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1. Introduction

Mathematical models can provide insights into the dynamics of viral load in vivo. A basic
viral infection model [1] has been widely used for studying the dynamics of infectious agents
such as hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency
virus (HIV), which has the following forms:

dx
dt

= λ − dx − βxv,

dy
dt

= βxv − ay,

dv
dt

= ky − uv,

(1.1)
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where susceptible cells (x(t)) are produced at a constant rate λ, die at a density-dependent
rate dx, and become infected with a rate βuv; infected cells (y(t)) are produced at rate βuv
and die at a density-dependent rate ay; free virus particles (v(t)) are released from infected
cells at the rate ky and die at a rate uv. Recently, there have been many papers on virus
dynamics within-host in different aspects based on the (1.1). For example, the influences of
spatial structures on virus dynamics have been considered, and the existence of traveling
waves is established via the geometric singular perturbation method [2]. For more literature,
we list [3, 4] and references cited therein.

Usually, there is a plausible assumption that the amount of free virus is simply
proportional to the number of infected cells because the dynamics of the virus is substantially
faster than that of the infected cells, u � a, k � λ. Thus, the number of infected cells y(t)
can also be considered as a measure of virus load v(t) (e.g., see [5–7]). As a result, the model
(1.1) is reduced to

dx
dt

= λ − dx − βxy,

dy
dt

= βxy − ay.

(1.2)

As for this model, it is easy to see that the basic reproduction number of virus is given by
R0 = βλ/ad, which describes the average number of newly infected cells generated from
one infected cell at the beginning of the infectious process. Furthermore, we know that the
infection-free equilibrium E0 = (λ/d, 0) is globally asymptotically stable if R0 < 1, and so is
the infection equilibrium E1 = (a/β, (βλ − ad)/aβ) if R0 > 1.

Note that both infection terms in (1.1) and (1.2) are based on the mass-action principle
(Perelson and Nelson [8]); that is, the infection rate per susceptible cell and per virus is a
constant β. However, infection experiments of Ebert et al. [9] and McLean and Bostock [10]
suggest that the infection rate of microparasitic infections is an increasing function of the
parasite dose and is usually sigmoidal in shape. Thus, as Regoes et al. [11], we take the
nonlinear infection rate into account by relaxing the mass-action assumption that is made
in (1.2) and obtain

dx
dt

= λ − dx − β
(
y
)
x,

dy
dt

= β
(
y
)
x − ay,

(1.3)

where the infection rate per susceptible cell, β(y), is a sigmoidal function of the virus
(parasite) concentration because the number of infected cells y(t) can also be considered as a
measure of virus load (e.g., see [5–7]), which is represented in the following form:

β
(
y
)
=

(y/ID50)
κ

1 + (y/ID50)
κ , κ > 1. (1.4)

Here, ID50 denotes the infectious dose at which 50% of the susceptible cells are infected, κ
measures the slope of the sigmoidal curve at ID50 and approximates the average number
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of virus that enters a single host cell at the begin stage of invasion, (y/ID50)
κ measures

the infection force of the virus, and 1/(1 + (y/ID50)
κ) measures the inhibition effect from

the behavioral change of the susceptible cells when their number increases or from the
production of immune response which depends on the infected cells.

In fact, many investigators have introduced different functional responses into related
equations for epidemiological modeling, of which we list [12–17] and references cited therein.
However, a few studies have considered the influences of nonlinear infection rate on virus
dynamics. When the parameter κ = 1, [18, 19] considered a viral mathematical model with
the nonlinear infection rate and time delay. Furthermore, some different types of nonlinear
functional responses, in particular of the form βxqy or Holling-type functional response, were
investigated in [20–23].

Note that κ > 1 in (1.4). To simplify the study, we fix the slope κ = 2 in the present
paper, and system (1.3) becomes

dx
dt

= λ − dx −
y2

ID2
50 + y2

x,

dy
dt

=
y2

ID2
50 + y2

x − ay.

(1.5)

To be concise in notations, rescale (1.5) by X = x/ID50, Y = y/ID50. For simplicity, we still
use variables x, y instead of X, Y and obtain

dx
dt

= m − dx −
y2

1 + y2
x,

dy
dt

=
y2

1 + y2
x − ay,

(1.6)

where m = λ/ID50. Note that 1/d is the average life time of susceptible cells and 1/a is
the average life-time of infected cells. Thus, a ≥ d is always valid by means of biological
detection. If a = d, the virus does not kill infected cells. Therefore, the virus is non cytopathic
in vivo. However, when a > d, which means that the virus kills infected cells before its
average life time, the virus is cytopathic in vivo.

The main purpose of this paper is to study the effect of the nonlinear infection rate
on the dynamics of (1.6). We will perform a qualitative analysis and derive the Allee-type
dynamics which result from the appearance of bistable states or saddle-node state in (1.6).
The bifurcation analysis indicates that (1.6) undergoes a Bogdanov-Takens bifurcation at the
degenerate singular infection equilibrium which includes a saddle-node bifurcation, a Hopf
bifurcation, and a homoclinic bifurcation. Thus, the nonlinear infection rate can induce the
complex dynamic behaviors in the viral infection model.

The organization of the paper is as follows. In Section 2, the qualitative analysis of
system (1.6) is performed, and the stability of the equilibria is obtained. The results indicate
that (1.6) can display an Allee effect. Section 3 gives the bifurcation analysis, which indicates
that the dynamics of (1.6) is more complex than that of (1.1) and (1.2). Finally, a brief
discussion on the direct biological implications of the results is given in Section 4.
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2. Qualitative Analysis

Since we are interested in virus pathogenesis and not initial processes of infection, we assume
that the initial data for the system (1.6) are such that

x(0) > 0, y(0) > 0. (2.1)

The objective of this section is to perform a qualitative analysis of system (1.6) and derive
the Allee-type dynamics. Clearly, the solutions of system (1.6) with positive initial values
are positive and bounded. Let g(y) = y/(1 + y2), and note that (1.6) has one and only one
infection-free equilibrium E0 = (m/d, 0). Then by using the formula of a basic reproduction
number for the compartmental models in van den Driessche and Watmough [24], we know
that the basic reproduction number of virus of (1.6) is

R0 =
1
a
· m
d

· g(0) = 0, (2.2)

which describes the average number of newly infected cells generated from one infected cell
at the beginning of the infectious process as zero. Although it is zero, we will show that the
virus can still persist in host.

We start by studying the equilibria of (1.6). Obviously, the infection-free equilibrium
E0 = (m/d, 0) always exists and is a stable hyperbolic node because the corresponding
characteristic equation is (ω + d)(ω + a) = 0.

In order to find the positive (infection) equilibria, set

m − dx −
y2

1 + y2
x = 0,

y

1 + y2
x − a = 0,

(2.3)

then we have the equation

a(1 + d)y2 −my + ad = 0. (2.4)

Based on (2.4), we can obtain that

(i) there is no infection equilibria if m2 < 4a2d(1 + d);

(ii) there is a unique infection equilibrium E1 = (x∗, y∗) if m2 = 4a2d(1 + d);

(iii) there are two infection equilibria E11 = (x1, y1) and E12 = (x2, y2) if m2 > 4a2d(1+d).
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Here,

y∗ =
m

2a(1 + d)
, x∗ =

a
(
1 + y∗2)

y∗ ,

y1 =
m −

√
m2 − 4a2d(1 + d)

2a(1 + d)
, x1 =

a
(

1 + y2
1

)

y1
,

y2 =
m +

√
m2 − 4a2d(1 + d)

2a(1 + d)
, x2 =

a
(

1 + y2
2

)

y2
.

(2.5)

Thus, the surface

SN =
{
(m,d, a) : m2 = 4a2d(1 + d)

}
(2.6)

is a Saddle-Node bifurcation surface, that is, on one side of the surface SN system (1.6) has not
any positive equilibria; on the surface SN system (1.6) has only one positive equilibrium; on
the other side of the surface SN system (1.6) has two positive equilibria. The detailed results
will follow.

Next, we determine the stability of E11 and E12. The Jacobian matrix at E11 is

JE11
=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−d −
y2

1

1 + y2
1

−
2x1y1

(
1 + y2

1

)2

y2
1

1 + y2
1

−a +
2x1y1

(
1 + y2

1

)2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (2.7)

After some calculations, we have

det
(
JE11

)
= −

a(1 + d)
(

4a2d(1 + d) +m

(√
m2 − 4a2d(1 + d) −m

))

2a2(1 + d) +m

(
m −

√
m2 − 4a2d(1 + d)

) . (2.8)

Since m2 > 4a2d(1 + d) in this case, 4a2d(1 + d) + m(
√
m2 − 4a2d(1 + d) − m)) > 0 is valid.

Thus, det(JE11
) < 0 and the equilibrium E11 is a saddle.

The Jacobian matrix at E12 is

JE12
=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−d −
y2

2

1 + y2
2

−
2x2y2

(
1 + y2

2

)2

y2
2

1 + y2
2

−a +
2x2y2

(
1 + y2

2

)2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (2.9)
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By a similar argument as above, we can obtain that det(JE12
) > 0. Thus, the equilibrium E12 is

a node, or a focus, or a center.
For the sake of simplicity, we denote

mε = 2a
√
d(1 + d),

m0 =
a2(1 + 2d)

√
(a − d)(1 + a + d)

, if a > 2d(1 + d).
(2.10)

We have the following results on the stability of E12.

Theorem 2.1. Suppose that equilibrium E12 exists; that is, m > mε. Then E12 is always stable if
d ≤ a ≤ 2d(1 + d). When a > 2d(1 + d), we have

(i) E12 is stable ifm > m0;

(ii) E12 is unstable ifm < m0;

(iii) E12 is a linear center ifm = m0.

Proof. After some calculations, the matrix trace of JE12
is

tr
(
JE12

)
=

2a3(1 + d)(1 + 2d) −m(1 + a + d)
(
m +

√
m2 − 4a2d(1 + d)

)

2a2(1 + d) +m
(
m +

√
m2 − 4a2d(1 + d)

) , (2.11)

and its sign is determined by

F(m) � 2a3(1 + d)(1 + 2d) −m(1 + a + d)
(
m +

√
m2 − 4a2d(1 + d)

)
. (2.12)

Note that

F ′(m) = −(1 + a + d)

(

2m +
√
m2 − 4a2d(1 + d) +

m2

√
m2 − 4a2d(1 + d)

)

< 0, (2.13)

which means that F(m) is a monotone decreasing function of variable m.
Clearly,

F(mε) = 2a2(1 + d)(a − 2d(1 + d))

⎧
⎨

⎩

> 0, if a > 2d(1 + d),

≤ 0, if a ≤ 2d(1 + d).
(2.14)

Note that F(m) = 0 implies that

2a3(1 + d)(1 + 2d)
m(1 + a + d)

−m =
√
m2 − 4a2d(1 + d). (2.15)
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Squaring (2.15) we find that

4a6(1 + d)2(1 + 2d)2

m2(1 + a + d)2
− 4a3(1 + d)(1 + 2d)

1 + a + d
+m2 = m2 − 4a2d(1 + d). (2.16)

Thus,

a4(1 + d)(1 + 2d)2

m2(1 + a + d)2
=

a(1 + 2d)
1 + a + d

− d =
(a − d)(1 + d)

1 + a + d
,

m =
a2(1 + 2d)

√
(a − d)(1 + a + d)

.

(2.17)

This means that F(m0) = 0. Thus, under the condition of m > mε and the sign of F(m),
tr (JE12) < 0 is always valid if a ≤ 2d(1 + d). When a > 2d(1 + d), tr(JE12) < 0 if m > m0,
tr(JE12) > 0 if m < m0, and tr(JE12) = 0 if m = m0.

For (1.6), its asymptotic behavior is determined by the stability of E12 if it does not
have a limit cycle. Next, we begin to consider the nonexistence of limit cycle in (1.6).

Note that E11 is a saddle and E12 is a node, a focus, or a center. A limit cycle of (1.6)
must include E12 and does not include E11. Since the flow of (1.6) moves toward down on the
line where y = y1 and x < x1 and moves towards up on the line where y = y1 and x > x1,
it is easy to see that any potential limit cycle of (1.6) must lie in the region where y > y1.
Take a Dulac function D = (1 + y2)/y2, and denote the right-hand sides of (1.6) by P1 and P2,
respectively. We have

∂(DP1)
∂x

+
∂(DP2)

∂y
= −

(1 + a + d)y2 − (a − d)
y2

, (2.18)

which is negative if y2 > (a − d)/(1 + a + d). Hence , we can obtain the following result.

Theorem 2.2. There is no limit cycle in (1.6) if

y2
1 >

(a − d)
(1 + a + d)

. (2.19)

Note that y1 > 0 as long as it exists. Thus, inequality (2.19) is always valid if a =
d. When a > d, using the expression of y1 in (2.5), we have that inequality (2.19) that is
equivalent to

2a3(1 + d)(1 + 2d)
1 + a + d

< m2 <
a4(1 + 2d)2

(a − d)(1 + a + d)
. (2.20)
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Indeed, since

y2
1 =

m2

2a2(1 + d)2
− d

1 + d
− m

√
m2 − 4a2d(1 + d)

2a2(1 + d)2
,

m2

2a2(1 + d)2
− d

1 + d
− a − d

1 + a + d
=

m2

2a2(1 + d)2
− a(1 + 2d)
(1 + d)(1 + a + d)

,

(2.21)

we have (2.19) that is equivalent to

m2

2a2(1 + d)2
− a(1 + 2d)
(1 + d)(1 + a + d)

>
m
√
m2 − 4a2d(1 + d)

2a2(1 + d)2
, (2.22)

that is,

m2 − 2a3(1 + d)2(1 + 2d)
(1 + d)(1 + a + d)

> m
√
m2 − 4a2d(1 + d). (2.23)

Thus,

m2 >
2a3(1 + d)2(1 + 2d)
(1 + d)(1 + a + d)

. (2.24)

On the other hand, squaring (2.23) we find that

m4 − 4a3(1 + d)2(1 + 2d)
(1 + d)(1 + a + d)

m2 +
4a6(1 + d)4(1 + 2d)2

(1 + d)2(1 + a + d)2
> m4 − 4a2d(1 + d)m2, (2.25)

which is equivalent to

m2 <
a4(1 + 2d)2

(a − d)(1 + a + d)
. (2.26)

The combination of (2.24) and (2.26) yields (2.20).
Furthermore,

4a2d(1 + d) <
a4(1 + 2d)2

(a − d)(1 + a + d)
(2.27)
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is equivalent to a/= 2d(1 + d), both

2a3(1 + d)(1 + 2d)
1 + a + d

<
a4(1 + 2d)2

(a − d)(1 + a + d)
,

2a3(1 + d)(1 + 2d)
1 + a + d

< 4a2d(1 + d)

(2.28)

are equivalent to a < 2d(1 + d). Consequently, we have the following.

Corollary 2.3. There is no limit cycle in (1.6) if either of the following conditions hold:

(i) a = d and m2 > 4a2d(1 + d);

(ii) d < a < 2d(1 + d) and 4a2d(1 + d) < m2 < a4(1 + 2d)2/(a − d)(1 + a + d).

When m2 = 4a2d(1 + d), system (1.6) has a unique infection equilibrium E1. The
Jacobian matrix at E1 is

JE1
=

⎡

⎢⎢⎢⎢⎢⎢
⎣

−d −
y∗2

1 + y∗2
−

2x∗y∗

(
1 + y∗2

)2

y∗2

1 + y∗2
−a +

2x∗y∗

(
1 + y∗2

)2

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (2.29)

The determinant of JE1
is

det
(
JE1

)
= −

a(1 + d)
(
4a2d(1 + d) −m2)

m2 + 4a2(1 + d)2
= 0, (2.30)

and the trace of JE1
is

tr
(
JE1

)
=

4a2(1 + d)(a − 2d(1 + d))

m2 + 4a2(1 + d)2
. (2.31)

Thus, E1 is a degenerate singular point. Since its singularity, complex dynamic behaviors may
occur, which will be studied in the next section.

3. Bifurcation Analysis

In this section, the Bogdanov-Takens bifurcation (for short, BT bifurcation) of system (1.6) is
studied when there is a unique degenerate infection equilibrium E1.
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For simplicity of computation, we introduce the new time τ by dt = (1+y2)dτ , rewrite
τ as t, and obtain

dx
dt

= m − dx +my2 − (1 + d)xy2,

dy
dt

= −ay + xy2 − ay3.

(3.1)

Note that (3.1) and (1.6) are C∞-equivalent; both systems have the same dynamics (only the
time changes).

As the above mentioned, assume that

(H1) m2 = 4a2d(1 + d).

Then (3.1) admits a unique positive equilibrium E1 = (x∗, y∗), where

x∗ =
2a2(1 + 2d)

m
, y∗ =

m

2a(1 + d)
. (3.2)

In order to translate the positive equilibrium E1 to origin, we set X = x−x∗, Y = y−y∗

and obtain

dX
dt

= −2dX − 2aY − 2a2(1 + d)
m

Y 2 − m

a
XY − (1 + d)XY 2,

dY
dt

=
d

1 + d
X + 2dY +

m

a(1 + d)
XY +

2a2(1 − d)
m

Y 2 +XY 2 − aY 3.

(3.3)

Since we are interested in codimension 2 bifurcation, we assume further that

(H2) a = 2d(1 + d).

Then, after some transformations, we have the following result.

Theorem 3.1. The equilibrium E1 of (1.6) is a cusp of codimension 2 if (H1) and (H2) hold; that is,
it is a Bogdanov-Takens singularity.

Proof. Under assumptions (H1) and (H2), it is clear that the linearized matrix of (3.3)

M =

⎡

⎢
⎣

−2d −2a

d

1 + d
2d

⎤

⎥
⎦ (3.4)

has two zero eigenvalues. Let x = X, y = −2dX − 2aY . Since the parameters m, a, d satisfy
the assumptions (H1) and (H2), after some algebraic calculations, (3.3) is transformed into

dx
dt

= y +
md

2a2
x2 − 1 + d

2m
y2 + f1

(
x, y

)
,

dy
dt

=
md2(2d + 1)

a2
x2 +

2md2

a2
xy +

m(2d − 1)
4a2

y2 + f2
(
x, y

)
,

(3.5)
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where fi(x, y), i = 1, 2, are smooth functions in variables (x, y) at least of the third order.
Using an affine translation u = x + y/2d, v = y to (3.5), we obtain

du
dt

= v +
m

2a
u2 − m

a2
uv + f̃1(u, v),

dv
dt

=
md2(2d + 1)

a2
u2 − md

a2
uv + f̃2(u, v),

(3.6)

where f̃i(u, v), i = 1, 2, are smooth functions in variables (u, v) at least of order three. To
obtain the canonical normal forms, we perform the transformation of variables by

x = u +
m

2a2
u2, y = v +

m

2a
u2. (3.7)

Then, (3.6) becomes

dx
dt

= y + F1
(
x, y

)
,

dy
dt

=
md2(2d + 1)

a2
x2 +

md(2d + 1)
a2

xy + F2
(
x, y

)
,

(3.8)

where Fi(x, y), i = 1, 2, are smooth functions in (x, y) at least of the third order.
Obviously,

md2(2d + 1)
a2

> 0,

md(2d + 1)
a2

> 0.

(3.9)

This implies that the origin of (3.3), that is, E1 of (1.6), is a cusp of codimension 2 by in [25,
Theorem 3, Section 2.11].

In the following we will investigate the approximating BT bifurcation curves. The
parameters m and a are chosen as bifurcation parameters. Consider the following perturbed
system:

dx
dt

= m0 + λ1 − dx −
xy2

1 + y2
,

dy
dt

=
xy2

1 + y2
− (a0 + λ2)y,

(3.10)

where m0, a0 and d are positive constants while (H1) and (H2) are satisfied. That is to say,

m2
0 = 4a2

0d(1 + d), a0 = 2d(1 + d). (3.11)
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λ1 and λ2 are in the small neighborhood of (0, 0); x and y are in the small neighborhood of
(x∗, y∗), where

x∗ =
2a2

0(1 + 2d)
m0

, y∗ =
m0

2a0(1 + d)
. (3.12)

Clearly, if λ1 = λ2 = 0, (x∗, y∗) is the degenerate equilibrium E1 of (1.6). Substituting X =
x − x∗, Y = y − y∗ into (3.10) and using Taylor expansion, we obtain

dX
dt

=
(

1 + y∗2
)
λ1 −

(
d + (1 + d)y∗2

)
X − 2

(
a0(1 + 2d) − (m0 + λ1)y∗)Y

+ (m0 − (d + 1)x∗ + λ1)Y 2 − m0

a0
XY + f1(X,Y, λ),

dY
dt

= −y∗
(

1 + y∗2
)
λ2 + y∗2X +

(
2x∗y∗ − a0

(
1 + 3y∗2

)
−
(

1 + 3y∗2
)
λ2

)
Y

+ 2y∗XY +
(
x∗ − 3a0y

∗ − 3y∗λ2
)
Y 2 + f2(X,Y, λ),

(3.13)

where λ = (λ1, λ2), fi(X,Y, λ), i = 1, 2, are smooth functions of X, Y and λ at least of order
three in variables (X,Y ). Making the change of variables x = X, y = −2dX − 2(a0 − y∗λ1)Y to
(3.13) and noting the conditions in (3.11) and expressions in (3.12), we have

dx
dt

=
(

1 + y∗2
)
λ1 + y +

(
m0d

2a2
2

− d2

a2
2

λ1

)

x2 +
1

4a2
2

(
λ1 −

m0

2d

)
y2 + f̃1

(
x, y, λ

)
,

dy
dt

= β0 + β1x + β2y + β3x
2 + β4xy + β5y

2 + f̃2
(
x, y, λ

)
,

(3.14)

where

a2 = a0 − y∗λ1,

β0 = −2d
(

1 + y∗2
)
λ1 + 2a2y

∗
(

1 + y∗2
)
λ2,

β1 =
2d

1 + d
y∗λ1 − 2d

(
1 + 3y∗2

)
λ2,

β2 = −
(

1 + 3y∗2
)
λ2,

β3 =
m0d

2(2d + 1)
a0a2

− 4m0d
2

a2(1 + d)
λ1 +

6d2y∗

a2
λ2,

β4 =
2m0d

2

a0a2
− 2m0d

a2(1 + d)
λ1 +

6dy∗

a2
λ2,

β5 =
m0(2d − 1)

4a2a0
+

3y∗

2a2
λ2.

(3.15)
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f̃i(u, v, λ), i = 1, 2, are smooth functions in variables (u, v) at least of the third order, and the
coefficients depend smoothly on λ1 and λ2.

Let X = x+y/2d, Y = y. Using (3.11) and (3.12), after some algebraic calculations, we
obtain

dX
dt

= c0 + c1X + c2Y + c3X
2 + c4XY + F1(X,Y, λ),

dY
dt

= e0 + e1X + e2Y + e3X
2 + e4XY + F2(X,Y, λ),

(3.16)

where Fi(X,Y, λ), i = 1, 2, are smooth functions of X, Y and λ at least of the third order in
variables (X,Y ),

c0 =
1
d
a2y

∗
(

1 + y∗2
)
λ2,

c1 =
y∗

1 + d
λ1 −

(
1 + 3y∗2

)
λ2,

c2 = 1 −
y∗

a0
λ1,

c3 =
m0

a0a2

(
d(1 + d) +

3d
2(1 + d)

λ2 −
2a0d

1 + d
λ1

)
,

c4 =
m0

a0a2
(−1 + 2dλ1),

e0 = −2d
(

1 + y∗2
)
λ1 + 2a2y

∗
(

1 + y∗2
)
λ2,

e1 = 2dc1,

e2 = −
y∗

1 + d
λ1,

e3 =
m0d

2

a0a2

(
2d + 1 +

3
1 + d

λ2 −
4a0

1 + d
λ1

)
,

e4 =
m0d

a0a2

(
−1 +

2a0

1 + d
λ1

)
.

(3.17)

Let x = X, y = c0 + c1X + c2Y + c3X
2 + c4XY + F1(X,Y, λ). Then (3.16) becomes

dx
dt

= y,

dy
dt

= b0 + b1x + b2y + b3x
2 + b4xy + b5y

2 +G
(
x, y, λ

)
,

(3.18)
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where

b0 = c2e0 − c0e2,

b1 = c2e1 + c4e0 − c1e2 − c0e4,

b2 = c1 − c0
c4

c2
+ e2,

b3 = c2e3 + c4e1 − c3e2 − c1e4,

b4 = 2c3 − c1
c4

c2
+ c0

c2
4

c2
2

+ e4,

b5 =
c4

c2
.

(3.19)

G(x, y, λ) is smooth function in variables (x, y) at least of order three, and all the coefficients
depend smoothly on λ1 and λ2.

By setting X = x + b2/b4, Y = y to (3.18), we obtain

dX
dt

= Y,

dY
dt

= r0 + r1X + b3X
2 + b4XY + b5Y

2 +G1(X,Y, λ),

(3.20)

where G1(X,Y, λ) is smooth function in variables (X,Y ) at least of the third order and

r0 =
b0b

2
4 − b1b2b4 + b3b

2
2

b2
4

,

r1 =
b1b4 − 2b2b3

b4
.

(3.21)

Now, introducing a new time variable τ to (3.20), which satisfies dt = (1 − b5X)dτ , and still
writing τ as t, we have

dX
dt

= Y (1 − b5X),

dY
dt

=
(
r0 + r1X + b3X

2 + b4XY + b5Y
2
)
(1 − b5X) +G2(X,Y, λ),

(3.22)
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where G2(X,Y, λ) is smooth function of X, Y and λ at least of three order in variables (X,Y ).
Setting x = X, y = Y (1 − b5X) to (3.22), we obtain

dx
dt

= y,

dy
dt

= r0 + q1x + q2x
2 + b4xy +G3

(
x, y, λ

)
,

(3.23)

where G3(x, y, λ) is smooth function of x, y and λ at least of order three in variables (x, y)
and

q1 = r1 − 2r0b5,

q2 = r0b
2
5 − 2r1b5 + b3.

(3.24)

If λ1 → 0 and λ2 → 0, it is easy to obtain the following results:

r0 −→ 0,

q1 −→ 0,

q2 −→ m0d
2(2d + 1)
a2

0

> 0

b4 −→ m0d(2d + 1)
a2

0

> 0.

(3.25)

By setting X = (b2
4/q2)x + q1b

2
4/2q2

2, Y = b3
4/q

2
2 and τ = (q2/b4)t, and rewriting (X,Y, τ) as

(x, y, t), we obtain

dx
dt

= y,

dy
dt

= μ1 + μ2y + x2 + xy +G4
(
x, y, λ

)
,

(3.26)

where

μ1 =
r0b

4
4

q3
2

−
q2

1b
4
4

4q4
2

,

μ2 = −
q1b

2
4

2q2
2

,

(3.27)

and G4(x, y, λ) is smooth function of x, y and λ at least of order three in variables (x, y).
By the theorem of Bogdanov in [26, 27] and the result of Perko in [25], we obtain the

following local representations of bifurcation curves in a small neighborhood Δ of the origin
(i.e., E1 of (1.6)).
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Figure 1: The bifurcation set and the corresponding phase portraits of system (3.26) at origin.

Theorem 3.2. Let the assumptions (H1) and (H2) hold. Then (1.6) admits the following bifurcation
behaviors:

(i) there is a saddle-node bifurcation curve SN± = {(λ1, λ2) : μ1 = 0, μ2 > 0 or μ2 < 0};
(ii) there is a Hopf bifurcation curve H = {(λ1, λ2) : μ1 = −μ2

2 + o(‖λ‖2), q1 < 0};
(iii) there is a homoclinic-loop bifurcation curve HL= {(λ1, λ2) : μ1 = −(49/25)μ2

2 + o(‖λ‖2)}.

Concretely, as the statement in [28, Chapter 3], when (μ1, μ2) ∈ Δ, the orbital topical
structure of the system (3.26) at origin (corresponding system (1.6) at E1) is shown in
Figure 1.

4. Discussion

Note that most infection experiments suggest that the infection rate of microparasitic
infections is an increasing function of the parasite dose, usually sigmoidal in shape. In this
paper, we study a viral infection model with a type of nonlinear infection rate, which was
introduced by Regoes et al. [11].

Qualitative analysis (Theorem 2.1) implies that infection equilibrium E12 is always
stable if the virus is noncytopathic, a = d, or cytopathic in vivo but its cytopathic effect
is less than or equal to an appropriate value, a ≤ 2d(1 + d). When the cytopathic effect
of virus is greater than the threshold value, a > 2d(1 + d), the stability of the infection
equilibrium E12 depends on the value of parameter m, which is proportional to the birth rate
of susceptible cells λ and is in inverse proportion to the infectious dose ID50. The infection
equilibrium is stable if m > m0 and becomes unstable if m < m0. When m gets to the critical
value, m = m0, the infection equilibrium is a linear center, so the oscillation behaviors may
occur.

If our model (1.6) does not have a limit cycle (see Theorem 2.2 and Corollary 2.3),
its asymptotic behavior is determined by the stability of E12. When E12 is stable, there
is a region outside which positive semiorbits tend to E0 as t tends to infinity and inside



Boundary Value Problems 17

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y

0 5 10 15 20

x

E0

ExtinctionExtinction

UM

SM

E11

UM

SM

E12 Persistence

Figure 2: Illustrations of the Allee effect for (1.5). Here, λ = 17.06, d = 1.0, a = 3.0, ID50 = 2. E0 = (17.06, 0)
is stable, E11 = (13.2311, 1.2763) is a saddle point, E12 = (12.3589, 1.567) is stable. Note that SM is the stable
manifolds of E11 (solid line), UM is the unstable manifolds of E11 (dash line), and the phase portrait of
(1.6) is divided into two domains of extinction and persistence of the virus by SM.

which positive semi-orbits tend to E12 as t tends to infinity; that is, the virus will persist
if the initial position lies in the region and disappear if the initial position lies outside this
region. Thus, besides the value of parameters, the initial concentration of the virus can
also affect the result of invasion. An invasion threshold may exist in these cases, which
is typical for the so-called Allee effect that occurs when the abundance or frequency of a
species is positively correlated with its growth rate (see [11]). Consequently, the unrescaled
model (1.5) can display an Allee effect (see Figure 2), which is an infrequent phenomenon
in current viral infection models though it is reasonable and important in viral infection
process.

Furthermore, when infection equilibrium becomes a degenerate singular point, we
have shown that the dynamics of this model are very rich inside this region (see Theorems 3.1
and 3.2 and Figure 1). Static and dynamical bifurcations, including saddle-node bifurcation,
Hopf bifurcation, homoclinic bifurcation, and bifurcation of cusp-type with codimension
two (i.e., Bogdanov-Takens bifurcation), have been exhibited. Thus, besides the Allee effect,
our model (1.6) shows that the viral oscillation behaviors can occur in the host based on
the appropriate conditions, which was observed in chronic HBV or HCV carriers (see [29–
31]). These results inform that the viral infection is very complex in the development of
a better understanding of diseases. According to the analysis, we find that the cytopathic
effect of virus and the birth rate of susceptible cells are both significant to induce the complex
and interesting phenomena, which is helpful in the development of various drug therapy
strategies against viral infection.
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