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1. Introduction

In this paper, the existence of solutions of the following elliptic equation:

−Δu − V (x)u = f(x, u), u ∈ H1
(
R

N
)

(P)

is studied, where V (x) is a function possibly changing sign, f is a continuous function on
R

N × R.
Problem (P) arises in various branches of applied mathematics and has been studied

extensively in recent years. For example, Rabinowitz [1] has studied the existence of a
nontrivial solution of this kind of equation on a bounded domain. Lien et al. [2] studied
the existence of positive solutions of problem (P) with V (x) ≡ λ (λ is a positive constant)
and f(x, u) = |u|p−2u. And Grossi et al. [3] established some existence results for −Δu =
λu + a(x)g(u), where a(x) is a function possibly changing sign, g(u) has superlinear growth
and λ is a positive real parameter; he discussed both the cases of subcritical and critical
growth for g(u) and proved the existence of linking type solutions.

Cerami et al. [4] prove that the problem (P) has infinitely many solutions, where
a(x) is a regular function such that lim inf|x|→∞a(x) = a∞ > 0 and some suitable decay
assumptions, f(x, u) = |u|p−2u. Kryszewski and Szulkin [5] considered the existence of
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a nontrivial solution of (P) in a situation where f(x, u) and V (x) are periodic in the x-
variable, f(x, u) is superlinear at u = 0 and ±∞, and 0 lies in a spectral gap of −Δu + V .
If in addition f(x, u) is odd in u, (P) has infinitely many solutions.

In [6], Zeng and Li proved existence of m − n pairs of nontrivial solutions (m > n, m
and n are integers) of (P), under the assumption that V (x) is a function possibly changing
sign in R

N and f(x, u) satisfies some growth conditions.
In this paper, we prove the existence of infinitely many solutions of (P), under the

assumption that V (x) is a function possibly changing sign in R
N and f(x, u) also satisfies

some growth conditions. One difficulty in considering problem (P) is the loss of compactness
because of RN ; the other is that V (x) may change sign, which leads to difficulty in verifying
the Palais-Smale condition and applying the well-known theorem.

Notation. We use the following notations. A strip region is a domain like this: for d >

0, Ω̃ = {x ∈ R
N ; −d < xi < d at least for some fixed i}. V (x) = V +(x) − V −(x), where

V ± = max{±V (x), 0}. Ω1 = {x ∈ R
N ; V −(x)/= 0}, Ω2 = {x ∈ R

N ; V −(x) = 0}.

X is defined as the completion of D(RN)with respect to the inner product

〈u, v〉1 :=
∫

RN

(∇u · ∇v + V −(x)uv
)
dx. (1.1)

The functional associated with (P) is

I(u) :=
1
2

∫

RN

|∇u|2 + V −(x)u2dx − 1
2

∫

RN

V +(x)u2dx −
∫

RN

F(x, u)dx, (1.2)

for u ∈ X, where F(x, u) =
∫u
0f(x, t)dt.

Our fundamental assumptions are as follows:

(A1) V +(x) ∈ LN/2(RN), meas{x ∈ R
N ; V +(x)/= 0} > 0. V −(x) ∈ L∞(RN), Ω2 is a strip

region, lim|x|→∞V −(x) = a > 0 in Ω1.

(A2) f ∈ C(RN × R) and there are constants C1 > 0 and 2 < p ≤ q < 2∗ such that
|f(x, t)| ≤ C1(|t|p−1 + |t|q−1).

(A3) There exists α > 2 such that 0 < αF(x, t) ≤ tf(x, t) for every x ∈ R
N and t /= 0.

(A4) lim|x|→∞sup|t|≤r(|f(x, t)|/|t|) = 0 for every r > 0.

(A5) For any t ∈ R, f(x, t) = −f(x,−t).

Here 2∗ denotes the critical Sobolev exponent, that is, 2∗ = 2N/(N − 2) for N ≥ 3 and
2∗ = ∞ forN = 1, 2.

Theorem 1.1. Under the assumptions (A1)–(A5), (P) possesses infinitely many solutions on X.

Remark 1.2. It is easily seen that (A2)–(A5) hold for nonlinearities of the form f(x, t) =∑k
i=1 ai(x)|t|pi−2t with 2 < pi < 2∗ and for i = 1, . . . , k, the nonnegative function ai(x) ∈

L∞(RN), lim|x|→∞ai(x) = 0.
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2. Preliminaries

We define the Palais-Smale (denoted by (PS)) sequences, (PS)-values, and (PS)-conditions
in X for I as follows.

Definition 2.1 (cf. [7]). (i) For c ∈ R, a sequence {un} is a (PS)c-sequence in X for I if I(un) =
c + ◦(1) and I ′(un) = ◦(1) strongly in X′ as n → ∞;

(ii) c ∈ R is a (PS)-value in X for I if there is a (PS)c-sequence in X for I;
(iii) I satisfies the (PS)c-condition in X if every (PS)c-sequence in X for I contains a

convergent subsequence;
(iv) I satisfies the (PS)-condition inX if for every c ∈ R, I satisfies the (PS)c-condition

in X.

Lemma 2.2 (cf. [6, Lemma 2.1]). Under the assumption (A1), the inner product

〈u, v〉1 :=
∫

RN

(∇u · ∇v + V −(x)uv
)
dx (2.1)

is well defined; therefore the corresponding norm ‖u‖1 :=
√〈u, u〉1 is well defined too, which is

equivalent to the norm ‖u‖ = (
∫
RN (|∇u|2 + u2dx)1/2.

Lemma 2.3 (cf. [8]). Under the assumption that V +(x) ∈ LN/2(RN) for the eigenvalue problem

−Δu + V −(x)u = μV +(x)u, u ∈ E (2.2)

there exists a sequence of eigenvalues μn → ∞ such that the eigenfunction sequence ϕn is an
orthonormal basis of E.

When (PS)c-condition is satisfied for all c ∈ R, there are known methods of obtaining
an unbounded sequence of critical values of ϕ (see, e.g., [9]).

Theorem 2.4 (cf. [10, Theorem 6.5]). Suppose that E is an infinite-dimensional Banach space and
suppose ϕ ∈ C1(E,R) satisfies (PS)-condition, ϕ(u) = ϕ(−u) for all u, and ϕ(0) = 0. Suppose
E = E− ⊕ E+, where E− is finite dimensional, and assume the following conditions:

(i) there exist ζ > 0 and � > 0 such that if ‖u‖ = � and u ∈ E+, then ϕ(u) ≥ ζ;

(ii) for any finite-dimensional subspace W ⊂ E there exists R = R(W) such that ϕ(u) ≤ 0 for
u ∈ W, ‖u‖ ≥ R.

Then ϕ possesses an unbounded sequence of critical values.

3. The (PS)c-Condition

Lemma 3.1. Under the assumptions (A1), (A2), and (A3), for every c ∈ R, any (PS)c-sequence is
bounded.

Proof. By the eigenvalue problem in Lemma 2.3, there exist k ∈ N such that eigenvalues are
μ1 < μ2 ≤ μ3 ≤ · · · ≤ μk ≤ λ < μk+1 ≤ · · · for some λ ≥ 1; the corresponding eigenfunction
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is ϕ1, ϕ2, ϕ3, . . . , ϕk, ϕk+1, . . ., then we denote X = X1
⊕

X2, with X1 =
⊕k

i=1span{ϕi}, X2 = X⊥
1 ,

and denote un ∈ X as un = vn +wn, where vn ∈ X1, wn ∈ X2. It’s obvious that

∫

RN

(
|∇u|2 + V −(x)u2 − λV +(x)u2

)
dx ≤ 0, ∀u ∈ X1, (3.1)

and there exist δ > 0 such that

∫

RN

(
|∇u|2 + V −(x)u2 − V +(x)u2

)
dx ≥ δ‖u‖21, ∀u ∈ X2 (3.2)

by Lemma 2.3. For any ε > 0, there exists Cε > 0 such that |F(x, u)| ≥ Cε|u|α − ε|u|2 from (A2)
and (A3). Choose 2 < α′ < α, then

∫

RN

F(x, un)dx − 1
α′

∫

RN

unf(x, un)dx

≤
∫

RN

(
1 − α

α′
)
F(x, un)dx

≤
(
1 − α

α′
)∫

RN

(
Cε|un|α − ε|un|2

)
dx.

(3.3)

Let {un} be the sequence such that I(un) → c, I ′(un) → 0. By inequality (3.2) and un =
vn +wn, vn ∈ X1, wn ∈ X2, and then

c + 1 + ‖u‖1 ≥ I(un) − 1
α′
〈
I ′(un), un

〉

=
1
2

∫

RN

(
|∇un|2 − V (x)u2

n

)
dx −

∫

RN

F(x, un)dx

− 1
α′

∫

RN

(
|∇un|2 − V (x)u2

n

)
dx +

1
α′

∫

RN

unf(x, un)dx

=
(
1
2
− 1
α′

)∫

RN

(
|∇wn|2 − V (x)w2

n + |∇vn|2 − V (x)v2
n

)
dx

−
∫

RN

F(x, un)dx +
1
α′

∫

RN

unf(x, un)dx

≥
(
1
2
− 1
α′

)
δ‖wn‖21 +

(
1
2
− 1
α′

)
‖vn‖21 −

(
1
2
− 1
α′

)∫

RN

(
V +(x)|vn|2

)
dx

+
( α

α′ − 1
)∫

RN

(
Cε|un|α − ε|un|2

)
dx.

(3.4)
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Choose ε > 0 small, then for suitable C2, C3, the above inequality becomes

c + 1 + ‖u‖1 ≥ C2‖un‖21 + C3|un|αα −
(
1
2
− 1
α′

)
|V +|N/2|vn|22∗ . (3.5)

Due to α > 2, it follows that {un} is bounded.

The following lemma is the same as [6, Lemma 3.2]. For the completeness, we prove
it.

Lemma 3.2. Under the assumptions (A1), (A2), (A3), and (A4), I satisfies the (PS)-condition inX.

Proof. By Lemma 3.1, we know that any (PS)c sequence un is bounded in X. Up to a
subsequence, we may assume that un ⇀ u in X. In order to establish strong convergence
it suffices to show

‖un‖1 −→ ‖u‖1. (3.6)

Since 〈I ′(un), un − u〉 → 0, we infer that

0 ≤ lim sup
n→∞

(
‖un‖21 − ‖u‖21

)

= lim sup
n→∞

(un, un − u)

= lim sup
n→∞

∫

RN

f(x, un)(un − u)dx.

(3.7)

We restrict our attention to the case N ≥ 3, but the cases N = 1, 2 can be treated similarly. Let
ε > 0, for r ≥ 1, then

∫

|un|≥r
f(x, un)(un − u)dx ≤ C4

∫

|un|≥r
|un|p−1|un − u|dx

≤ C4r
p−2∗

∫

|un|≥r
|un|2

∗−1|un − u|dx

≤ C4r
p−2∗ |un|2

∗−1
2∗ |un − u|2∗ .

(3.8)

Since p < 2∗, we may fix r large enough such that

∫

|un|≥r
f(x, un)(un − u)dx ≤ ε

3
(3.9)

for all n. Moreover, by (A4) there exists R1 > 0 such that

∫

(|un|≤r∩|x|≥R1 )
f(x, un)(un − u)dx ≤ |un|2|un − u|2 sup

|t|≤r,|x|≥R1

∣∣f(x, t)∣∣
|t| ≤ ε

3
(3.10)
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for all n. Finally, since un → u in Ls(BR1(0)) for s ∈ [2, 2∗), we can use (A2) again to derive

∫

(|un|≤r∩|x|≤R1 )
f(x, un)(un − u)dx ≤ ε

3
(3.11)

for n large enough. Combining (3.9)–(3.11) we conclude that

∫

RN

f(x, un)(un − u)dx ≤ ε (3.12)

for n large enough. From this and (3.7), we deduce (3.6) and complete the proof.

4. Infinitely Many Solutions

We can obtain an infinite sequence of critical values from Theorem 2.4.

Proof of Theorem 1.1. We apply Theorem 2.4 with E = X, ϕ = I. It is clear that I ∈ C1(X,R) is
even because of (A1), (A2), and (A5). I(0) = 0. By lemma 3.2, the (PS)-condition is satisfied.
From the proof of Lemma 3.1, we have X = X1

⊕
X2, where X1 =

⊕k
i=1 span{ϕi}, X2 = X⊥

1 .
That is E− = X1, E

+ = X2. We only need to check conditions (i) and (ii).
Integrating (A2), there is a constant C5 > 0 such that for all x ∈ R

N and t ∈ R,

|F(x, t)| ≤ C5
(|t|p + |t|q). (4.1)

By the Sobolev embeding theorem and (3.2), we have the estimate

I(u) ≥ 1
2

∫

RN

(
|∇u|2 + V −(x)u2

)
dx − 1

2

∫

RN

V +(x)u2dx − C5

∫

RN

(|u|p + |u|q)dx

≥ δ

2
‖u‖21 − C6‖u‖p1 − C7‖u‖q1

(4.2)

for u ∈ X2. Let ‖u‖1 = � and u ∈ X2,

I(u) ≥ δ

2
�2 − C6�

p − C7�
q > 0 (4.3)

for small �. Thus condition (i) is fulfilled with ζ = (δ/2)�2 − C6�
p − C7�

q.
By (A3), there is a constant C8 such that |F(x, t)| ≥ C8|t|α for every x ∈ R

N and |t| > ε.
Indeed, let ε > 0 small be given. By integration of (A3), we have for x ∈ R

N and |t| > ε,

F(x, t) ≥ F(x, ε)
εα

|t|α ≥ C8|t|α. (4.4)
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Let W be a finite-dimensional subspace of X. Since all norms are equivalent of W and since

I(u) ≤ 1
2
‖u‖21 −

1
2

∫

RN

V +u2dx − C9‖u‖αα. (4.5)

Also since α > 2, condition (ii) follows. Thus we complete the proof.
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