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Abstract

The present paper deals with the inverse problem for linear elliptic equations of second 
order from Dirichlet to Neumann map in multiply connected domains. Firstly the formulation 
and the complex form of the problem for the equations are given, and then the existence 
and global uniqueness of solutions for the above problem are proved by the complex 
analytic method, where we absorb the advantage of the methods in previous works and give 
some improvement and development.

1. Formulation of the Inverse Problem 
for Second-Order Elliptic Equations from 
Dirichlet to Neumann Map
In [1–9], the authors posed and discussed the inverse problem of second-order elliptic 
equations. In this paper, by using the complex analytic method, the corresponding problem for 
linear elliptic complex equations of first-order in multiply connected domains is firstly 
discussed, afterwards the existence and global uniqueness of solutions of the inverse problem 
for the elliptic equations of second-order are obtained.

Let  be an -connected domain bounded domain in the complex plane  with the 

boundary , where  are inside of . Consider the 
linear elliptic equation of second-order: 

 
(11)

in which  are real functions of  and  is a positive 
constant. Moreover let  in . The above condition is called Condition . In this 
paper the notations are the same as those in [10] or [11].

Denote 



 

(12)

we can get 

 

(13)

where . We choose a conformal mapping  from the above 

general domain  onto the circular domain  with the boundary , 
, and . In this case, the complex 

equation (1.3) is reduced to the complex equation 

 

(14)

where  is the inverse function of , 
and  in  is a known Hölder continuously differentiable function (see [10, 
Section 2, Chapter I]), hence the above requirement can be realized.

Introduce the Dirichlet boundary condition for (1.1) as follows: 

 (15)



where  is a positive constant, which is called Problem 

 for (1.1) or (1.4). By [10, 11], Problem  has a unique solution  (or ) 
satisfying (1.1) (or (1.4)) and the Dirichlet boundary condition (1.5). From this solution, we 
can define the Dirichlet to Neumann map  or  by .

Our inverse problem is to determine the coefficient  and  of (1.1) (or  in (1.3)) from the 
map . In the following, we will transform the Dirichlet to Neumann map  into a equivalent 
boundary condition. In fact, if we find the derivative of positive tangent direction with respect 
to the unit arc length parameter  and  of the 
boundary  with , then 

 

(16)

It is clear that the equivalent boundary value problem is to find a solution  of 
the complex equation (1.4) with the boundary conditions 

 

(17)

and the relation 

 
(18)

in which  and  It is easy to see that 



 

(19)

where  is the arc length of  and applying the 
Green formula, we can see that the function  determined by the integral in (1.8) in  is 
single-valued.

Under the above condition, the corresponding Neumann boundary condition is 

 

(110)

where  is the unit outwards normal vector of . The boundary value problem (1.1) (or (1.4)), 
(1.10) will be called Problem . Taking into account the partial indexes of 

 and  are equal to  and 

 and  are equal to , thus the index 
of the above boundary value problem is . In general the above 
Problem  is not solvable, we need to give the modified boundary conditions as follows: 

 

(111)

where  and  and  on 
 on  is an undetermined real constant (see [11, Chapter VI]). Hence, the 

Dirichlet to Neumann map can be transformed into the boundary conditions as follows: 



 

(112)

which will be called Problem  for the complex equation (1.4) (or (1.1)) with the relation 
(1.8), where  is a complex function satisfying the condition 

 
(113)

For any function  in the Dirichlet boundary condition (1.5), there is a set  
of the functions of Neumann boundary condition (1.10), where  is corresponding to the 
complex equation (1.4) one by one, namely if we know the boundary value  and one 
complex equation in (1.4), then the boundary value  can be determined. Inversely if the 

 in (1.10) is given, then one complex equation in (1.4) can be determined, which will be 
verified later on. We denote the set of functions  by , where  is a complex 
number and  is as stated in (1.12).

2. Some Relations of Inverse Problem 
for Second-Order Elliptic Equations from 
Dirichlet to Neumann Map
According to [10], introduce the notations 

 
(21)

in which . Suppose that  in . Obviously  in . We 



consider the complex equation 

 (22)

where  and  is a complex number. On the basis of the Pompeiu 
formula (see [10, Chapters I and III]), the corresponding integral equation of the complex 
equation (2.2) is as follows: 

 
(23)

For simplicity we can only consider the following integral equation 

 (24)

later on.

Lemma 2.1.

If , then 

 
(25)

Proof.

It suffices to prove that for any small positive number , there exists a sufficiently large 
positive number  such that 

 (26)

In fact, noting that , and using the 
Hölder inequality, we have 



 

(27)

where . Now we estimate the integral 

 
(28)

We choose two sufficiently small positive constants  and , and divide the domain  into 
three parts: , and 

, such that for the above positive number , we can get 

 

(29)

where . Moreover noting that , if 
, and then 



 

(210)

Thus we obtain 

 

(211)

This shows that the formula (2.6) is true.

Lemma 2.2.

If , where  is a positive constant, then the solution  of (2.2) satisfies 
the estimate 

 (212)

in which  is a positive constant.

Proof.

First of all, we verify that any solution  of (2.2) satisfies the boundedness estimate 

 (213)

where  is a positive constant. Suppose that (2.13) is not true, then there exists a sequence 
of coefficients , which satisfy the same condition of coefficient  and weakly 
converges to , and the corresponding integral equations 



 (214)

possess the solutions , but  are unbounded. 
Hence we can choose a subsequence of  denoted by  again, such that 

 as , and can assume . Obviously 
 are solutions of the integral equations 

 
(215)

Noting that  we can derive the estimate 

 
(216)

(see [10, 11]), thus 

 (217)

Hence from , we can choose a subsequence denoted by  again, which 
uniformly converges to  in , it is clear that  is a solution of the equation 

 (218)

On the basis of the result in [10, Section 5, Chapter III], the solution  in , however, 
from , there exists a point , such that , which is 
impossible. This shows that (2.13) and then the estimate (2.12) are true.

Lemma 2.3.

Under the above conditions, one has 

 
(219)



where  is a unique solution of the equation 

 (220)

Proof.

Denote by  the solution of (2.2) in . From Lemma 2.2, we know that the solution  
satisfies the estimate (2.12). Moreover by using (2.5), that is, 

 
(221)

we can choose subsequences  and , where  as , such that  
in  uniformly converges to  as , which is a solution of (2.20) in  (see [11]). The 
uniqueness of solutions of (2.20) can be seen from the proof of Lemma 2.4 below.

Lemma 2.4.

The solution  of (2.20) can be expressed as 

 
(222)

where  in .

Proof.

On the basis of the results as in [10, Section 5, Chapter III], we know that the integral 
equations 

 

(223)

have the unique solutions  in  and  respectively, this shows that the function  in  
can be extended in . Moreover by the result in [10, 11], the solution  can be expressed 



as  in . Note that  as , and the entire function  in  
satisfies the condition  as , hence  in , and then  in .

Theorem 2.5.

For the inverse problem of the equation 

 
(224)

with the boundary condition 

 (225)

one can obtain 

 (226)

which is a known function.

Proof.

From the expression (2.22) of the solution  in  and  in , it follows that (2.26) is 
true.

3. The Inverse Scattering Method for 
Second-Order Elliptic Equations from 
Dirichlet to Neumann Map
For the complex equation (1.4), through the transformation , we can obtain that 
the function  satisfies the complex equation 

 (31)



where  and  in , in this case 
every function  in  is reduced to , hence later on it suffices to discuss the 
complex equation (3.1) and system of complex equations 

 
(32)

where . In the following we will find two solutions  and  of complex 
equation  with the conditions  and  as .

Now we find two solutions  and  in  of (3.1) with the conditions  and 

 for sufficiently large . In other words, there exist two solutions 

 and  in  of (3.2) with the conditions  and  
as . Denote 

 
(33)

obviously  satisfy the system of first-order complex equations 

 

(34)

such that  and  as  According to 
the way in [8], we can obtain the following two lemmas.

Lemma 3.1.

Under the above conditions, there exist two functions  satisfying the system 
of complex equations: 



 

(35)

where 

 
(36)

Proof.

In the following we verify the (3.5). From (3.4), we have 

 

(37)



In addition, from (3.5) it follows that 

 

(38)

It is easy to see that 

 

(39)

satisfy the system of complex equations 

 
(310)

with the conditions  and  for sufficient large , and 

 are the solutions of the complex equation 

 (311)

Later on we will verify .

Similarly to the way from (3.2) to (3.6), we can obtain the following result.

Lemma 3.2.

Under the above conditions, there exist two functions  satisfying the system 
of complex equations: 

 
(312)

where 



 

(313)

Proof.

Now we verify that (3.12) and (3.13) are true. Denote 

 
(314)

we see that  satisfy the system of first-order complex equations 

 

(315)

such that  and  as  Thus we have 

 



(316)

In addition, from (3.12) it follows that 

 

(317)

It is obvious that 

 (318)

satisfy the system of complex equations 

 (319)



with the conditions  and  for sufficient large , and 

 are the solutions of the complex equation 

 (320)

From (3.6) and Lemma 3.3 below, the functions  on  can 
be obtained, then 

 

(321)

Here we use the Green formula 

 
(322)

and for , and 

. This 
shows that the function  for  is known, and then we can solve the solutions  of 
equations in (3.5). On the basis of Lemma 3.2, we can obtain the system of complex 

equations in (3.12) and the coefficient  of (3.1). This is just the so-called 
inverse scattering method. We mention that sometimes  are written as 

.

Lemma 3.3.

Under the above conditions, the functions  as stated in (1.12) are the solutions of 
the system of integral equations 



 

(323)

We first prove one lemma (see [7]).

Lemma 3.4.

The function  is a solution of the integral equations 

 

(324)

if and only if it is a solution of the integral equation 

 

(325)

Proof.

It is clear that we can only discuss the case of . If  is a solution of (3.24), then 
. On the basis of the Pompeiu formula 



 

(326)

(see [10, Chapters I and III]), we have 

 
(327)

where  on . Moreover by using the Plemelj-Sokhotzki formula for Cauchy 
type integral (see [12, 13]) 

 
(328)

which is the formula (3.25).

On the contrary if (3.25) is true, then there exists a solution of equation  in  

with the boundary values , thus we have (3.26), where the integral 
 in  is analytic, whose boundary value on  is 

 
(329)

hence 

 
(330)

and the formula (3.24) is true.

Proof of Lemma 3.3.

On the basis of the theory of integral equations (see [12, 13]), we can obtain the solutions 



 and  of (3.23). From Lemma 3.4, we define the functions 

 

(331)

which are analytic in  with the boundary values  on  respectively, and satisfy 
the complex equation (3.1).

Moreover according to [6, 7], we can obtain the following two lemmas.

Lemma 3.5.

Under the above conditions, one has 

 
(332)

where , the positive constant  is only dependent on  and , and  is a 
sufficiently large positive number. Moreover the function  in (3.6) satisfies . 
In particular,  where  is a non-negative number.

Proof.

From Lemma 3.1, noting that , , we have 



 

(333)

On the basis of the result in [10], we can get 

 

(334)

in which  and  are positive constants only dependent on  and 
. Similarly, we can obtain the second estimate in (3.32).

In addition, for 

 
(335)

we have 

 

(336)

in which . It is not difficult to see that , where 
 is a non-negative constant.

Lemma 3.6.



Under the above conditions, one can find the coefficients  of the complex system of 
first-order equations  in  as follows 

 

(337)

in which .

Proof.

From the formula (3.4), we can get 

 

(338)

where  as , hence the the formula (3.37) is true.

Theorem 3.7.

For the inverse problem of Problem  for (1.3) with Condition , one can reconstruct the 
coefficients  and .

Proof.

Similarly to [9], we will use the generalized Cauchy formula 

 
(339)

for the complex equation 



 
(340)

to find the function  in , in which  are the standard kernels of 
equation (3.40) (see [10, Chapter III]). In fact, denote  in , and  on  is 
known from Theorem 2.5, then according to (3.39), we can find the function  in . 
Moreover from 

 
(341)

thus the coefficient  in  is obtained.

4. The Global Uniqueness Result for 
Inverse Problem of First-Order Elliptic 
Complex Equations from Dirichlet to 
Neumann Map
For the elliptic equation of second-order 

 
(41)

in which  are real functions of , and 
 is a positive constant. Moreover define  in 

. Denote 

 
(42)

and we can get 



 

(43)

where . As stated in Section 1, suppose that the above 
equations satisfy Condition , and through a conformal mapping , the complex 
equations in (4.3) can be reduced to the following form 

 

(44)

where  is a circular domain, and .

If  are the corresponding solutions of (4.4) from the Dirichlet to Neumann 
maps , and , then the boundary conditions of the inverse boundary value 
problem for second-order elliptic equations in (4.1) from Dirichlet to Neumann map can be 
reduced to 

 (45)

where  is a known complex function. In the following we will 
prove the uniqueness theorem as follows.

Theorem 4.1.

For the inverse problem of Problem  for (1.1) (or (1.3)) with Condition , one can uniquely 
determine the coefficients . In other words, if  for (4.1), then .

We first prove the Carleman estimate (see [7]).



Lemma 4.2.

If the complex function  with the condition  on , and the real function 

 then one has the Carleman estimate 

 
(46)

Proof.

It is sufficient to prove the equality 

 
(47)

in which  and  with the condition  on . We first consider the 
complex form of the Green formula about  

 

(48)

with .

If  are the above functions, by using the Green formula, we have 



 

(49)

thus 

 

(410)

This is just the formula (4.7) for . Due to the density of  in , it is 

known that (4.7) is also true for  with the condition  on .

Lemma 4.3.

Under the above conditions, one can derive 

 (411)

Proof.

On the basis of  on , and the results of Lemmas 3.1 and 3.2, it follows that the 
corresponding coefficients , and then  in . This shows that the formula 
(4.11) is true.



Proof of Theorem 4.1.

Similarly to [7], we can prove 

 (412)

From (4.11), we have 

 
(413)

If we define  then , and denote 

 
(414)

one gets 

 (415)

Setting that  obviously  is a real function, and 

 

(416)

where  on  is derived from Theorem 2.5.

Finally we use the Carleman estimate for  and (4.16), and can get 



 

(417)

Taking into account , and choosing 

 
(418)

it is easy to see that  in , and then 

 
(419)

Consequently 

 (420)

this shows the coefficients  of equations in (4.1) in .

BodyRef

FileRef : BodyRef/PDF/13661_2008_Article_838.pdf

TargetType : OnlinePDF

Acknowledgment

The research was supported by the National Natural Science Foundation of China (10671207).



References 
1.  Kirsch A: An Introduction to the Mathematical Theory of Inverse Problems, Applied 

Mathematical Sciences. Volume 120. Springer, New York, NY, USA; 1996:x+282.  

2.  Isakov V: Inverse Problems for Partial Differential Equations, Applied Mathematical 

Sciences. Volume 127. 2nd edition. Springer, New York, NY, USA; 2006:xiv+344.  

3.  Sung L-Y: An inverse scattering transform for the Davey-Stewartson II 

equations—I. Journal of Mathematical Analysis and Applications 1994,183(1):121–154. 

10.1006/jmaa.1994.1136  

4.  Sung L-Y: An inverse scattering transform for the Davey-Stewartson II 

equations—II. Journal of Mathematical Analysis and Applications 1994,183(2):289–325. 

10.1006/jmaa.1994.1145  

5.  Sung L-Y: An inverse scattering transform for the Davey-Stewartson II 

equations—III. Journal of Mathematical Analysis and Applications 1994,183(3):477–

494. 10.1006/jmaa.1994.1155  

6.  Brown RM, Uhlmann GA: Uniqueness in the inverse conductivity problem for 

nonsmooth conductivities in two dimensions. Communications in Partial Differential 

Equations 1997,22(5–6):1009–1027. 10.1080/03605309708821292  

7.  Cheng J, Yamamoto M: The global uniqueness for determining two convection 

coefficients from Dirichlet to Neumann map in two dimensions. Inverse Problems 

2000,16(3):L25-L30. 10.1088/0266-5611/16/3/101  

8.  Tamasan A: On the scattering method for the -equation and reconstruction of 

convection coefficients. Inverse Problems 2004,20(6):1807–1817. 10.1088/0266-

5611/20/6/007  

9.  Tong ZL, Cheng J, Yamamoto M: A method for constructing the convection 

coefficients of elliptic equations from Dirichlet to Neumann map. Science in China. 

Series A 2004, 34: 752–766.  

10.  Vekua IN: Generalized Analytic Functions. Pergamon Press, Oxford, UK; 1962.  

11.  Wen G, Begehr HGW: Boundary Value Problems for Elliptic Equations and Systems, 

Pitman Monographs and Surveys in Pure and Applied Mathematics. Volume 46. Longman 

Scientific & Technical, Harlow, UK; 1990:xii+411.  

12.  Mushelishvili NI: Singular Integral Equation. P. Noordhoff, Groningen, The 

Netherlands; 1953.  

13.  Wen G: Conformal Mappings and Boundary Value Problems, Translations of 

Mathematical Monographs. Volume 106. American Mathematical Society, Providence, 

RI, USA; 1992:viii+303.  


	Local Disk
	Springer A++ Viewer




