proof.

It is clear that we can only discuss the case of 1. If 9{2,} is a solution of (3.24), then
0z =—7A3 - 2,742 On the basis of the Pompeiu formula



9(z.k) = 5o [ Z e 1o 0

(326)
_ 1 (f, k) - =1
R i - T[7Ag +e,2Az] inD
(see [10, Chapters | and 111]), we have
qlz, k) + 779+ Te, tAg= 1= Eif_ r gg;:’j}a'i' in &, (327)

where 9(7,&) = &%h1(2) on T. Moreover by using the Plemelj-Sokhotzki formula for Cauchy
type integral (see [12, 13])

1= gi,- r gf_’f}dfﬁg(z,m, gif k) =e®Chy(7) onT, (328)

which is the formula (3.25).

On the contrary if (3.25) is true, then there exists a solution of equation 9z =3 - €743 in D
with the boundary values 9, &)= e*Chy(7) on I, thus we have (3.26), where the integral
(1/2a0ald, k) /(- 20000 i p s analytic, whose boundary value on T is

- 1 gif, k) - 1 1 G KD (329)
z'{EDl}IEz{EF}E”"' T ¢-z % EQEEJM_‘-EH-‘ ' -z %=1
hence
1 FLe, k) - o (330)
S T 7z df=1 ino,

and the formula (3.24) is true.
Proof of Lemma 3.3.

On the basis of the theory of integral equations (see [12, 13]), we can obtain the solutions



h1(z) and #2(2) of (3.23). From Lemma 3.4, we define the functions

[ K(E=-2) B
g T _ 21--[1" hlme_ al, ze C~ D,
Wll::z_,.ff:l _ m =
FeD,
(331)
) S =-2) _
jekz _ 21_ _[1- hﬂr’?}e_ df, ze C~ D,
WE(E_,.'!E':l _ o Z
e D,

which are analytic in € 2 with the boundary values 12}, #z(Z1 on T respectively, and satisfy
the complex equation (3.1).

Moreover according to [6, 7], we can obtain the following two lemmas.

Lemma 3.5.

Under the above conditions, one has

162 W2, K) - Lyt oS ML I-e"oWa(z, k)~ 1yt oEt for ke, (332)

where 2> 2, the positive constant #1=*1%.2,R) s only dependent on %, 2 and &, and & is a
sufficiently large positive number. Moreover the function 7t%1in (3.6) satisfies 7'} & Ll ClkJ),

In particular, Tk e Lpy 2L, where P1(0<p1 <l s g non-negative number.

Proof.

From Lemma 3.1, noting that filz ikl =1, 2=m j=1,2 \we have



d10Z,&)

(333)
dalZ, k]
On the basis of the result in [10], we can get
Ié1lz, k-1 ||W;-J2.:c.:z:.:.
= ME I Cek('ﬂlﬁli'{:lﬂf:‘ |||.-_P 2':(3(3:':' (334)

<Mz Clle, Sicizn
= My lk,pR)

in which I 12 & and ™= #1€,8,81 U= 2,3) 56 nositive constants only dependent on . 2 and
&, Similarly, we can obtain the second estimate in (3.32).

In addition, for

we have
7 oo
(336)

< % < Iz, ztcizll il k] Iz, sleiznle otk

inwhich @=8 /(- 1), 1<q <2 |tis not difficult to see that ' <} & Loy, 2(CLEJ)

p1(0<p1<=)js 3 non-negative constant.

, where

Lemma 3.6.



Under the above conditions, one can find the coefficients Q= 21z} of the complex system of
first-order equations P&z = M2z~ #mz = Am1{Q=Clin b as follows

Qiz)
(337)
in which G"lifl'k =dRek dIm .f{_
Proof.
From the formula (3.4), we can get
(338)

= nreglz),

where 102,51 = 1 35 & =, hence the the formula (3.37) is true.
Theorem 3.7.

For the inverse problem of Problem &4 for (1.3) with Condition <, one can reconstruct the
coefficients #i{) and &17),

Proof.

Similarly to [9], we will use the generalized Cauchy formula

Flz) = otz OFal - == [L22(. 07T ino, (339)

for the complex equation



J _—

Fo=[e 5= T4 a7 = —E(?]e‘m -7 (340)

] e

to find the function £=F(z) = g~/ in £, in which f21(2,8), 202,70 are the standard kernels of
equation (3.40) (see [10, Chapter III]). In fact, denote F=e"™ino and F=e ™ onTis

known from Theorem 2.5, then according to (3.39), we can find the function £z} in &
Moreover from

[-InFlz=TF1/FI=T(2)e™ T - @5 ino, (341)

|

thus the coefficient A =[2({1+ib({1]1/ 4 in & is obtained.

4. The Global Unigueness Result for
Inverse Problem of First-Order Elliptic
Complex Equations from Dirichlet to
Neumann Map

For the elliptic equation of second-order
: =0 i i = 41
U EE+U jap+3 U g+ b jp =0 in G, j=1,2, (41)

in which E"J'_= 3560, 5= 1) are real functions of {=&+inie G,j=1,2) and

C™~. = Denote

is a positive constant. Moreover define

[u iz =it g ]
z

(42)

W= Ui+l y= =t =07 inG, j=1,2,

and we can get



_ Wil
Wiz = z
1
=-Fla e+ b i gl (43)
= =AW - 8 {0
=-2Re[4;W;] InG, j=1,2,

where Ai=A5{1=8{)=[3;+ib;]/4, 1=1,2 aq stated in Section 1, suppose that the above
equations satisfy Condition <, and through a conformal mapping Z = Zi{), the complex
equations in (4.3) can be reduced to the following form

Wiz == [ZHA L)W+ 8 [{(2)]I5 T,

Wz =—2Re{A 720 (Z)u ;3 (44)

=-2Re{A;[fiz)P(z)w ;7 InD, j=1,2,

where £ is a circular domain, and iz} ={"iz],

1fWZ)=u iz U= 1,2} gre the corresponding solutions of (4.4) from the Dirichlet to Neumann

maps dyli=1, E:', and 11 =42 =4 then the boundary conditions of the inverse boundary value
problem for second-order elliptic equations in (4.1) from Dirichlet to Neumann map can be
reduced to

w{z) =t z=hiz) onT, j=1,2, (45)

where f11zi (e Coll), O<a=(p- 2170l is a known complex function. In the following we will
prove the uniqueness theorem as follows.

Theorem 4.1.

For the inverse problem of Problem &% for (1.1) (or (1.3)) with Condition <, one can uniquely
determine the coefficients & £. In other words, if #1=£2 for (4.1), then 31 =3z, b1=bz,

We first prove the Carleman estimate (see [7]).



Lemma 4.2.

(z) e WE(D)

If the complex function with the condition 4{Z1=00n T, and the real function

2
#lz) e WalD]) (p>2) then one has the Carleman estimate
(46)

Proof.

It is sufficient to prove the equality

(47)

z 1
in which #t2) € WD), 5nq 1iz) & WElD) \with the condition 402} = 0 on . We first consider the
complex form of the Green formula about ¥ = 4z

(48)

with & & CZ(D),

If (2}, #(z) are the above functions, by using the Green formula, we have



(49)

thus

(410)

_ ~ 1

This is just the formula (4.7) for iz} € C*(D). Due to the density of C*{D) in WalDHP > 2) ¢ i
1

known that (4.7) is also true for 412} & Wall) with the condition 4iZ}=0on T,

Lemma 4.3.

Under the above conditions, one can derive

Ci=Cs, zeD. (411)
Proof.

On the basis of f111Z)=fz(Z] on I', and the results of Lemmas 3.1 and 3.2, it follows that the

corresponding coefficients 7114} = 7zI%) and then ©1(2) = C2(2) in T, This shows that the formula
(4.11) is true.



Proof of Theorem 4.1.

Similarly to [7], we can prove

.-ql=.-qg in o,

From (4.11), we have

Cl=A—leTjﬂl—Tjﬂl=A—EJET_?.-112—T_?.-’-12= CEJ Fe .

If we define 17121 =0, 22 CN Dy yhan C1=C2, 7€ € and denote

Elzi=THA>- A1), Ez=3As-Ay), Flzi=eAz=81)-THAz-A1)

one gets

JAy = F(z0Ap, E(z)=THA>-Ay)=T(1-F(z134, in C.

Setting that #(z) = T7{Az - A11 - THAz - A1), obviously 512} is a real function, and

I1-F2)] =] e~ 1]=] /2 - e7B/2 |2 2] sin(T) 4

=| TAHAz - A1) - THAz - A 22 | THAz - AL =2 | E(z) |,

[E(z)]z =FAAz- A1),
I[EZ)]=l =124z || 1-Fiz) |22 |24z || E(z) |,

where £(2)=THAz-A1)=00n T is derived from Theorem 2.5.

Finally we use the Carleman estimate for 4Z1=£(z] and (4.16), and can get

(412)

(413)

(414)

(415)

(416)



(417)

As e LPEDL b2

Taking into account , and choosing

(418)
it is easy to see that &#= 4#zz= 15 | 241° in £, and then
(419)
Consequently
HA>-A11=0, A>-A1=0 indo, (420)

this shows the coefficients 31 =32, &1 =58z of equations in (4.1) in =.
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