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1. Introduction

The aim of this work is to prove the existence of multiple solutions of constant sign and of
nodal solutions (sign changing solutions) for nonlinear elliptic equations driven by the p-
Laplacian and having a nonsmooth potential (hemivariational inequalities). So let Z ⊆ R

N

be a bounded domain with a C2-boundary ∂Z. The problem under consideration is the
following:

−div(‖Dx(z)‖p−2Dx(z)
) ∈ ∂j(z, x(z)) a.e. on Z,

x|∂Z = 0 1 < p < ∞.
(1.1)

Here j(z, x) is measurable function on Z × R, which in the x ∈ R variable is locally
Lipschitz and ∂j(z, x) stands for the generalized subdifferential of x → j(z, x) in the sense of
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Clarke [1]. Problem (1.1) is a hemivariational inequality. Hemivariational inequalities are
a new type of variational expressions, which arise in applications if one considers more
realistic mechanical laws of multivalued and nonmonotone nature. Then the corresponding
energy (Euler) functional is nonsmooth and nonconvex. Various engineering applications of
hemivariational inequalities can be found in the book of Naniewicz-Panagiotopoulos [2].

Multiple solutions of constant sign for problems monitored by the p-Laplacian and
with a C1-potential were obtained by Ambrosetti et al. [3], Garcı́a Azorero-Peral Alonso [4],
and Garcı́a Azorero et al. [5]. In all these works, the authors consider nonlinear eigenvalue
problems and prove the existence of positive and negative solutions for certain values of the
parameter λ ∈ R. The question of existence of nodal solutions was first addressed within
the framework of semilinear problems (i.e., p = 2). We mention the works of Dancer-Du
[6] and Zhang-Li [7], which contain two different approaches to the problem. In Dancer-Du
[6], the authors use a combination of the variational method (critical point theory) with the
method of upper and lower solutions. In contrast Zhang-Li [7] use invariance properties of
the negative gradient flow of the corresponding equation in C1

0(Z). Recently these methods
were extended to “smooth” problems driven by the p-Laplacian differential operator. Carl-
Perera [8] extended thework of Dancer-Du [6], by assuming the existence of upper and lower
solutions for the problem. Zhang-Li [9] and Zhang et al. [10] extended the semilinear work
of [7], by carefully constructing a pseudogradient vector field whose descent flow exhibits
the necessary invariance properties. These works were extended recently by Filippakis-
Papageorgiou [11]. Recently the approach based on the invariance properties of descent
flow was used by Zhang-Perera [12] to produce nodal solutions for certain Kirchhoff type
equations. Other recent works dealing with p-Laplacian equations are those by Ahmad-Nieto
[13] (monotone iterative technique), Kim et al. [14] (radial solutions), Lin et al. (singular
odes) [15], and Väth [16] (degree theoretic approach).

In this paper using techniques from nonsmooth critical point theory in conjunction
with the method of upper and lower solutions, we are able to extend the works of Dancer-
Du [6] and Carl-Perera [8] to hemivariational inequalities. Helpful in this respect is the
nonsmooth second deformation lemma of Corvellec [17]. Recently, sign-changing solutions
for problems with discontinuous nonlinearities were obtained by Averna et al. [18], but in
contrast to our work they deal with p-superlinear problems.

2. Mathematical Background

In our analysis of problem (1.1), we use the nonsmooth critical point theory which is based
on the subdifferential theory for locally Lipschitz functions and some basic facts about the
spectrum of the negative p-Laplacian with Dirichlet boundary conditions. For easy reference,
we recall some definitions and results from these areas, which will be used in the sequel.

We start with the subdifferential theory for locally Lipschitz functions and the
corresponding nonsmooth critical point theory. Details can be found in the books of Gasiński
-Papageorgiou [19] and Motreanu-Panagiotopoulos [20]. So let X be a Banach space and let
X∗ be its topological dual. By 〈·, ·〉 we denote the duality brackets for the pair (X,X∗). Given
a locally Lipschitz function ϕ : X → R, the generalized directional derivative ϕ0(x;h) of ϕ at
x ∈ X in the direction h ∈ X is defined as follows:

ϕ0(x;h) = lim sup
x′ →x
λ↓0

ϕ(x′ + λh) − ϕ(x′)
λ

. (2.1)
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The function h → ϕ0(x;h) is sublinear continuous and so it is the support function of
a nonempty, convex, and w∗-compact set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x) =
{
x∗ ∈ X∗ :

〈
x∗, h

〉 ≤ ϕ0(x;h) ∀h ∈ X
}
. (2.2)

The multifunction x → ∂ϕ(x) is called the “generalized gradient” (or generalized
subdifferential) of ϕ. If ϕ : X → R is also convex, then ∂ϕ(x) coincides with the
subdifferential in the sense of convex analysis ∂cϕ(x), defined by

∂cϕ(x) =
{
x∗ ∈ X∗ :

〈
x∗, y − x

〉 ≤ ϕ(y) − ϕ(x) ∀y ∈ X
}
. (2.3)

Moreover if ϕ ∈ C1(X), then ϕ is locally Lipschitz and ∂ϕ(x) = {ϕ′(x)}.
We say that x ∈ X is a critical point of the locally Lipschitz function ϕ : X → R, if

0 ∈ ∂ϕ(x). It is easy to see that if x ∈ X is a local extremum of ϕ (i.e., a local minimum or a
local maximum of ϕ), then x ∈ X is a critical point of ϕ.

A locally Lipschitz function ϕ : X → R satisfies the Palais-Smale condition at level
c ∈ R (PSc-condition for short), if every sequence {xn}n≥1 ⊆ X such that ϕ(xn) → c and
m(xn) = inf{‖x∗‖ : x∗ ∈ ∂ϕ(xn)} → 0 as n → ∞ has a strongly convergent subsequence. We
say that ϕ satisfies the PS-condition, if it satisfies the PSc-condition for every c ∈ R.

The following topological notion is crucial in the minimax characterization of the
critical values of a locally Lipschitz functional ϕ : X → R.

Definition 2.1. Let Y be a Hausdorff topological space and E0, E, and D are nonempty closed
subsets of Y with E0 ⊆ E.We say that the pair {E0, E} is linking with D in Y if and only if

(a) E0 ∩D = ∅;

(b) for any γ ∈ C(E, Y ) such that γ |E0 = id|E0 , we have γ(E) ∩D/=∅.

Using this notion, we have the following general minimax principle for the critical
values of a locally Lipschitz function ϕ : X → R.

Theorem 2.2. If X is a reflexive Banach space, E0, E, and D are nonempty closed subsets of X such
that {E0, E} is linking with D in X, ϕ : X → R is locally Lipschitz, supE0

ϕ < infD ϕ, Γ =
{γ ∈ C(E,X) : γ |E0 = id|E0}, c = infγ∈Γ supv∈E ϕ(γ(v)), and ϕ satisfies the PSc-condition, then
c ≥ infD ϕ and c is a critical value of ϕ.

Remark 2.3. From this general minimax principle, by appropriate choices of the linking sets,
one can produce nonsmooth versions of the mountain pass theorem, of the saddle point
theorem, and of the generalized mountain pass theorem.

Definition 2.4. If Y is a subset of the Banach space X, a “deformation of Y” is a continuous
map h : [0, 1] × Y → Y such that h(0, ·) = idY . If V ⊆ Y , then we can say that V is a “weak
deformation retract of Y”, if there exists a deformation h : [0, 1]×Y → Y such that h(1, Y ) ⊆ V
and h(t, ·) ⊆ V for all t ∈ [0, 1].
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Given a locally Lipschitz function ϕ : X → R and c ∈ R, we define

0
ϕc = {x ∈ X : ϕ < c},
Kc = {x ∈ x : 0 ∈ ∂ϕ(x), ϕ(x) = c}.

(2.4)

The next theorem is a partial extension to a nonsmooth setting of the so-called “second
deformation theorem” (see, e.g., Gasiński -Papageorgiou [21, page 628]) and it is due to
Corvellec [17]. In fact the result of Corvellec is formulated in the more general context of
metric spaces, for continuous functions using the so-called weak slope. For our purposes, it
suffices to use a particular form of the result which we state next.

Theorem 2.5. If X is a Banach space, ϕ : X → R is locally Lipschitz and satisfies the PS-condition,
a ∈ R, b ∈ R ∪ {+∞}, ϕ has no critical points in ϕ−1(a, b), and Ka is discrete nonempty, then there

exists a deformation h : [0, 1]×
0

ϕb →
0

ϕb such that

(a) h(t, ·)|Ka
= id for all t ∈ [0, 1];

(b) h(1,
0

ϕb) ⊆
0
ϕa ∪Ka;

(c) ϕ(h(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈
0

ϕb .

In particular the set
0
ϕa ∪Ka is a weak deformation retract of

0

ϕb.
Next let us recall some basic facts about the spectrum of the negative p-Laplacian with

Dirichlet boundary conditions. So let Z ⊆ R
N be a bounded domain with a C2-boundary

∂Z and m ∈ L∞(Z)+, m/= 0. We consider the following nonlinear weighted (with weight m)
eigenvalue problem:

−div(‖Dx(z)‖p−2Dx(z)
)
= λ̂m(z)|x(z)|p−2x(z) a.e. on Z,

x|∂Z = 0 1 < p < ∞.
(2.5)

The least number λ̂ ∈ R for which problem (2.5) has a nontrivial solution is the
first eigenvalue of (−Δp,W

1,p
0 (Z), m) and it is denoted by λ̂1(m). The first eigenvalue λ̂1(m)

is strictly positive (i.e., λ̂1(m) > 0); it is isolated and it is simple (i.e., the associated
eigenspace is one dimensional). Moreover, using the Rayleigh quotient we have a variational
characterization of λ̂1(m), namely,

λ̂1(m) = min

[ ‖Dx‖pp
∫
Zm|x|pdz : x ∈ W

1,p
0 (Z), x /= 0

]

, (2.6)

(see also Cuccu et al. [22]).
The minimum in (2.6) is attained on the corresponding one-dimensional eigenspace.

In what follows by u1 ∈ W
1,p
0 (Z)we denote the normalized eigenfunction. Note that |u1| also

realizes the minimum in (2.6). Hence we may assume that u1(z) ≥ 0 a.e. on Z. Moreover,
from nonlinear regularity theory (see, e.g., Gasiński -Papageorgiou [21, page 738]), we have
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u1 ∈ C1
0(Z) = {x ∈ C1(Z) : x(z) = 0 for all z ∈ ∂Z}. The Banach space C1

0(Z) is an ordered
Banach space with order cone given by

C1
0(Z)+ =

{
x ∈ C1

0(Z) : x(z) ≥ 0 ∀z ∈ Z
}
. (2.7)

We know that intC1
0(Z)+ /=∅ and in fact

intC1
0(Z)+ =

{
x ∈ C1

0(Z)+ : x(z) > 0 ∀z ∈ Z and
∂x

∂n
(z) < 0 ∀z ∈ ∂Z

}
. (2.8)

By virtue of the strong maximum principle of Vázquez [23], we have u1 ∈ intC1
0(Z)+.

Using the Lusternik-Schnirelmann theory, in addition to λ̂1(m) > 0,we obtain a whole
strictly increasing sequence {λ̂k(m)}k≥1 ⊆ R+ of eigenvalues of (2.5), such that λ̂k(m) → +∞
as k → ∞. These are the so-called “variational eigenvalues” of ( −Δp,W

1,p
0 (Z), m). When

p = 2 (linear case), then these are all the eigenvalues. For p /= 2 (nonlinear case), we do not
know if this is true. Nevertheless exploiting the fact that λ̂1(m) > 0 is isolated, we can define

λ̂∗2(m) = inf
{
λ̂ : λ̂ is an eigenvalue of (2.5), λ̂ /= λ̂1(m)

}
> λ̂1(m). (2.9)

Because the set of eigenvalues of (2.5) is closed, we see that λ̂∗2(m) is an eigenvalue
of ( −Δp,W

1,p
0 (Z), m). In fact we have λ̂∗2(m) = λ̂2(m); that is, the second eigenvalue and

the second variational eigenvalue of (−Δp,W
1,p
0 (Z), m) coincide. Then for λ̂2(m) we have

a variational expression provided by the Lusternik-Schnirelmann theory. The eigenvalues
λ̂1(m) and λ̂2(m) exhibit some monotonicity properties with respect to the weight function
m ∈ L∞(Z)+.More precisely, we have the following.

(a) If m(z) ≤ m′(z) a.e. on Z with strict inequality on a set of positive measure, then
λ̂1(m′) < λ̂1(m) (this is immediate from (2.6)).

(b) Ifm(z) < m′(z) a.e. on Z, then λ̂2(m′) < λ̂2(m) (see Anane-Tsouli [24]).

If m ≡ 1, then we write λ̂1(m) = λ1 and λ̂2(m) = λ2. For λ2 > 0, there is an alternative
variational characterization, due to Cuesta et al. [25]; namely, if ∂BLp(Z)

1 = {x ∈ Lp(Z) : ‖x‖p =
1}, S = W

1,p
0 (Z) ∩ ∂B

Lp(Z)
1 , and Γ0 = {γ0 ∈ C([−1, 1], S) : γ0(−1) = −u1, γ0(1) = u1}, then

λ2 = inf
γ0∈Γ0

sup
x∈γ0([−1,1])

‖Dx‖pp. (2.10)

Finally we recall the notions of upper and of lower solutions for problem (1.1).

(a) A function x ∈ W1,p(Z) with x|∂Z ≥ 0 is an “upper solution” for problem (1.1), if

∫

Z

‖Dx(z)‖p−2(Dx(z), Dψ(z))
RN dz ≥

∫

Z

u(z)ψ(z)dz (2.11)

for all ψ ∈ W
1,p
0 (Z), ψ(z) ≥ 0 a.e. on Z and for some u ∈ Lη(Z), u(z) ∈ ∂j(z, x(z))

a.e. on Z for some 1 < η < p∗ = Np/(N − p) if N > p, +∞ if N ≤ p.



6 Boundary Value Problems

(b) A function x ∈ W1,p(Z) with x|∂Z ≤ 0 is a “lower solution” for problem (1.1), if

∫

Z

‖Dx(z)‖p−2(Dx(z), Dψ(z))
RN dz ≤

∫

Z

u(z)ψ(z)dz (2.12)

for all ψ ∈ W
1,p
0 (Z), ψ(z) ≥ 0 a.e. on Z and for some u ∈ Lη(Z), u(z) ∈ ∂j(z, x(z))

a.e. on Z for some 1 < η < p∗.

3. Solutions of Constant Sign

In this section, we produce two nontrivial solutions of (1.1) which have constant sign. The
first is positive and the second is negative. To do this, we will need the following hypotheses
on the nonsmooth potential j(z, x).

H(j)1: j : Z × R → R is a function such that j(z, 0) = 0 a.e. on Z, ∂j(z, 0) = {0} a.e. on Z,
and

(i) for every x ∈ R, z → j(z, x) is measurable;
(ii) for almost all z ∈ Z, x → j(z, x) is locally Lipschitz;
(iii) for almost all z ∈ Z, all x ∈ R, and all u ∈ ∂j(z, x),we have

|u| ≤ a(z) + c|x|p−1 with a ∈ L∞(Z)+, c > 0; (3.1)

(iv) there exists θ ∈ L∞(Z)+ satisfying θ(z) ≤ λ1 a.e. on Z with strict inequality on
a set of positive measure, such that

lim sup
|x|→∞

u

|x|p−2x ≤ θ(z) (3.2)

uniformly for almost all z ∈ Z and all u ∈ ∂j(z, x);
(v) there exist η, η̂ ∈ L∞(Z)+ satisfying λ1 ≤ η(z) ≤ η̂(z) a.e. on Z, where the first

inequality is strict on a set of positive measure, such that

η(z) ≤ lim inf
x→ 0

u

|x|p−2x ≤ lim sup
x→ 0

u

|x|p−2x ≤ η̂(z) (3.3)

uniformly for almost all z ∈ Z and all u ∈ ∂j(z, x);
(vi) for almost all z ∈ Z, all x ∈ R, and all u ∈ ∂j(z, x), we have ux ≥ 0 (sign

condition).

Remark 3.1. Hypotheses H(j)1(iv) and (v) are nonuniform nonresonance conditions at zero
and at ±∞, respectively. Moreover, as we move from 0 to ±∞, the “slopes” u/|x|p−2x. u ∈
∂j(z, x) cross the first eigenvalue λ1 > 0. So our framework incorporates the so-called
asymptotically p-linear equations. For p = 2, since the appearance of the pioneering work
of Amann-Zehnder [26], these problems have attracted a lot of interest.
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The next lemma is an easy consequence of the strict positivity of u1 ∈ C1
0(Z) and of the

hypotheses on θ ∈ L∞(Z)+ (see H(j)(iv)). We omit the proof.

Lemma 3.2. If θ ∈ L∞(Z)+ satisfies θ(z) ≤ λ1 a.e. on Z with strict inequality on a set of positive
measure, then there exists ξ0 > 0 such that

‖Dx‖pp −
∫

Z

θ(z)|x(z)|p dz ≥ ξ0‖Dx‖pp ∀x ∈ W
1,p
0 (Z). (3.4)

Given ε > 0 and γε ∈ L∞(Z)+, γε /= 0, we consider the following nonlinear Dirichlet
problem:

−div(‖Dx(z)‖p−2Dx(z)
)
= (θ(z) + ε)|x(z)|p−2x(z) + γε(z) a.e. on Z,

x|∂Z = 0.
(3.5)

In the next proposition, we establish the solvability of (3.5).

Proposition 3.3. If θ ∈ L∞(Z)+ satisfies θ ≤ λ1 a.e. on Z with strict inequality on a set of positive
measure, then for all ε > 0 small problem (3.5) admits a solution x ∈ intC1

0(Z)+.

Proof. In what follows by 〈·, ·〉 we denote the duality brackets for the pair
(W−1,p′(Z),W1,p

0 (Z))(1/p + 1/p′ = 1). We introduce the nonlinear operator A : W1,p
0 (Z) →

W−1,p′(Z) defined by

〈A(x), y〉 =
∫

Z

‖Dx(z)‖p−2(Dx(z), Dy(z))
RN dz ∀x, y ∈ W

1,p
0 (Z). (3.6)

It is straightforward to check that A is strictly monotone and demicontinuous, hence
maximal monotone too. Also letNε : Lp(Z) → Lp′(Z) be the nonlinear, bounded, continuous
map defined by

Nε(x)(·) = (θ(·) + ε)|x(·)|p−2x(·). (3.7)

Because of the compact embedding of W1,p
0 (Z) into Lp(Z), Nε viewed as a map from

W
1,p
0 (Z) into Lp′(Z) is completely continuous. Therefore x → Gε(x) = A(x) − Nε(x) is

pseudomonotone from W
1,p
0 (Z) intoW−1,p′(Z). Also for every x ∈ W

1,p
0 (Z),we have

〈
Gε(x), x

〉
= ‖Dx‖pp −

∫

Z

θ(z)|x(z)|pdz − ε‖x‖pp

≥
(
ξ0 − ε

λ1

)
‖Dx‖pp (see Lemma 3.2 and (2.6)).

(3.8)
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Therefore, if ε < λ1ξ0, then by virtue of Poincare’s inequality Gε(·) is coercive. But a
pseudomonotone coercive operator is surjective. Hence we can find that x ∈ W

1,p
0 (Z) such

that

Gε(x) = A(x) −Nε(x) = γε, (3.9)

=⇒
{ −div(‖Dx(z)‖p−2Dx(z)

)
= (θ(z) + ε)|x(z)|p−2x(z) + γε(z) a.e. on Z,

x|∂Z = 0

}

. (3.10)

Thus x ∈ W
1,p
0 (Z) is a solution of (3.5). We take duality brackets of (3.9) with the test

function −x− = −max{−x, 0} ∈ W
1,p
0 (Z).We obtain

‖Dx−‖pp −
∫

Z

θ(z)|x−(z)|p dz ≤ ε‖x−‖pp
(
since γε ≥ 0

)
,

=⇒ ξ0‖Dx−‖pp ≤ ε

λ1
‖Dx−‖pp (see Lemma 3.2 and (2.6)).

(3.11)

But recall that ε < λ1ξ0. So it follows that ‖Dx−‖p = 0, hence x − = 0; that is, x ≥ 0.
Since γε /= 0, from (3.10) it follows that x /= 0 and x ∈ C1

0(Z) (nonlinear regularity theory). In
addition, from (3.10), we see that

div
(‖Dx(z)‖p−2Dx(z)

) ≤ 0 a.e. on Z,

=⇒ x ∈ intC1
0(Z)+ (see Vázquez [23]).

(3.12)

In fact the solution x ∈ intC1
0(Z)+ of (3.5) is an upper solution for problem (1.1).

Proposition 3.4. If hypotheses H(j)1(i)→ (iv) hold and ε > 0 is small, then the solution x ∈
intC1

0(Z)+ of problem (3.5) obtained in Proposition 3.3 is a strict upper solution of problem (1.1)
(strict means that x is an upper solution of (1.1) which is not a solution).

Proof. Because of hypotheses H(j)1(iv), given ε > 0, we can find M1 = M1(ε) > 0 such that
for almost all z ∈ Z, all x ≥ M1, and all u ∈ ∂j(z, x),we have

u ≤ (θ(z) + ε)xp−1. (3.13)

Also due to hypothesisH(j)1(iii), we can find γε ∈ L∞(Z)+, γε /= 0 such that for almost
all z ∈ Z, all x ∈ [0,M1], and all u ∈ ∂j(z, x),we have

u < γε(z). (3.14)

Therefore it follows that for almost all z ∈ Z, all x ≥ 0, and all u ∈ ∂j(z, x),we have

u < (θ(z) + ε)xp−1 + γε(z). (3.15)
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So for 0 < ε < λ1ξ0 and γε as above, we consider problem (3.5). From Proposition 3.3,
we have a solution x ∈ intC1

0(Z)+. Then due to (3.15), for all u ∈ Lp′(Z)+ with u(z) ∈
∂j(z, x(z)) a.e. on Z, we have

u(z) < (θ(z) + ε)x(z)p−1 + γε(z) a.e. on Z,

=⇒ x ∈ intC1
0(Z)+ is a strict upper solution for problem (1.1).

(3.16)

Since ∂j(z, 0) = {0} a.e. on Z, x ≡ 0 is a lower solution for problem (1.1).
We introduce the set

C = {x ∈ W
1,p
0 (Z) : 0 ≤ x(z) ≤ x(z) a.e. on Z} (3.17)

and the truncation function τ+ : R → R+ defined by

τ+(x) =

{
0 if x ≤ 0,
x if x > 0.

(3.18)

Then we set j+(·, x) = j(z, τ+(x)) and we consider the locally Lipschitz functional ϕ+ :
W

1,p
0 (Z) → R defined by

ϕ+(x) =
1
p
‖Dx‖pp −

∫

Z

j+(z, x(z))dz ∀x ∈ W
1,p
0 (Z). (3.19)

We will show that we can find a nontrivial solution of (1.1) in C, which is a local
minimizer of ϕ+ and of ϕ. To do this we will need the following simple result about ordered
Banach spaces.

Lemma 3.5. IfX is an ordered Banach space,K is the order cone ofX, intK/=∅, and x0 ∈ intK, then
for every y ∈ X, we can find t = t(y) > 0 such that tx0 − y ∈ intK.

Proof. Since x0 ∈ intK, we can find δ > 0 such that

Bδ(x0) =
{
x ∈ X : ‖x − x0‖ ≤ δ

} ⊆ intK. (3.20)

Let y ∈ X, y /= 0 (if y = 0, then clearly the lemma holds for all t > 0). We have the
following:

x0 − δ
y

‖y‖ ∈ intK,

=⇒ ‖y‖
δ

x0 − y ∈ intK.

(3.21)

So, if t = ‖y‖/δ, then tx0 − y ∈ intK.
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Using this lemma, we can prove the following result.

Proposition 3.6. If hypotheses H(j)1 hold, then there exists x0 ∈ C which is a local minimizer of ϕ+

and of ϕ.

Proof. From (3.15), we know that given ε > 0, we can find γε ∈ L∞(Z)+, γε /= 0 such that

u < (θ(z) + ε)xp−1 + γε(z) for a.a. z ∈ Z, all x ≥ 0,

and all u ∈ ∂j+(z, x) = ∂j(z, x).
(3.22)

Because of hypotheses H(j)1(i), (ii), for almost all z ∈ Z, x → j+(z, x) is
almost everywhere differentiable on R (Rademacher’s theorem) and at every point of
differentiability we have

d

dx
j+(z, x) ∈ ∂j+(z, x),

=⇒ d

dx
j+(z, x) < (θ(z) + ε)xp−1 + γε(z) for a.a. z ∈ Z, all x ≥ 0 (see (3.22)).

(3.23)

Integrating this inequality and since j+(z, x)|R− = 0 for almost all z ∈ Z,we obtain

j+(z, x) <
1
p
(θ(z) + ε)|x|p + γε(z)|x| for a.a. z ∈ Z, all x ∈ R. (3.24)

Then for every x ∈ W
1,p
0 (Z), we have

ϕ+(x) =
1
p
‖Dx‖pp −

∫

Z

j+(z, x(z))dz

>
1
p
‖Dx‖pp −

1
p

∫

Z

θ(z)|x(z)|pdz − ε

p
‖x‖pp − c1‖Dx‖p

for some c1 > 0 (see (3.24))

≥ 1
p

(
ξ0 − ε

λ1

)
‖Dx‖pp − c1‖Dx‖p (see Lemma 3.2).

(3.25)

Choosing ε < λ1ξ0, because p > 1, from (3.25) and Poincare’s inequality, we infer that
ϕ+ is coercive. Also it is easy to see that ϕ+ is weakly lower semicontinuous onW

1,p
0 (Z).Hence

by virtue of the theorem of Weierstrass, we can find x0 ∈ C such that

ϕ+(x0) = inf
C
ϕ+. (3.26)

First we show that x0 /= 0. To this end, note that hypothesisH(j)1(v) implies that given
ε > 0, we can find δ = δ(ε) > 0 such that

u ≥ (η(z) − ε)xp−1 for a.a. z ∈ Z, all x ∈ [0, δ] and all u ∈ ∂j+(z, x) = ∂j(z, x). (3.27)
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As before, integrating (3.27), we obtain

j+(z, x) ≥ 1
p
(η(z) − ε)xp for a.a. z ∈ Z, allx ∈ [0, δ]. (3.28)

We know that x ∈ intC1
0(Z)+ (see Proposition 3.3). So using Lemma 3.5, we can find

μ > 0 small such that

μu1(z) ≤ min{x(z), δ} ∀z ∈ Z. (3.29)

Then, because of (3.28), we have

ϕ+
(
μu1

)
=

μp

p

∥
∥Du1

∥
∥p

p −
∫

Z

j+
(
z, μu1(z)

)
dz

≤ μp

p

∥∥Du1
∥∥p

p −
μp

p

∫

Z

η(z)u1(z)
p dz +

μpε

p

∥∥u1
∥∥p

p

=
μp

p

[∫

Z

(
λ1 − η(z)

)
u1(z)

p dz + ε
∥∥u1

∥∥p

p

]

.

(3.30)

Let σ =
∫
Z(λ1 − η(z))u1(z)

pdz. Using the hypothesis on η (see H(j)1(v)) and the fact
that u1(z) > 0 for all z ∈ Z, we see that σ < 0. So, if we choose ε < −σ/‖u1‖pp, we have

ϕ+
(
μu1

)
< 0 ∀μ > 0 small. (3.31)

Note that for μ > 0 small, μu1 ∈ C. Hence

ϕ+
(
x0
)
= inf

C
ϕ+ ≤ ϕ+

(
μu1

)
< 0 = ϕ+(0) (see (3.31)),

=⇒ x0 /= 0, x0 ∈ C.
(3.32)

Given any y ∈ C, we define k0(t) = ϕ+(ty + (1 − t)x0), t ∈ [0, 1]. Then k is Lipschitz
continuous, hence differentiable almost everywhere and k0(0) ≤ k0(t) for all t ∈ [0, 1].
From Chang [27, page 106], we know that we can find u ∈ Lp′(Z), u(z) ∈ ∂j+(z, x0(z)) =
∂j(z, x0(z)) a.e. on Z, such that

0 ≤ 〈
A
(
x0
)
, y − x0

〉 −
∫

Z

u(z)
(
y − x0

)
(z)dz, ∀y ∈ C. (3.33)

For any v ∈ W
1,p
0 (Z) and ε > 0, we define

y(z) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if z ∈ {
x0 + εv ≤ 0

}
,

x0(z) + εv(z) if z ∈ {
0 < x0 + εv < x

}
,

x(z) if z ∈ {
x ≤ x0 + εv

}
.

(3.34)
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Clearly y ∈ C. We use this y ∈ C in (3.33). Hence we obtain

0 ≤ ε

∫

{0<x0+εv<x}
‖Dx0‖p−2(Dx0, Dv)

RN dz −
∫

{0<x0+εv<x}
u(εv)dz

−
∫

{x0+εv≤0}
‖Dx0‖p dz +

∫

{x0+εv≤0}
ux0 dz

+
∫

{x0+εv≥x}
‖Dx0‖p−2(Dx0, D(x − x0))RN dz −

∫

{x0+εv≥x}
u(x − x0)dz

= ε

∫

Z

‖Dx0‖p−2(Dx0, Dv)
RN dz − ε

∫

Z

uv dz

−
∫

{x0+εv≥x}
‖Dx‖p−2(Dx,D(x0 + εv − x)

RN dz +
∫

{x0+εv≥x}
u(x0 + εv − x)dz

(
u ∈ Lp′(Z), u(z) ∈ ∂j+(z, x(z)) a.e. and clearly from the definition of u,

we can always assume u = u a.e. on
{
x = x0

})

+
∫

{x0+εv≤0}
u
(
x0 + εv

)
dz +

∫

{x0+εv≥x}
(u − u)

(
x − x0 − εv

)
dz

−
∫

{x0+εv≤0}

∥∥Dx0
∥∥p

dz − ε

∫

{x0+εv≤0}

∥∥Dx0
∥∥p−2(

Dx0, Dv
)
RN dz

+
∫

{x0+εv≥x}

(∥∥Dx
∥∥p−2

Dx − ∥∥Dx0
∥∥p−2

Dx0, D
(
x0 − x

))
RN dz

+ ε

∫

{x0+εv≥x}

(∥∥Dx
∥∥p−2

Dx − ∥∥Dx0
∥∥p−2

Dx0, Dv
)
RN dz.

(3.35)

Using h = (x0 + εv − x)+ ∈ W
1,p
0 (Z)+ as a test function, from the definition of an upper

solution for problem (1.1), we have

−
∫

{x0+εv≥x}
‖Dx‖p−2(Dx,D

(
x0 + εv − x

))
RN dz +

∫

{x0+εv≥x}
u
(
x0 + εv − x

)
dz ≤ 0. (3.36)

Also from the (strict) monotonicity of the operator A,we have

∫

{x0+εv≥x}

(∥∥Dx
∥∥p−2

Dx − ∥∥Dx0
∥∥p−2

Dx0, D
(
x0 − x

))
RN dz ≤ 0. (3.37)

From hypothesis H(j)1(vi), it follows that

∫

{x0+εv≤0}
u
(
x0 + εv

)
dz ≤ 0. (3.38)
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Since x0 ∈ C1
0(Z),we have

∫

{x0+εv≥x}
(u − u)

(
x − x0 − εv

)
dz

=
∫

{x0+εv≥x>x0}
(u − u)

(
x − x0 − εv

)
dz

(
recall that u = u a.e. on

{
x = x0

}
, x0 ≤ x since x0 ∈ C

)

≤ c2

∫

{x0+εv≥x>x0}

(
x0 + εv − x

)
dz for some c2 > 0

(
see hypothesis H(j)1(iii)

)

≤ εc2

∫

{x0+εv≥x>x0}
v dz

(
since x0 ≤ x

)
.

(3.39)

Returning to (3.35) and using (3.36)→ (3.39), we obtain

0 ≤ ε

∫

Z

∥∥Dx0
∥∥p−2(

Dx0, Dv
)
RN dz − ε

∫

Z

uv dz

+ εc2

∫

{x0+εv≥x>x0}
v dz − ε

∫

{x0+εv≤0}

∥∥Dx0
∥∥p−2(

Dx0, Dv
)
RN dz

+ ε

∫

{x0+εv≥x}

(∥∥Dx
∥∥p−2

Dx − ∥∥Dx0
∥∥p−2

Dx0, Dv
)
RN dz.

(3.40)

We denote by | · |N the Lebesgue measure on R
N. Then

∣∣{x0 + εv ≥ x > x0
}∣∣

N ↓ 0 as ε ↓ 0. (3.41)

Moreover, from Stampacchia’s theorem, we know that

Dx0(z) = 0 a.e. on
{
x0 = 0

}
, Dx0(z) = Dx(z) a .e. on

{
x0 = x

}
. (3.42)

If we divide (3.40) by ε > 0 and then we pass to the limit as ε ↓ 0, because of (3.41) and
(3.42), we obtain

0 ≤ 〈
A
(
x0
)
, v

〉 −
∫

Z

uv dz =
〈
A
(
x0
) − u, v

〉
. (3.43)

Recall that v ∈ W
1,p
0 (Z) was arbitrary. So from (3.43), it follows that

A(x0) = u,

=⇒ x0 ∈ W
1,p
0 (Z) is a solution of problem (1.1).

(3.44)
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The nonlinear regularity theory implies that x0 ∈ C1
0(Z) and then since x0 /= 0, x0 ≥ 0

from the nonlinear strong maximum principle of Vázquez [23], we have x0 ∈ intC1
0(Z)+.

From (3.22), we know that

u(z) < (θ(z) + ε)x(z)p−1 + γε(z) a.e. on Z
(
recall that x0 ≤ x

)
. (3.45)

Then Proposition 2.2 of Guedda-Véron [28] implies that

x0(z) < x(z) ∀z ∈ Z,
∂x

∂n
(z) <

∂x0

∂n
(z) ∀z ∈ ∂Z,

=⇒ x − x0 ∈ intC1
0(Z)+.

(3.46)

Recall also that x0 ∈ intC1
0(Z)+. Thus we can find δ > 0 such that

B
C1

0(Z)
δ

(
x − x0

)
=
{
y ∈ C1

0(Z) :
∥∥y − (

x − x0
)∥∥

C1
0(Z) < δ

} ⊆ intC1
0(Z)+,

B
C1

0(Z)
δ

(
x0
)
=
{
y ∈ C1

0(Z) :
∥∥y − x0

∥∥
C1

0(Z) < δ
} ⊆ intC1

0(Z)+.
(3.47)

These inclusions imply that

x −
(
x0 + B

C1
0(Z)

δ

)
⊆ intC1

0(Z)+, x0 + B
C1

0(Z)
δ

⊆ intC1
0(Z)+. (3.48)

The solution x0 was obtained as a minimizer of ϕ+ on C. Then (3.48) implies that x0

is also a local minimizer of ϕ+ and of ϕ on C1
0(Z). But then from Motreanu-Papageorgiou

[29] (see also Gasiński -Papageorgiou [21, pages 655-656]), it follows that x0 is also a local
W

1,p
0 (Z)-minimizer of ϕ+ and of ϕ too.

So far we have worked on the positive semiaxis. Next we repeat the same analysis on
the negative semiaxis. More precisely, given ε > 0 and γε ∈ L∞(Z)+, γε /= 0, we consider the
following auxiliary problem:

−div(∥∥Dv(z)
∥∥p−2

Dv(z)
)
=
(
θ(z) + ε

)∣∣v(z)
∣∣p−2v(z) − γε(z) a.e. on Z,

v|∂Z = 0.
(3.49)

Then as in the proof of Proposition 3.3, through the surjectivity of the pseudomonotone
coercive operator v → Gε(v) = A(v) −Nε(v), we obtain a solution u ∈ −intC1

0(Z)+ of (3.49).
We can check that v is a strict lower solution of (1.1), while clearly v ≡ 0 is an upper solution
(in fact a solution) of (1.1). This time we consider the set

D =
{
v ∈ W

1,p
0 (Z) : v(z) ≤ v(z) ≤ 0 a.e. on Z

}
(3.50)
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and the truncation function τ− : R → R− defined by

τ−(x) =

{
x if x < 0,
0 if x ≥ 0.

(3.51)

We set j−(z, x) = j(z, τ−(x)) and then introduce the locally Lipschitz functional ϕ− :
W

1,p
0 (Z) → R defined by

ϕ−(x) =
1
p
‖Dx‖pp −

∫

Z

j−
(
z, x(z)

)
dz ∀x ∈ W

1,p
0 (Z). (3.52)

We consider the minimization problem

inf
D
ϕ−. (3.53)

Arguing as in Proposition 3.3, we obtain the following.

Proposition 3.7. If hypothesesH(j)1 hold, then there exists v0 ∈ D which is a local minimizer of ϕ−
and of ϕ.

Now combining Propositions 3.6 and 3.7, we obtain a multiplicity result for problem
(1.1) with solutions of constant sign.

Theorem 3.8. If hypotheses H(j)1 hold, then the problem (1.1) has at least two solutions x0 ∈
intC1

0(Z)+ and v0 ∈ −intC1
0(Z)+.

Remark 3.9. From Propositions 3.6 and 3.7, we know that both x0 and v0 are local minimizers
of ϕ. So we must have a third critical point of ϕ, distinct from x0, v0. However, at this point
we cannot guarantee that it is nontrivial. In the next section by strengthening our hypothesis
on j(z, ·) near the origin (see H(j)1(v)), we will be able to show that this third critical point
is nontrivial and in fact is a nodal solution.

4. Existence of Nodal Solution

Recall that every eigenfunction of (2.5) corresponding to an eigenvalue λ̂ /= λ̂1 must change
sign. So we expect that in general the sign changing solutions of (1.1) must be more than the
solutions of constant sign. Nevertheless to produce a sign-changing solution (also known as
nodal solution) for (1.1) is a rather involved process.

Here we follow an approach first employed by Dancer-Du [6] for semilinear problems
(i.e., p = 2) and recently extended to problemswith the p-Laplacian and a smooth potential by
Carl-Perera [8]. Roughly speaking, the strategy is as follows. Continuing with the argument
used in Section 3, we produce the smallest positive solution y+ and the largest negative
solution y−. Then we form order interval [y−, y+]. Using variational techniques (in particular
Theorem 2.2)we produce a solution y0 of (1.1) in [y−, y+] different from y− and y+. Evidently
if y0 /= 0, then y0 must be sign changing. To show that y0 is nontrivial, we employ Theorem 2.5
and (2.10). In addition to the works of Dancer-Du [6] and Carl-Perera [8], variants of this
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method can also be found in the works of Ambrosetti-Garcia Azorero-Peral Alonso [3] and
Jin [30]. A different approach based on the construction of a pseudogradient vector field with
appropriate invariance properties can be found in Zhang-Li [7, 9], Zhang et al. [10] (see also
Li-Wang [31]).

We start executing the solution strategy outlined above by proving first a lemmawhich
establishes that the set of upper solutions for problem (1.1) is downward directed.

Lemma 4.1. If y1, y2 ∈ W1,p(Z) are two upper solutions for problem (1.1) and y = min{y1, y2} ∈
W1,p(Z), then y is also an upper solution for problem (1.1).

Proof. Given ε > 0, we consider the truncation function ξε : R → R defined by

ξε(s) =

⎧
⎪⎪⎨

⎪⎪⎩

ε if s ≥ ε,

s if s ∈ [−ε, ε],
−ε if s ≤ −ε.

(4.1)

Clearly ξε is Lipschitz continuous. So from Marcus-Mizel [32], we have

ξε
((
y1 − y2

)−) ∈ W1,p(Z),

Dξε
((
y1 − y2

)−) = ξ′ε
((
y1 − y2

)−)
D
(
y1 − y2

)−
.

(4.2)

Consider a test function ψ ∈ C1
c(Z) with ψ ≥ 0. Then

ξε
((
y1 − y2

)−)
ψ ∈ W1,p(Z) ∩ L∞(Z),

D
(
ξε
((
y1 − y2

)−)
ψ
)
= ψDξε

((
y1 − y2

)−) + ξε
((
y1 − y2

)−)
Dψ.

(4.3)

Because y1, y2 ∈ W1,p(Z) are upper solutions for problem (1.1), we have

〈
A
(
y1
)
, ξε

((
y1 − y2

)−)
ψ
〉 ≥ 〈

u1, ξε
((
y1 − y2

)−)
ψ
〉
,

〈
A
(
y2
)
,
(
ε − ξε

((
y1 − y2)

−))ψ
〉 ≥ 〈

u2,
(
ε − ξε

((
y1 − y2

)−))
ψ
〉 (4.4)

for some uk ∈ Lp′(Z) with uk(z) ∈ ∂j(z, yk(z)) a.e. on Z, k = 1, 2. Adding these inequalities,
we obtain

〈
A
(
y1
)
, ξε

((
y1 − y2

)−)
ψ〉 + 〈A(

y2
)
,
(
ε − ξε

((
y1 − y2

)−)
ψ
〉

≥ 〈
u1, ξε

((
y1 − y2

)−)
ψ〉 + 〈

u2,
(
ε − ξε

((
y1 − y2

)−)
ψ〉.

(4.5)
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Note that

〈
A
(
y1
)
, ξε

((
y1 − y2

)−)
ψ
〉

=
∫

Z

∥
∥Dy1

∥
∥p−2(

Dy1, D
(
y1 − y2

)−)
RNξ

′
ε

((
y1 − y2

)−)
ψ dz

+
∫

Z

∥
∥Dy1

∥
∥p−2(

Dy1, Dψ
)
RNξε

((
y1 − y2

)−)
dz

= −
∫

{−ε≤y1−y2≤0}

∥
∥Dy1

∥
∥p−2(

Dy1, D
(
y1 − y2

))
RNψ dz

+
∫

Z

∥
∥Dy1

∥
∥p−2(

Dy1, Dψ
)
RNξε

((
y1 − y2

)−)
dz,

〈
A
(
y2
)
,
(
ε − ξε

((
y1 − y2

)−))
ψ
〉

=
∫

{−ε≤y1−y2≤0}

∥∥Dy2
∥∥p−2(

Dy2, D
(
y1 − y2

))
RNψ dz

+
∫

Z

∥∥Dy2
∥∥p−2(

Dy2, Dψ
)
RN

(
ε − ξε

((
y1 − y2

)−))
dz.

(4.6)

Adding (4.6) and recalling that ψ ≥ 0, we obtain

〈
A
(
y1
)
, ξε

((
y1 − y2

)−)
ψ
〉
+
〈
A
(
y2
)
,
(
ε − ξε

((
y1 − y2

)−))
ψ
〉

=
∫

{−ε≤y1−y2≤0}

(∥∥Dy2
∥∥p−2

Dy2 −
∥∥Dy1

∥∥p−2
Dy1, D

(
y1 − y2

))
RNψ dz

+
∫

Z

∥∥Dy1
∥∥p−2(

Dy1, Dψ
)
RNξε

((
y1 − y2

)−)
dz

+
∫

Z

∥∥Dy2
∥∥p−2(

Dy2, Dψ
)
RN(ε − ξε

((
y1 − y2

)−))
dz

≤
∫

Z

∥∥Dy1
∥∥p−2(

Dy1, Dψ
)
RNξε

((
y1 − y2

)−)
dz

+
∫

Z

∥∥Dy2
∥∥p−2(

Dy2, Dψ
)
RN

(
ε − ξε

((
y1 − y2

)−))
dz.

(4.7)

Returning to (4.5), using (4.7), and dividing by ε > 0, we get

∫

Z

∥∥Dy1
∥∥p−2(

Dy1, Dψ
)
RN

1
ε
ξε
((
y1 − y2

)−)
dz

+
∫

Z

∥∥Dy2
∥∥p−2(

Dy2, Dψ
)
(
1 − 1

ε
ξε
((
y1 − y2

)−)
)
dz

≥
〈
u,

1
ε
ξε
((
y1 − y2

)−)
ψ

〉
+
〈
u2,

(
1 − 1

ε
ξε
((
y1 − y2

)−)
)
ψ

〉
.

(4.8)
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We observe that

1
ε
ξε
((
y1 − y2

)−(z)
) −→ χ{y1<y2}(z) a.e. on Z as ε ↓ 0,

χ{y1≥y2} = 1 − χ{y1<y2}.
(4.9)

Therefore, if we pass to the limit as ε ↓ 0 in (4.8), we obtain

∫

{y1<y2}

∥
∥Dy1

∥
∥p−2(

Dy1, Dψ
)
RN dz +

∫

{y1≥y1}

∥
∥Dy2

∥
∥p−2(

Dy2, Dψ
)
RN dz

≥
∫

{y1<y2}
u1ψ dz +

∫

{y1≥y2}
u2ψ dz.

(4.10)

Since y = min{y1, y2} ∈ W1,p(Z), we have

Dy(z) =

⎧
⎨

⎩
Dy1(z) for a.a. z ∈ {

y1 < y2
}
,

Dy2(z) for a.a. z ∈ {
y1 ≥ y2

}
.

(4.11)

Also if u = χ{y1<y2}u1 + χ{y1≥y2}u2, then u ∈ Lp′(Z) and u(z) ∈ ∂j(z, y(z)) a.e. on Z.
Therefore

∫

Z

‖Dy‖p−2(Dy,Dψ)
RNdz ≥

∫

Z

uψdz (4.12)

for some u ∈ Lp′(Z) with u(z) ∈ ∂j(z, y(z)) a.e. on Z. Since ψ ∈ C1
c(Z)+ was arbitrary and

C1
c(Z)+ is dense in W

1,p
0 (Z)+, from (4.12) we conclude that y = min{y1, y2} ∈ W1,p(Z) is an

upper solution for problem (1.1).

Arguing similarly, we can also show that the set of lower solutions for problem (1.1)
is upward directed. Namely, we have the following.

Lemma 4.2. If v1, v2 ∈ W1,p(Z) are lower solutions for problem (1.1) and v = max{v1, v2} ∈
W1,p(Z), then v is also a lower solution for problem (1.1).

Now that we have established that the sets of upper solutions and of lower solutions
are directed, we will show that problem (1.1) admits the smallest positive solution and the
largest negative solution. To this end, we need to strengthen the hypotheses on j(z, x).

H(j)2: j : Z × R → R is a function such that j(z, 0) = 0 a.e. on Z, ∂j(z, 0) = {0} a.e. on Z;
it satisfies hypotheses H(j)1(i)→ (iv) and (vi) and

(v) there exists η̂ ∈ L∞(Z)+ such that

λ1 < lim inf
x→ 0

u

|x|p−2x ≤ lim sup
x→ 0

u

|x|p−2x ≤ η̂(z) (4.13)

uniformly for almost all z ∈ Z and all u ∈ ∂j(z, x).
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Remark 4.3. Note that in the new hypotheses, we have strengthened the condition concerning
the behavior of ∂j(z, ·) near the origin. This has as a consequence that we can replace the
origin as a lower solution in the positive axis and as an upper solution in the negative axis
(see Section 3), by functions which are strictly positive and strictly negative, respectively. This
is done in the next lemma.

Lemma 4.4. If hypotheses H(j)2 hold, then problem (1.1) has a strict lower solution x ∈ intC1
0(Z)+

and a strict upper solution v ∈ −intC1
0(Z)+.

Proof. By virtue of hypothesis H(j)2(v), we can find ĉ > λ1 and δ > 0 such that for almost all
z ∈ Z, all x ∈ [0, δ], and all u ∈ ∂j(z, x),we have

ĉxp−1 ≤ u. (4.14)

We know that for u1 the principal eigenfunction of (−Δp,W
1,p
0 (Z)) (i.e., m ≡ 1), we

have that u1 ∈ intC1
0(Z)+. Thus we can find μ ∈ (0, 1) small enough such that 0 < μu1(z) ≤ δ

for all z ∈ Z. Let x ∈ intC1
0(Z)+ be the strict upper solution for problem (1.1) obtained in

Proposition 3.4. Invoking Lemma 3.5, we can find t > 1 such that tx−μu1 ∈ intC1
0(Z)+.We set

x =
μ

t
u1 ∈ intC1

0(Z)+. (4.15)

Note that since t > 1, x(z) ∈ (0, δ] for all z ∈ Z.Hence

−div(∥∥Dx(z)
∥∥p−2)

Dx(z) = λ1|x(z)|p−2x(z)
< ĉ|x(z)|p−2x(z)
≤ u(z) a.e. on Z

(4.16)

for every u ∈ Lp′(Z)with u(z) ∈ ∂j(z, x(z)) a.e. on Z (see (4.14)). Hence for all ψ ∈ W1,p(Z)+,
we have

∫

Z

∥∥Dx
∥∥p−2(Dx,Dψ)

RN dz <

∫

Z

uψ dz,

=⇒ x ∈ intC1
0(Z)+ is a strict lower solution for problem (1.1).

(4.17)

Note that from the definition of x, we have x − x ∈ intC1
0(Z)+.

A similar reasoning applied on the negative semiaxis produces an upper solution v =
(μ/t)(−u1) for some 0 ≤ μ < 1 < t. Then v ∈ −intC1

0(Z)+ and as for x, we will have v − v ∈
intC1

0(Z)+.

Using {x, x} and {v, v}, we introduce the following order intervals in W
1,p
0 (Z):

[x, x] =
{
x ∈ W

1,p
0 (Z) : x(z) ≤ x(z) ≤ x(z) a.e. on Z

}
,

[v, v] =
{
v ∈ W

1,p
0 (Z) : v(z) ≤ v(z) ≤ v(z) a.e. onZ

}
.

(4.18)
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In the next proposition, we establish the existence of the smallest solution of (1.1) in
[x, x] and of the greatest solution of (1.1) in [v, v].

Proposition 4.5. If hypotheses H(j)2 hold, then problem (1.1) admits the smallest solution in the
order interval [x, x] and the greatest solution in the order interval [v, v].

Proof. We will show that the existence of the smallest solution in [x, x] and the proof of the
greatest solution in [v, v]is similar.

Let S+ be the set of solutions of (1.1) belonging in the order interval E+ = [x, x]. We
will show that S+ is downward directed. So let x1, x2 ∈ S+. In particular both x1, x2 are upper
solutions for problem (1.1). Then Lemma 4.1 implies that x̂ = min{x1, x2} ∈ W

1,p
0 (Z) is also

an upper solution for problem (1.1). We set

Ê+ = [x, x̂] =
{
x ∈ W

1,p
0 (Z) : x(z) ≤ x(z) ≤ x̂(z)

}
. (4.19)

Using standard truncation and penalization techniques, we can obtain x̂0 ∈ Ê+

a solution of (1.1) (see Carl-Heikkilä [33] and Gasiński -Papageorgiou [19]). Nonlinear
regularity theory implies that x̂0 ∈ C1

0(Z)+ and we have

x ≤ x̂0 ≤ min
{
x1, x2

}
,

=⇒ S+ is downward directed.
(4.20)

Consider a chain Γ ⊆ S+ (i.e., a totally ordered subset of S+). By virtue of [34, Corollary
7, page 336] by Dunford-Schwartz, we can find {xn}n≥1 ⊆ Γ such that

inf
n≥1

xn = inf Γ. (4.21)

Because of (4.20), we may assume that {xn}n≥1 is decreasing. Also since the xn’s are
solutions of (1.1) in E+, we see that there exists c3 > 0 such that

∥∥Dxn

∥∥
p ≤ c3 ∀n ≥ 1. (4.22)

Therefore {xn}n≥1 ⊆ W
1,p
0 (Z) is bounded and so we may assume that

xn
w−→ ŷ in W

1,p
0 (Z), xn −→ ŷ in Lp(Z) as n −→ ∞. (4.23)

We can find un ∈ Lp′(Z)with un(z) ∈ ∂j(z, xn(z)) a.e. on Z such that

A
(
xn

)
= un ∀n ≥ 1. (4.24)

Because of hypothesisH(j)2(iii), {un}n≥1 ⊆ Lp′(Z) is bounded. So we may assume that
un

w→ û in Lp′(Z) as n → ∞. By virtue of Hu-Papageorgiou [35, Proposition 3.10, page 694],
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we have û(z) ∈ ∂j(z, ŷ(z)) a.e. on Z (recall that the multifunction x → ∂j(z, x) has closed
graph; see Clarke [1, page 29]). From (4.24), we have

〈
A
(
xn

)
, xn − ŷ

〉
=
∫

Z

un

(
xn − ŷ

)
dz −→ 0 as n −→ ∞. (4.25)

Since A is maximal monotone, we have (see Gasiński -Papageorgiou [19, page 84])

〈
A
(
xn

)
, xn

〉 −→ 〈
A(ŷ), ŷ

〉
,

=⇒ ∥
∥Dxn

∥
∥
p −→ ∥

∥Dŷ
∥
∥
p.

(4.26)

Recalling thatDxn
w→ Dŷ in Lp(Z,RN),we infer thatDxn → Dŷ in Lp(Z,RN) (Kadec-

Klee property) and so we conclude that xn → ŷ in W
1,p
0 (Z) as n → ∞. So, if we pass to the

limit as n → ∞ in (4.24) and since A is demicontinuous, it follows that

A(ŷ) = û (4.27)

with û ∈ Lp′(Z), û(z) ∈ ∂j(z, ŷ(z)) a.e. on Z. Therefore ŷ ∈ S+ and ŷ = inf Γ. Because Γ was
an arbitrary chain, invoking Zorn’s lemma, we obtain x∗ ∈ S+ a minimal element. Then from
(4.20), we conclude that x∗ is the smallest solution of (1.1) in E+.

Wewill use this proposition to produce the smallest positive and the greatest negative
solutions for problem (1.1).

Proposition 4.6. If hypotheses H(j)2 hold, then problem (1.1) has the smallest nontrivial solution
y+ ∈ intC1

0(Z)+ and the greatest nontrivial negative solution y− ∈ −intC1
0(Z)+.

Proof. Let xn = εnu1 with εn ↓ 0 and let En
+ = [xn, x]. From Proposition 4.5, we know that

problem (1.1) admits the smallest solution xn
∗ in the order interval En

+.We know that {xn
∗ }n≥1 ⊆

W
1,p
0 (Z) is bounded and so we may assume that

xn
∗

w−→ y+ in W
1,p
0 (Z), xn

∗ −→ y+ in Lp(Z) as n −→ ∞. (4.28)

We know that

A
(
xn
∗
)
= un

∗ ∀n ≥ 1, (4.29)

with un
∗ ∈ Lp′(Z), un

∗ (z) ∈ ∂j(z, xn
∗ (z)) a.e. on Z. Taking duality brackets with xn

∗ − y+ and
arguing as before , we can check that

xn
∗ −→ y+ in W

1,p
0 (Z) as n −→ ∞. (4.30)
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Suppose that y+ = 0. Then ‖xn
∗ ‖ → 0 as n → ∞. We set wn = xn

∗/‖xn
∗ ‖, n ≥ 1. Then by

passing to a suitable subsequence if necessary, we may assume that

wn
w−→ w in W

1,p
0 (Z), wn −→ w in Lp(Z) n −→ ∞. (4.31)

From (4.29), we have

A
(
wn

)
=

un
∗

‖xn∗ ‖p−1
∀n ≥ 1 (4.32)

and so taking duality brackets with wn −w, again we obtain

lim
n→∞

〈
A
(
wn

)
, wn −w

〉
= 0 (4.33)

from which it follows that

wn −→ w in W
1,p
0 (Z) (4.34)

and so we have ‖w‖ = 1, w /= 0. By virtue of hypothesisH(j)2(v), we can find δ > 0 such that
for almost all z ∈ Z, all 0 < |x| ≤ δ, and all u ∈ ∂j(z, x),we have

β ≤ u

|x|p−2x ≤ η̂(z) + 1 with β > λ1. (4.35)

In addition, due to hypothesis H(j)2(iii), for almost all z ∈ Z, all |x| ≥ δ, and all
u ∈ ∂j(z, x),we have

|u| ≤ α(z) + c|x|p−1 ≤
(
α(z)
δp−1 + c

)
|x|p−1. (4.36)

So finally from (4.35) and (4.36), we infer that

|u| ≤ c3|x|p−1 for a.a. z ∈ Z, all x ∈ R, and all u ∈ ∂j(z, x). (4.37)

From (4.37) it follows that

{
un
∗

‖xn∗ ‖p−1
}

n≥1
⊆ Lp′(Z) is bounded. (4.38)

Therefore we may assume that

hn =
un
∗

‖xn∗ ‖p−1
w−→ h in Lp′(Z). (4.39)
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For ε > 0 and n ≥ 1 we introduce the sets

Σn
+ =

{
z ∈ Z : xn(z) > 0, β − ε ≤ un

∗ (z)

xn∗ (z)
p−1 ≤ η̂(z) + ε

}
,

Σn
− =

{
z ∈ Z : xn(z) < 0, β − ε ≤ un

∗ (z)

xn∗ (z)
p−1 ≤ η̂(z) + ε

}
.

(4.40)

Since xn
∗ → 0 in W

1,p
0 (Z), we may assume (at least for a subsequence) that xn

∗ (z) → 0
a.e. on Z. Then xn

∗ (z) → 0+ a.e. on {w > 0} and xn
∗ (z) → 0− a.e. on {w < 0} and so because

of hypothesis H(j)2(v), we have

χΣn
+(z) −→ 1 a.e. on {w > 0}, χΣn

−(z) −→ 1 a.e. on {w < 0}. (4.41)

Then we have

χΣn
+

un
∗

∥∥xn∗
∥∥p−1

w−→ h in Lp′({w > 0}), χΣn
−

un
∗

∥∥xn∗
∥∥p−1

w−→ h in Lp′({w < 0}). (4.42)

From the definition of the set Σn
+,we have

χΣn
+(z)(β − ε)wn(z)

p−1 ≤ χΣn
+(z)

un
∗ (z)

xn∗ (z)
p−1wn(z)

p−1 = χΣn
+(z)hn(z)

≤ χΣn
+(z)(η̂(z) + ε)wn(z)

p−1 a.e. on Z.

(4.43)

Taking weak limits in Lp′({w > 0}), via Mazur’s lemma, and since ε > 0 was arbitrary,
we obtain

βw(z)p−1 ≤ h(z) ≤ η̂(z)w(z)p−1 a.e. on {w > 0}. (4.44)

Similarly working on Σn
−,we obtain

η̂(z)|w(z)|p−2w(z) ≤ h(z) ≤ β|w(z)|p−2w(z) a.e. on {w < 0}. (4.45)

Moreover, from (4.36) we see that

h(z) = 0 a.e. on {w = 0}. (4.46)

So from (4.44), (4.45), and (4.46) it follows that

h(z) = ξ1(z)|w(z)|p−2w(z) a.e. on Z, (4.47)
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with ξ1 ∈ L∞(Z)+ and λ1 < ξ1(z) ≤ η̂(z) a.e. on Z. Therefore, if we pass to the limit as n → ∞
in (4.32), we obtain

A(w) = ξ1|w|p−2w,

=⇒
{

−div(∥∥Dw(z)
∥
∥p−2

Dw(z)
)
= ξ1(z)|w(z)|p−2w(z) a.e. on Z,

w|∂Z = 0 w/= 0

}

.
(4.48)

Note that λ̂1(ξ1) < λ̂(λ1) = 1. So from (4.48), it follows that w must change sign. But
wn = xn

∗/‖xn
∗ ‖ ≥ 0 for all n ≥ 1 and sow ≥ 0, a contradiction. This proves that we cannot have

y+ = 0, hence y+ /= 0 and of course y+ ≥ 0. Moreover, as before we can check that

xn
∗ −→ y+ in W

1,p
0 (Z), A(y+) = u+ (see (4.29)), (4.49)

with u+ ∈ Lp′(Z), u+(z) ∈ ∂j(z, y+(z)) a.e. on Z. It follows that

−div(∥∥Dy+(z)
∥∥p−2

Dy+(z)
)
= u+(z) a.e. on Z,

y+|∂Z = 0.
(4.50)

From nonlinear regularity theory we have y+ ∈ C1
0(Z)+, y+ /= 0. Moreover, from

hypothesis H(j)2(v) (the sign condition), we have u+(z) ≥ 0 a.e. on Z. So via the nonlinear
strong maximum principle of Vázquez [23], we obtain that y+ ∈ intC1

0(Z)+.
We claim that y+ is the smallest nontrivial positive solution of (1.1). Indeed let ŷ be

another nontrivial positive solution of (1.1) and assume that ŷ ≤ x. As above we can verify
that ŷ ∈ intC1

0(Z)+.Using Lemma 3.5, we can find ε̂ > 0 such that ε̂u1 ≤ ŷ. Then for n ≥ 1 large
we have εnu1 ≤ ε̂u1 ≤ ŷ ≤ x. So for n ≥ 1 large, working on the order interval [εnu1, ŷ],we can
obtain a solution y0 of (1.1) in the interval. Then xn

∗ ≤ y0 for n ≥ 1 large and so y+ ≤ y0 ≤ ŷ.
This proves the claim.

In a similar fashion working on En
− = [v, vn] with vn = εn(−u1), we obtain y− ∈

intC1
0(Z)+, the largest nontrivial negative solution of (1.1).

Nowwe are ready to conclude our plan and produce a nontrivial nodal solution. More
precisely, using variational methods and Theorem 2.5, we will obtain a nontrivial solution y0

of (1.1) in the order interval [y−, y+] distinct from y− and y+. Evidently y0 must be a sign
changing (nodal) solution. We will achieve this by exploiting the variational characterization
of λ2 provided in (2.10). This requires a further strengthening of hypotheses H(j)1. Suppose
f : Z × R → R is a measurable function with the following property, for every r > 0 there
exists αr ∈ L∞(Z)+ such that |f(z, x)| ≤ αr(z) for a.a. z ∈ Z and all |x| ≤ r. Then we define

f1(z, x) = lim inf
x′ →x

f(z, x), f2(z, x) = lim inf
x′ →x

f(z, x), (4.51)
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which for almost all z ∈ Z are finite. We assume that f1 and f2 are supmeasurable, namely,
for every x : Z → R measurable function the functions z → f1(z, x(z)) and z → f2(z, x(z))
are both measurable. We set

j(z, x) =
∫x

0
f(z, r)dr ∀(z, x) ∈ Z × R. (4.52)

Evidently (z, x) → j(z, x) is measurable and for almost all z ∈ Z, x → j(z, x) is
locally Lipschitz and its generalized subdifferential satisfies

∂j(z, x) ⊆ [
f1(z, x), f2(z, x)

]
(see Chang [27]). (4.53)

Clearly j(z, 0) = 0 a.e. on Z and if for almost all z ∈ Z, f(z, ·) is continuous at x = 0,
then ∂j(z, 0) = {0} a.e. on Z. Then the new hypotheses on the nonsmooth potential j(z, x) are
the following:

H(j)3: j : Z × R → R is a function such that j(z, x) =
∫x
0f(z, r)dr with f : Z × R → R

satisfying

(i) (z, x) → f(z, x) is measurable with f1 and f2 supmeasurable;

(ii) for almost all z ∈ Z, f(z, ·) is continuous at x = 0;

(iii) |f(z, x)| ≤ α(z) + c|x|p−1 for a.a. z ∈ Z, all x ∈ R, with α ∈ L∞(Z)+, c > 0;

(iv) there exists θ ∈ L∞(Z)+ satisfying θ(z) ≤ λ1 a.e. on Z with strict inequality on
a set of positive measure, such that

lim sup
|x|→∞

f2(z, x)
|x|p−2x ≤ θ(z) uniformly for a.a. z ∈ Z; (4.54)

(v) there exists η̂ ∈ L∞(Z)+ such that

λ2 < lim inf
x→ 0

f1(z, x)
|x|p−2x ≤ lim sup

x→ 0

f2(z, x)
|x|p−2x ≤ η̂(z) uniformly for a.a. z ∈ Z; (4.55)

(vi) for almost all z ∈ Z and all x ∈ R, we have f1(z, x)x ≥ 0 (sign condition).

Theorem 4.7. If hypotheses H(j)3 hold, then problem (1.1) has at least three nontrivial solutions
x0, v0, y0 such that x0 ∈ intC1

0(Z)+, v0 ∈ −intC1
0(Z)+, and y0 ∈ C1

0(Z) a (nodal) solution.

Proof. From Theorem 3.8, we have the two constant sign solutions x0 ∈ intC1
0(Z)+ and

v0 ∈ −intC1
0(Z)+. Let y+ ∈ intC1

0(Z)+ and y− ∈ −intC1
0(Z)+ be the two extremal constant

sign solutions from Proposition 4.6. We have

A(y±) = u± with u± ∈ Lp′(Z), u±(z) ∈ ∂j(z, u±(z)) a.e. on Z. (4.56)
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We introduce the following functions

f̂+(z, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < 0,

f(z, x) if 0 ≤ x ≤ y+(z),

u+(z) if y+(z) < x,

f̂−(z, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u−(z) if x < y−(z),

f(z, x) if y−(z) ≤ x ≤ 0,

0 if 0 < x,

f̂(z, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u−(z) if x < y−(z),

f(z, x) if y−(z) ≤ x ≤ y+(z),

u+(z) if y+(z) < x.

(4.57)

We consider the corresponding potential functions defined by

ĵ+(z, x) =
∫x

0
f̂+(z, r)dr, ĵ−(z, x) =

∫x

0
f̂−(z, r)dr , ĵ(z, x) =

∫x

0
f̂(z, r)dr. (4.58)

Then we define the following locally Lipschitz Euler functionals on W
1,p
0 (Z):

ϕ0,+(x) =
1
p
‖Dx‖pp −

∫

Z

ĵ+(z, x(z))dz,

ϕ0,−(x) =
1
p
‖Dx‖pp −

∫

Z

ĵ−(z, x(z))dz,

ϕ0(x) =
1
p
‖Dx‖pp −

∫

Z

ĵ(z, x(z))dz.

(4.59)

We will use the following order intervals in W
1,p
0 (Z):

I+ = [0, y+], I− = [y−, 0], I = [y−, y+]. (4.60)

The critical points of ϕ0,+ are in I+, the critical points of ϕ0,− are in I−, and the critical
points of ϕ0 are in I. We show this for ϕ0,+; the proof for the rest is similar.
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So let x ∈ W
1,p
0 (Z) be a critical point of ϕ0,+. Then we have 0 ∈ ∂ϕ0,+(x) and soA(x) = u

with u ∈ Lp′(Z), u(z) ∈ ∂ĵ+(z, x(z)) a.e. on Z. If we act with the test function (x − y+)
+ ∈

W
1,p
0 (Z) we obtain

〈
A(x),

(
x − y+

)+〉 =
∫

Z

u
(
x − y+

)+
dz

=
∫

{x>y+}
u
(
x − y+

)
dz

=
∫

Z

u+
(
x − y+

)+
dz

=
〈
A
(
y+

)
,
(
x − y+

)+〉
,

=⇒ 〈
A(x) −A

(
y+

)
,
(
x − y+

)+〉

=
∫

{x>y+}

(‖Dx‖p−2Dx − ∥∥Dy+
∥∥p−2

Dy+, Dx −Dy+
)
RN dz = 0,

=⇒∣∣{x>y+
}∣∣

N =0
(|·|N being the Lebesgue measure on R

N
)
, i.e., x≤y+.

(4.61)

Similarly we show that 0 ≤ x. Hence x ∈ I+.
Since the critical points of ϕ0,+ are in I+, it follows that {0, y+} are the only critical points

of ϕ0,+. From hypothesis H(j)3(v), we can find δ > 0 small such that

λ2x
p−1 < u for a.a. z ∈ Z and all x ∈ [0, δ] and all u ∈ ∂j(z, x). (4.62)

We choose ε > 0 small such that

εu1(z) ≤ min{y+(z), δ} ∀z ∈ Z. (4.63)

We know that

j(z, x) =
∫x

0
f(z, r)dr for a.a. z ∈ Z, all x ∈ R,

f(z, r) ∈ ∂j(z, r) for a.a. z ∈ Z, a.a. r ∈ R.

(4.64)

Then from (4.62), (4.63), and (4.64), we have

ĵ+(z, εu1(z)) = ĵ(z, εu1(z)) =
∫ εu1(z)

0
f(z, r)dr >

λ2
p
εpu1(z)

p a.e. on Z. (4.65)
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Hence

ϕ0,+
(
εu1

)
=

εp

p

∥
∥Du1

∥
∥p

p −
∫

Z

ĵ+
(
z, εu1(z)

)
dz

<
εp

p

(∥∥Du1
∥
∥p

p − λ2
∥
∥u1

∥
∥p

p

)
(see (4.65))

<
εp

p

(∥∥Du1
∥
∥p

p − λ1
∥
∥u1

∥
∥p

p

)
= 0 (see (2.6) with m ≡ 1),

=⇒ inf
W

1,p
0 (Z)

ϕ0,+ < 0 = ϕ0,+(0).

(4.66)

By hypothesis we have j(z, x) =
∫x
0f(z, r)dr for almost all z ∈ Z and all x ∈ R. So using

hypothesis H(j)3(iii), it follows that

∣∣ĵ+(z, x)
∣∣ ≤ α̂(z) for a.a. z ∈ Z, all x ∈ R, with α̂ ∈ L∞(Z)+. (4.67)

Therefore from this and Poincare’s inequality, we infer that ϕ0,+ is coercive. It is easy to
see that ϕ0,+ is weakly lower semicontinuous on W

1,p
0 (Z). So by the Weierstrass theorem, we

can find ŷ0 a minimizer of ϕ0,+ and ϕ0,+(ŷ0) < 0 = ϕ0,+(0), that is, ŷ0 /= 0 (see (4.66)). Since ŷ0 is
a nonzero critical point of ϕ0,+, we must have ŷ0 = y+. Clearly y+ is a local C1

0(Z)-minimizer
of ϕ0 and so y+ is a localW

1,p
0 (Z)minimizer of ϕ0.We can assume that y+ is an isolated critical

point of ϕ0. If this is not the case, we can find a sequence {xn}n≥1 ⊆ W
1,p
0 (Z) of critical points

of ϕ0 such that

xn −→ y+ in W
1,p
0 (Z) as n −→ ∞, xn /= 0, y+, y− ∀n ≥ 1. (4.68)

Since xn is a critical point of ϕ0,we must have xn ∈ I. Thus we have produced a whole
sequence of distinct nontrivial nodal solutions for problem (1.1).

Similarly working with ϕ0,− on I−, we have that y− is a global minimizer of
ϕ0,−, ϕ0,−(y−) = ϕ0(y−) < 0 = ϕ0(0) and we can assume that it is an isolated critical point
of ϕ0. As in Motreanu et al. [36], we can find δ > 0 small such that

ϕ0
(
y−

)
< inf

[
ϕ0(x) : x ∈ ∂Bδ

(
y−

)] ≤ 0,

ϕ0
(
y+

)
< inf

[
ϕ0(x) : x ∈ ∂Bδ

(
y+

)] ≤ 0,
(4.69)

where ∂Bδ(y±) = {x ∈ W
1,p
0 (Z) : ‖x0 − y±‖ = δ}.

If we set S = ∂Bδ(y+) ∪ ∂Bδ(y−), I = [y−, y+], and I0 = {y−, y+}, then we can easily see
that the pair {I0, I} is linking with S in W

1,p
0 (Z). Moreover, as for ϕ0,+ we can check that ϕ0 is

coercive and so we can easily verify the PS-condition. Therefore, we can apply Theorem 2.2
and produce y0 ∈ W

1,p
0 (Z), a critical point of ϕ0, such that

ϕ0
(
y±

)
< ϕ0

(
y0
)
= inf

γ∈Γ
max
t∈[−1,1]

ϕ0(γ(t)), (4.70)
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where Γ = {γ ∈ C([−1, 1]) : γ(−1) = y−, γ(1) = y+}. Note that from (4.70) we have that
y0 /=y±.

We claim that ϕ0(y0) < 0 = ϕ0(0) and so y0 /= 0. To show this, it is enough to produce a
path γ0 ∈ Γ such that

ϕ0
(
γ0(t)

)
< 0 ∀t ∈ [−1, 1]. (4.71)

So in what follows we construct such a path γ0.

Recall that ∂BLp(Z)
1 = {x ∈ Lp(Z) : ‖x‖p = 1} and S = W

1,p
0 (Z) ∩ ∂B

Lp(Z)
1 endowed with

the W1,p
0 (Z)-topology. We also set

Sc = W
1,p
0 (Z) ∩ C1

0(Z) ∩ ∂B
Lp(Z)
1 (4.72)

equipped with the C1
0(Z)-topology.

Then Sc is dense in S in the W
1,p
0 (Z)-topology. Because of (2.10), given δ > 0, we can

find γ̂0 ∈ Γ0 = {γ0 ∈ C([−1, 1], S) : γ0(−1) = −u1, γ0(1) = u1} satisfying γ̂0([−1, 1]) ⊆ Sc and

max
[‖Dx‖pp : x ∈ γ̂0([−1, 1])

] ≤ λ2 + δ (4.73)

(since C([−1, 1], Sc) is dense in C([−1, 1], S).
We can always choose δ > 0 small such that

λ2 + 2δ < lim inf
x→ 0

u

|x|p−2x uniformly for a.a. z ∈ Z, allu ∈ ∂j(z, x) (4.74)

(see hypothesis H(j)3(v)). Then we can find δ0 > 0 such that

λ2 + δ <
u

|x|p−2x for a.a. z ∈ Z, all 0 < |x| ≤ δ0, and all u ∈ ∂j(z, x). (4.75)

As before exploiting the fact that (d/dx)f(z, x) ∈ ∂j(z, x) for a.a. z ∈ Z and almost all
x ∈ R, from (4.75)we obtain

1
p

(
λ2 + δ

)|x|p < j(z, x) for a.a. z ∈ Z and all 0 < |x| ≤ δ0. (4.76)

Since γ̂0([−1, 1]) ⊆ Sc and −y−, y+ ∈ intC1
0(Z)+,we can find ε > 0 small such that

|εx(z)| ≤ δ0 ∀z ∈ Z, all x ∈ γ̂0([−1, 1]),
εx ∈ [−y−, y+] and all x ∈ γ̂0([−1, 1]).

(4.77)
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If x ∈ γ̂0([−1, 1]), we have

ϕ0(εx) = ϕ(εx) =
εp

p
‖Dx‖pp −

∫

Z

j(z, εx(z))dz

<
εp

p
‖Dx‖pp −

εp

p

(
λ2 + δ

)‖x‖pp (see (4.76))

≤ 0 (see (4.73) and recall ‖x‖p = 1).

(4.78)

So, if we consider the continuous path γ0 = εγ̂0 which joins −εu1 and εu1, we have

ϕ0|γ0 < 0. (4.79)

Next with the help of Theorem 2.5, we will produce a continuous path joining εu1

and y+ along which ϕ̂ is strictly negative. We know that {0, y+} are the only critical points
of ϕ0,+. Let α+ = ϕ0,+(y+) = infϕ0,+ < 0 and let b+ = 0. Recall that ϕ0,+ is coercive and so
it satisfies the PS-condition. Therefore according to Theorem 2.5, we can find a deformation

h : [0, 1] × 0
ϕ0

b+
→ 0

ϕ0

b+
such that

h(t, ·)|Kα+
= id ∀t ∈ [0, 1],

h
(
1,

0
ϕ0,+

b+)
⊆ 0
ϕ0,+

a+
∪Ka+ ,

ϕ0,+(h(t, z)) ⊆ ϕ0,+(x) ∀(t, x) ∈ [0, 1] × 0
ϕ0,+

b+
.

(4.80)

We consider the path γ+ : [0, 1] → 0
ϕ0,+

b+
defined by

γ+(t) = h
(
t, εu1

) ∀t ∈ [0, 1]. (4.81)

Clearly this is a continuous path and we have

γ+(0) = h
(
0, εu1

)
= εu1 (since h is a deformation),

γ+(1) = h
(
1, εu1

)
= y+

( 0
ϕ0,+

a+
= ∅, Ka+ = {y+}

)
,

ϕ0,+(γ+(t)) = ϕ0,+(h
(
t, εu1

)
) ≤ ϕ0,+

(
εu1

)
< 0 ∀t ∈ [0, 1] (see (4.79)).

(4.82)

Therefore we have produced a continuous path γ+ joining εu1 and y+ such that

ϕ0,+|γ+ < 0. (4.83)

But note that ϕ0,+ ≥ ϕ0 (see H(j)3(vi)). Hence

ϕ0|γ+ < 0. (4.84)



Boundary Value Problems 31

In a similar fashion, we produce a continuous path γ− joining −εu1 and y− such that

ϕ0|γ− < 0. (4.85)

If we join the paths γ−, γ0, γ+, we produce a continuous path γ0 ∈ Γ such that

ϕ0|γ0 < 0, (see (4.79), (4.84), (4.85)). (4.86)

From (4.70) it follows that ϕ0(y0) < 0 = ϕ̂(0) and so y0 /= 0.
Therefore y0 is the third nontrivial solution of (1.1), which is (nodal) and from the

nonlinear regularity theory we have y0 ∈ C1
0(Z).
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