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We study the generalized Keldys-Fichera boundary value problem for a class of higher order equa-
tions with nonnegative characteristic. By using the acute angle principle and the Holder inequali-
ties and Young inequalities we discuss the existence of the weak solution. Then by using the inverse
Holder inequalities, we obtain the regularity of the weak solution in the anisotropic Sobolev space.

1. Introduction

Keldys [1] studies the boundary problem for linear elliptic equations with degenerationg on
the boundary. For the linear elliptic equations with nonnegative characteristic forms, Oleinik
and Radkevich [2] had discussed the Keldys-Fichera boundary value problem. In 1989, Ma
and Yu [3] studied the existence of weak solution for the Keldys-Fichera boundary value of
the nonlinear degenerate elliptic equations of second-order. Chen [4] and Chen and Xuan
[5], Li [6], and Wang [7] had investigated the existence and the regularity of degenerate
elliptic equations by using different methods. In this paper, we study the generalized Keldys-
Fichera boundary value problem which is a kind of new boundary conditions for a class of
higher-order equations with nonnegative characteristic form. We discuss the existence and
uniqueness of weak solution by using the acute angle principle, then study the regularity of
solution by using inverse Holder inequalities in the anisotropic Sobolev Space.
We firstly study the following linear partial differential operator

Lu= S ("D <aaﬁ(x)Dﬁu + by (x)DYu)
lal=|p|=m,|y

=m-1

(1.1)
+ > ()"D°(d(x)D'n),
6],[A|<m—1



2 Boundary Value Problems

where x € Q, Q C R" is an open set, the coefficients of L are bounded measurable, and the
leading term coefficients satisfy

Aap(x)éadp 2 0. (1.2)

We investigate the generalized Keldys-Fichera boundary value conditions as follows:

Duu|ag = O/ |“| S m - 2’ (13)
qu . .
Z CS(X)DMMZ? =0, |)J| =m-1, 1<i< Ny, (1.4)
=1
N, ; )
S CM D™ iu | gm =0, Vi, <o, (1.5)
=1

with [a/| = m and 1 <i < N,,, where &6, = {0,...,1,...,0}.

k.

The leading term coefficients are symnjletric, that is, a,p(x) = apa(x) which can be

made into a symmetric matrix M(x) = (a,i,). The odd order term coefficients by, (x) can be

made into a matrix B(x) = (X_; baiyi(x) - ne), M = (m,...,n,) is the outward normal at 0Q.

{ei(x) }fZ’l" and {h;(x) }g’f’l are the eigenvalues of matrices M (x) and B(x), respectively. Cl.'?. (x)
and Cf}/f (x) are orthogonal matrix satisfying

Cil M) (x)' = (ei(0)6y), .y

..... N’
. 5 (1.6)
Cij(x)B(x)Cij(x) = (hi(x)ﬁij)i,jzl ,,,,, Np1®
The boundary sets are
M
> ={x€oQ]ei(x)>0}, 1<i<Ny,
: (1.7)

B
> ={x€dQ|hi(x)>0}, 1<i< Ny

i

At last, we study the existence and regularity of the following quasilinear differential
operator with boundary conditions (1.3)—(1.5):

Au = Z (-1)™"D* (a,xp <x, /\u) DPu + b,,,,,(x)DYu>

=l r|-m-1

+ Z (—1)m_1DY<dY9<x,/\u>D9u>+ Z (—1)|)‘|DAg)L<x,/\u>,

|y|=I61=m-1 [A|gm-1

(1.8)

where m > 2 and Au = {D*u} 4 <py—-
This paper is a generalization of [3, 8-10].
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2. Formulation of the Boundary Value Problem

For second-order equations with nonnegative characteristic form, Keldys [1] and Fichera
presented a kind of boundary that is the Keldys-Fichera boundary value problem, with that
the associated problem is of well-posedness. However, for higher-order ones, the discussion
of well-posed boundary value problem has not been seen. Here we will give a kind of
boundary value condition, which is consistent with Dirichlet problem if the equations are
elliptic, and coincident with Keldys-Fichera boundary value problem when the equations are
of second-order.
We consider the linear partial differential operator

Lu= S ("D <aaﬂ(x)Dﬂu + by (x)DYu)
=[]y {-m-1 o

+ > ()" (do(x)D'u),
0], A|<m-1

where x € Q, Q C R" is an open set, the coefficients of L are bounded measurable functions,
and aqp(x) = apa(x).

Let {gap(x)} be a series of functions with g.s = gpa, la| = |f| = k. If in certain order we
put all multiple indexes a with |a| = k into a row {a',...,a"*}, then {gss(x)} can be made
into a symmetric matrix (g,i,i). By this rule, we get a symmetric leading term matrix of (2.1),
as follows:

M(x) = (agiai (x))i,jzl,...,Nm' (2.2)
Suppose that the matrix M(x) is semipositive, that is,
0 < Auigi (x)&:¢j, Yx€Q, &€ RN», (2.3)

and the odd order part of (2.1) can be written as

S (CD)'DUby D) =3 > ((U"DY(b(0D%), (24

n
|vc\:m,|y|:m—1 i=1 [\|=|0|=m-1

where 6; = {61, ...,6in}, 6ij is the Kronecker symbol. Assume that for all 1 < i < n, we have
bly(x) = bl (x), x€Q. (2.5)

We introduce another symmetric matrix

B(x) = <ib"w () 'nk> , X€0Q, (2.6)
k=1

i,j=1,..., N1
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where 7 = {ny,n,...,n,) is the outward normal at x € Q. Let the following matrices be
orthogonal:

CM(x) = ((:1.1}4(x))ij:1 o XEQ
R (2.7)
CB(x) = (cfj.(x)),_ o xedQ,
l,]= sererdiNm—1
satisfying
CM(x)M(x)CM(x)' = (ei(x)(sif)i,j:l ..... N,/
(2.8)
CP(x)B(x)C®(x)" = (hi(x)éif)i,jzl,...,Nm_1’

Nm
i=

where C(x)' is the transposed matrix of C(x), {e;(x)} 1

{h;(x) }gi"’l are the eigenvalues of B(x). Denote by

are the eigenvalues of M(x) and

M
> ={x€0Q|ei(x)>0}, 1<i<Ny,

1

B
> ={x€0Q|hi(x)>0}, 1<i<Np, (2.9)

i

C B
ZzaQ\Z/ 151§Nm—1

i i

For multiple indices a, f, « < f means that a; < f;, for all 1 < i < n. Now let us consider the
following boundary value problem,

Lu=f(x), x€Q, (2.10)
D%ulyq =0, |a|<m-2, (2.11)
Nmfl . )
CE@DYulgy =0, |V|=m=-1,1<i< Ny, (2.12)
j=1
N is
Zlc{f (x)D* "M u - nyg|sm =0, (2.13)
=

forall 6, </, |@/| = mand 1<i< N, where 6, = {0,...,1,...,0}.

kj
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We can see that the item (2.13) of boundary value condition is determined by the
leading term matrix (2.2), and (2.12) is defined by the odd term matrix (2.6). Moreover, if
the operator L is a not elliptic, then the operator

Lu= 3 (-1)"D(dey(x)D*u) (2.14)
16],]A|<m-1

has to be elliptic.

In order to illustrate the boundary value conditions (2.11)—(2.13), in the following we
give an example.

Example 2.1. Given the differential equation

o*u o*u ou
—t — " 4+~ _Au=f xeQCR. 2.15
oxt  0xjox; Ox; f 215)

Here Q = {(x1,x) € R*|0<x; <1, 0<xy <1}.Leta® = {2,0}, a® = {1,1}. a®={0,2} and
A ={1,0}, A2 = {0, 1}, then the leading and odd term matrices of (2.15) respectively are

100
M=|010],

000 (2.16)
00

B= ,
0 ny

and the orthogonal matrices are

100
cM=|o010|,
001 (2.17)

10
CB = .

We can see that Y™ = 0Q, M =0Q, 3 = ¢,and 3% = ¢, 37 as shown in Figure 1.
The item (2.12) is

2 CB b _ A2 _ ou _
Z 5DV ulss = DV ulss = 33 | =0, (2.18)
]:1 ZZ
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X2

Figure 1

and the item (2.13) is

3 .

M & =6 _ mal-6 _
ECUD ’”'nk,|Z{W—D klu-nk1|ziw—0,
=1

(2.19)
3 .
Zcé\;[Daf—ékju . nkJIZéVI — D“z—5’<2u . nk2|zé\4 = 0,
i=1
for all 6, < a' and &, < a?. Since only &, = {1,0} < a' = {2,0}, hence we have
DBy |omt = ou Milag =0, (2.20)
1 Zl axl
however, 6, = {1,0} < a? = {1,1} and 6, = {0,1} < a?, therefore,
ou
s o, Ml =0
o= — —
R TR L 2.21)
ax1 M2laq = T
Thus the associated boundary value condition of (2.15) is as follows:
ou ou
ulyo =0, — =0, — =0, 2.22
|bQ axz /T axl 0 ( )

which implies that 0u/0x; is free on I' = {(x1,x2) € 0Q | 0 < x1 <1, xp = 0}.

Remark 2.2. In general the matrices M(x) and B(x) arranged are not unique, hence the
boundary value conditions relating to the operator L may not be unique.

Remark 2.3. When all leading terms of L are zero, (2.10) is an odd order one. In this case, only
(2.11) and (2.12) remain.
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Now we return to discuss the relations between the conditions (2.11)-(2.13) with
Dirichlet and Keldys-Fichera boundary value conditions.

It is easy to verify that the problem (2.10)—(2.13) is the Dirichlet problem provided the
operator L being elliptic (see [11]). In this case, wa =0Q forall 1 <i < N,,. Besides, (2.13)
run over all 1 < i < N, and 6kj < af, moreover CB(x) is nondegenerate for any x € 0Q.
Solving the system of equations, we get D*u|y, =0, for all |a| =m - 1.

When m = 1, namely, L is of second-order, the condition (2.12) is the form

B n
usgs =0, D= {xe@Q | Zbi(x)n,->0}, (2.23)

i=1

and (2.13) is

n
ZCf}’I(x)njulle =0, 1<i<n. (2.24)
=1

Noticing

ij=1

2
> aij(x)nmn; = > ei(x) <ZC{}4(x)nj> , (2.25)
i=1 =1

thus the condition (2.13) is the form

ij=1

M n
M|ZM =0, Z = {x € 0Q | Zaij(x)n,-nj > 0}. (2.26)

It shows that when m =1, (2.12) and (2.13) are coincide with Keldys-Fichera boundary value
condition.
Next, we will give the definition of weak solutions of (2.10)—(2.13) (see [12]). Let

X = {v €C™ (ﬁ) | D°0lyq =0, || <m—2, and v satisfy (2.13), o], < oo}, (2.27)

where || - ||, is defined by

1/2
Ioll, = U ZID“U|2dx+f D |DYv|2ds:| . (2.28)
Q 0Q

lal<m |Y|:m—1
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We denote by X, the completion of X under the norm || - ||, and by X; the completion of X
with the following norm

loll, = L}< > awp(x)DvDPv+ |DYv|2>dx

|a|=|B|=m |y|<m-1

2
Nmfl N
f Z |hi (x)|<z cf;.Dva> ds
j=1

Definition 2.4. u € X; is a weak solution of (2.10)—(2.13) if for any v € X, the following
equality holds:

s (2.29)

f Z <aaﬂ(x)Dﬁu+b,,,y(x)D7u>D“U+ Z doy (x)D*uD% | dx
Q [lal=|p|=m |y|=m-1 101, JAJ<m-1

Nm 1 Nm 1
f h; (x)< BDY’ > <Z CBDY] >ds =f f(x)vdx.
Q

We need to check the reasonableness of the boundary value problem (2.10)—(2.13)
under the definition of weak solutions, that is, the solution in the classical sense are
necessarily the solutions in weak sense, and conversely when a weak solution satisfies certain
regularity conditions, it will surely satisfy the given boundary value conditions. Here, we
assume that all coefficients of L are sufficiently smooth.

Let u be a classical solution of (2.10)-(2.13). Denote by

(2.30)

(Lu,v):f Lu-vdx, VveX. (2.31)
Q

Thanks to integration by part, we have

f Lu-vdx
Q

= I [ Z (aap(x)Dﬁu + buY(X)DYu> D%v + Z doy (x)D)‘uDev] dx
Q

|a|:|ﬂ|:m,|y|:m—1 10],|A|<m-1

—I [ Z aap(x)DﬁuD”‘“skv-nk+ Z Zbie(x)-niDeuD)‘v]dS.
o0

jaf=|6]=m Pi=fi=m-1 i1
(2.32)
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Since v € X, we have

J Z aaﬁ(x)DﬂuD“_‘Skv - nids
02 |a|[pi=m

f Zel(x) <ZCMD“] > (ZCMD“] 40y >ds =0.
0Q =1

Because u satisfies (2.12),

(2.33)

f Z zn:bae(x) -n;D%uD*v ds
o

Q| \|=|0]=m-1i=1

N1 N1
- fag Zl hi(x) < Z CHD" u ) < >, CiD"o ) (2.34)

]=

Nm,1 Nm—l . Nm 1
= f hi(x)( Y, CED"u ) ( Y CiDo
im1 ) 3¢ =1 =1

From the three equalities above we obtain (2.30).

Let u € X; be a weak solution of (2.10)—(2.13). Then the boundary value conditions
(2.11) and (2.13) can be reflected by the space X;. In fact, we can show that if u € X;, then u
satisfies

Nm
ZI e;(x) <ZCMD“ 59y, > <ZCMD"‘] >ds =0, YoveXinWm™2Q).
i=1

(2.35)
Evidently, when u € X, v € X; n W™12(Q), we have
J Z aap(X)DﬂuD”‘U dx = f Z D;i(aqs(x)D%v) DFP%y dx. (2.36)
Q Q _ '
lal=[p]=m lal=[p|=m

If we can verify that for any u € X, (2.36) holds true, then we get

J Z aaﬂ(x)D“va_é"u ‘nids =0, (2.37)
O |al=|p|=m
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which means that (2.35) holds true. Since X is dense in X, for u € X; given, let ux € X and
ur — uin Xj. Then

lim Z a,xprukD“v dx = f Z aaﬂDﬂuD”v dx,

k— oo

Q |a|=|p=m Q |a|2|pl=m
(2.38)
lim Z Di(aaﬁD“v)Dﬁ“ﬁ"ukdx = I Z D;(a.D0) DF-%y dx.
=) Q | fpiem 2 fai2[pl=m
Due to uy satisfying (2.36), hence u € X satisfies (2.36). Thus (2.31) is verified.
Remark 2.5. When (2.2) is a diagonal matrix, then (2.13) is the form
¥ - - m—
D u|Z,M 0, forl|y|=m-1, (2.39)

where Z;VI ={xeo| X, ay+5iy+5,.(x) -n;? > 0}. In this case, the corresponding trace
embedding theorem can be set, and the boundary value condition (2.13) is naturally satisfied.
On the other hand, if the weak solution u of (2.10)—(2.13) belongs to X; N W™?(Q) for some
p > 1, then by the trace embedding theorems, the condition (2.13) also holds true.

It remains to verify the condition (2.12). Let ug € X; N W™*12(Q) satisfy (2.30). Since
Wm12(Q) — X,, hence we have

I Z <aap(x)Dﬂu0 + bay(x)DYuo)D“uo + Z dor (x) D ugD%uq — fug|ds
Q Llal=|p|=m,|y|=m-1 1oL j<m-1

N,

m-1 Nm—l z
_ Z f hi(x) Z CgDquO ds =0.
i1 /3¢ =1

(2.40)
On the other hand, by (2.30), for any v € C{°(£2), we get
f - Z D;(aup(x) D o) DP %0 + Z dey (x)D*uyD%
Q |u\:|ﬂ|:m 16],|A|<m-1
(2.41)

-fo- Di< Z béy(x)DYuo> Dev] dx =0.

11=y|=m-1
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Because the coefficients of L are sufficiently smooth, and Cg° is dense in W' 2(Q), equality
(2.41) also holds for any v € W* “12(Q). Therefore, due to ug € wy' 12(Q), we have

I [— Z D,-(aaﬂ(x)D"‘uo)Dﬁ_‘s"uo+ Z d@)L(x)D)LuoDeuo

lal=[[=m Bl A<m-1

(2.42)
—fug - D; Z béy(x)DYuo DOy | dx = 0.
10l=iyF=m-1
From (2.36), one drives
—J Z Di(aaﬂ(x)D“uo)Dﬁ*‘s"uodx = f Z Aup (x)D*ugDPuy dx, (2.43)
Q |a|=|p|=m Q Ja|=|p|=m
Furthermore,
- f D; < Z bgy(x)DYu0> D%uydx
Q 16]=y|=m-1
(2.44)

2
Nm,1 Nm 1
bay (x) DY ugD*ugdx — > f R CY <ZCBDWuO> s.
i=1 72Ul

j=

S 2

From (2.30) and (2.42), one can see that

Nm 1 Nm 1 . :
f hi(x) BDY] uy | ds=0. (2.45)

Noticing h;(x) > 0 in S8, one deduces that uj satisfies (2.12) provided uy € X3 N W™ 12(Q).
Finally, we discuss the well-posedness of the boundary value problem (2.10)-(2.13).

Let X be a linear space, and X, X, be the completion of X, respectively, with the norm
I 1li, Il - 1lo- Suppose that X; is a reflexive Banach space and X5 is a separable Banach space.

|a|= m|y| m—1

Definition 2.6. A mapping G : X; — X" is called to be weakly continuous, if for any x,, xo €
X1, x, — xo in X4, one has

lim (Gxn, y) = (Gxo,y), Yy € Xz, (2.46)

Lemma 2.7 (see [3]). Suppose that G : X1 — Xy* is a weakly continuous, if there exists a bounded
open set Q C Xy, such that

(Gu,u) >0, YueoQnkX, (2.47)

then the equation Gu = 0 has a solution in X;.



12 Boundary Value Problems

Theorem 2.8 (existence theorem). Let Q C R" be an arbitrary open set, f € L*(Q) and bay €
CY(Q). If there exist a constant C > 0 and g € L' (Q) such that

n

C > |&y|* + ClaP - g < D doa(x)éeéy - —Z > Dib;ﬁ(x)éréﬂr (2.48)

lyl=m-1 [A],|6]<m-1 i=1 |y|=[p|=m-1

where &, is the component of & € RN corresponding to D*u, then the problem (2.10)—(2.13) has a
weak solution in X;.

Proof. Let (Lu,v) be the inner product as in (2.31). It is easy to verify that (Lu,v) defines a
bounded linear operator L : X; — X,*. Hence L is weakly continuous (see [3]). From (2.42),
for u € X we drive that

<Lu,u>=f [ > aaﬁ(x)DauDﬂu+i > bly(x)DuD* o

@ | jut|p|=m i=1 |\=lfl=m-1

+ Z dya(x)DVuD“u] dx

Iyl lal<m-1

2
f h(x)< BDY’ > ds

=f [ Z aap(x)D“quu+ Z dya(x)D'uD"u
2 Llal=|p|-m Iy lal<m-1
(2.49)

-= Db (x)D"uDPu | dx
Z Z P

llh’\lﬂ\ml

1NM f f h(x)<NM BDY"u>2 ds

f [ > aw(x)DuDPu+C |DYu|2+Cu2—g(x)]

* Llal=Jp[=m [rl=m-1

v

1 " j ’
Ez; Iiuzf|hi(X)| ZC (x)D" u ds.

Hence we obtain

(Lu,u) > Cllul; -C, VYueX. (2.50)
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Thus by Holder inequality (see [13]), we have

(Lu—- f,u) >0, VYueX, |lul, =R great enough. (2.51)

By Lemma 2.7, the theorem is proven. O

Theorem 2.9 (uniqueness theorem). Under the assumptions of Theorem 2.8 with g(x) = 0 in
(2.48). If the problem (2.10)—(2.13) has a weak solution in X; N W™P(Q) N W™L4(Q)((1/p) +
(1/q) = 1), then such a solution is unique. Moreover, if byy(x) = 0 in L, for all |a| =m, |y|=m~-1,
then the weak solution u € X; of (2.10)—(2.13) is unique.

Proof. Let ug € X3 N W™P(Q) N W™ 14 be a weak solution of (2.10)-(2.13). We can see that
(2.30) holds for all v € X; N W™ n W™ 14(Q). Hence Luy, uy is well defined. Let u; € X; N
WP W™ 14(Q). Then from (2.49) it follows that < Lu; — Lug, u1 —ug >= 0, we obtain u; = uy,
which means that the solution of (2.10)-(2.13) in X; N W™P 0 W™~14(Q) is unique. If all the
odd terms by, (x) of L, then (2.30) holds for all v € X3, in the same fashion we known that the
weak solution of (2.10)—(2.13) in X is unique. The proof is complete. O

Remark 2.10. In next subsection, we can see that under certain assumptions, the weak
solutions of degenerate elliptic equations are in X; NW™?(Q)NW™14(Q)((1/p)+(1/q) = 1).

3. Existence of Higher-Order Quasilinear Equations

Given the quasilinear differential operator

Au = Z (-1)"D* <aaﬂ (x, /\u> DPu + ba]r(x)DY'Ll)
MR Ry M

v 3 )" D (dy(x, \u)D%u) (3.1)

Iy|=lol=m-1

+ Z (—1)|A|D)‘gA<x,/\u>,

[A|<m-1

where m > 2 and Au = {D"u} 4 <-
Let anp(x, &) = apa(x,¢), the odd order part of (3.1) be as that in (2.4), b, € C(Q), and
S8 5°C, be the same as those in Section 2. The leading matrix is

M(x,8) = (Agiai (xlé))i,jzl Ny’ (3.2)

.....

and the eigenvalues are {e;(x, ¢) }f.\:];”. We denote ZIM ={x€0Q|ei(x,0)>0}, 1<i<N,.
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We consider the following problem:

Au=f(x), xeQ,

/\u|ag =0,

Nmfl ) .
CE(x)DV |5 =0, |)d| =m-1,1<i< Np1,
= (3.3)
N M al =&y, i
ch] (x/ O)D u - nklelM = 0/ V6kj < a]/
j=1

with |&/| =m, 1<i< N, &;=140,...,1,...,0

k;
Denote the anisotropic Sobolev space by

Wl’fjlsk(gz) ={uel(Q)|po>1, Duel(Q), V1<l|a|<k, and p.>1, or p. =0},
(3.4)

whose norm is

llull = > sign pallD*ul|p, (3.5)

lal<k

when all p, = p for |a| = k, then the space is denoted by Wi’,"’; y 1(8)- go(|6] < k) is termed
the critical embedding exponent from Wlfalal Sk(Q) to LP(Q), if g is the largest number of the
exponent p in where D%u € LP(Q), for all u € Wli “‘ Sk(Q), and the embedding is continuous.

For example, when Q is bounded, the space X = {u € L¥(Q) | k > 1,Diu € L*(Q),1 <
i < n} with norm [[u|| = [|Vull;2 + ||ul|;x is an anisotropic Sobolev space, and the critical
embedding exponents from X to L”(Q) are g; = 2(1 <i < n), and g = max{k,2n/(n-2)}.
Suppose that the following hold.

(A1) The coefficients of the leading term of A satisfy one of the following two conditions:
(1) uaﬂ(x/ 71) = dap (x);
(2) agp(x,m) =0, as a#p.

(Az) There is a constant M > 0 such that
0SM > ag(x,0)abs < >, aap(x,1)éatp
|a|=|Bl=m lal=|pl=m
SM™ D aup(x, 0)éuds.

|ec|=|pl=m

(3.6)
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(A3) There are functions G;(x,77) (i =0,1,...,n) with G;(x,0) =0, for all 1 <i <n, such
that

Z gy <x, /\u> Dyu = lZ::DiGi <x, /\u) =Gy <x, /\”) (3.7)

lyl=m-1
(A4) There is a constant C > 0 such that

C|§|2 < Z I:daﬁ(x)‘gaéﬂ - %ZDib;ﬂ(x)gaéﬁ]/
i=1

lal=|B[=m-1
(3.8)
C > signpml™ - fi< > ge(xm)ne +Go(x, 1),
[A|<m—1 |6]<m—-2
where f; € LY(Q), po>1, py>lorp, =0, forall 1 <|\|<m—-2.
(As) There is a constant ¢ > 0 such that
laws(x,m)| < C,
S
|dye (x, )| < C[ > gl + 1]1
|B|lsm-2 (3.9)

gy (x,1m)| < C[ Sl +1],

|ﬂ|$m—2

where 1 < Sp < gppp, 1 < gﬂ < qp, qp is a critical embedding exponent from

Wif ‘1 <m-1 (Q) to LP(Q). Let X be defined by (2.27) and X; be the completion of X
under the norm

loll, = [L}( > anp(x,0)D*vDPo+ |DYU|2>dx

|a\:|ﬁ|:m |y|:m—1

” (3.10)

2
Nm—l Nm—l .
+f Z|hi(x)|<ZC5DY]v> ds| + >, signp,|D0|n,
0Q =1 j=1

ly|sm-2
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and X, be the completion of X with the norm

1/2
21l = [lollwne + lollwn: + [ > IDlezdS] , (3.11)

oQ |Y|:m_1

where p > max{2,q5/(qp - gﬁ), 2qp/(qp —25p)}.
u € X; is a weak solution of (3.3), if for any v € X5, we have

Lz [ Z Aup <x, /\u)DpuD“v + Z bay (x)DY'uD"v

|u|:|ﬂ|:m \a|:m,|y|:m—l

[y|=l61=m-1 [A[<m-1

Ny N1 . N1 .

Y j o ( Sicioru ) (3 cEpr's )ds =o.
i-1 /XS =1 =1

Theorem 3.1. Under the conditions (A1)—(As), if f € LM (Q), (1 /po+1/py') =1, then the problem
(3.3) has a weak solution in X;.

+ Z dye (x, /\u) D%uDv + Z L4} (x, /\u) D'v - fv] dx (3.12)

Proof. Denote by (Au,v) the left part of (3.12). It is easy to verify that the inner product
(Au,v) defines a bounded mapping A : X; — X" by the condition (As).
Let u € X, by (A2)—(A4), one can deduce that

<Au’u>2,[ [M Z aaﬁ(x,O)DauDﬂquC Z |DYu|2+C Z |D9u|l’9]dx
Q

|a|:|ﬂ|:m |y|:m71 |B]<m~2
X (3.13)
1Nm—1 Nmfl B j
+= - hi(x) Ci(x)D"u ds—f [fu+|f1]]dx.
2 ; f 5? -[ ¢ 12:1: ! Q

Noticing that hi| x5 > 0, hi|sc <0, SEUSE = 8Q, by Holder and Young inequalities (see[13]),
from (3.13) we can get

(Au,u) >0, VueX, |ully, large enough. (3.14)

Ones can easily show that the mapping A : X; — X" is weakly continuous. Here we omit
the details of the proof. By Lemma 2.7, this theorem is proven. O
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B B
B8

Figure 2

In the following, we take an example to illustrate the application of Theorem 3.1.

Example 3.2. We consider the boundary value problem of odd order equation as follows:

3 3
%ﬂ“g—;ﬂwf = f(xy), (xy)€eQCR, (3.15)

where Q is an unit ball in R?, see Figure 2

The odd term matrix is
0 x 0
B(x,y) = <”x > - ( > 3.16
@) =(0 n,)= 0y (3.16)

It is easy to see that

B

;={x€69|nx=x>0}= {-Jz—r<9<%},
(3.17)
B
> ={xeoQ|n,=y>0}={0<0<ux)
2
The boundary value condition associated with (3.15) is
u|aQ = 0,

ou ou . a a

S - = a(cos 0,sin0) =0, 5 <0< 5 (3.18)
(3_u =a—u(c:059,sin6)=0, 0<0<o.
ox Z? ox
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Applying Theorem 3.1, if f € L*/3(Q), then the problem (3.15)-(3.18) has a weak solution
ue W2(Q).

4. Wm?-Solutions of Degenerate Elliptic Equations

We start with an abstract regularity result which is useful for the existence problem of
W™P(Q)-solutions of degenerate quasilinear elliptic equations of order 2m. Let X, X;, X, be
the spaces defined in Definition 2.6, and Y be a reflective Banach space, at the same time
Y — Xl.

Lemma 4.1. Under the hypotheses of Lemma 2.7, there exists a sequence of {u,} C X, u, — ug in
X1 such that (Guy, u,) = 0. Furthermore, if, we can derive that ||lul|y < C, C is a constant, then the
solution ug of Gu = 0 belongs to'Y.

In the following, we give some existence theorems of W"*P-solutions for the boundary
value conditions (4.3)—(4.5) of higher-order degenerate elliptic equations.
First, we consider the quasilinear equations

Au = Z (-1)™D" <aaﬁ <x, f)u) Dfu + Day (x)DYu>
el {1
4.1)
+ Z (—1)IY‘DYgY<x,Du> =f(x), xeQ,
|Y|Sm—1
where Du = { Du}|4j<m-1- Now, we consider the following problem
Au = f(x), xeQ, (4.2)
5u|ag = 0, (43)
N ) )
CE(x)DVulss =0, |)J| —m-1,1<i< Ny, (4.4)
i=1
N M al -6y ;
ECU (x,0)D" " u - ny |gm =0, Vor, <a,
(4.5)

|aj|:m,1SiSNm, 6k]~: o,...,1,...,0
——

kj

The boundary value condition associated with (4.1) is given by (4.3)—(4.5). Suppose
that Q C R" is bounded, and the following assumptions hold.
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(B;) The condition (3.6) holds, and there is a continuous function A(x) > 0 on Q such
that

AERP"< D, anp(x,0)8%F, VEeR, (46)
|al=|pl=m

where g* = &' - &, a = (a1,..., ap).

(By) Q' = {x € Q| Mx) = 0} is a measure zero set in R", and there is a sequence of
subdomains Q with cone property such that Qr cC Q/Q’, Qi C Qi1 and UxQy =
Q/Q.

(Bs) The positive definite condition is

C T P -fis T sdi-5> S Db, (47)
i=1 |

[\<m-1 |6]<m—1 yl=lal=m-1

where Cisaconstant, pg > 1, py >lorp, =0for1<|A|<m -1, f1 € LY(Q).
(B4) The structure conditions are
|alxﬂ(xl §) | < C/

. (4.8)
lgy(x, &) <Cl >} &l™+1{,

|0]<m-1

where C is a constant, 0 < Sg < g, go is the critical embedding exponent from
Wk (Q) to LP(Q).

|A|<m-1

Let X be defined by (2.27) and X; be the completion of X with the norm

1/2
||u||=[ > aap(x,O)D“uDﬂudx] + D) sign pallD%ull e

2 |al=|p|=m la|<m—1

Nm—l Nm—l 1/2
P f @)l X, ChED u Jds| .
i=1 ¥ 0Q j=1 !

(4.9)
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Definition 4.2. u € X, is a weak solution of (4.2)-(4.5), if for any v € X,, the following equality
holds:

I [ Z Aup (x,ﬁu)DﬂuD“v + Z bay(x)DuD"v + Z Sy (x, ﬁu)DYv —fv] dx

|a|:|ﬂ|:m |a|:m,|y|:m—1 |Y|5m—1

N1 Ny .
-3 meo( B ) (e as=o
-1 Y3 =1

(4.10)

Theorem 4.3. Under the assumptions (B1)—(By), if f € LP', then the problem and (4.2)-(4.5) has a
weak solution u € Xy. Moreover, if there is a real number & > 1, such that

f IM(x)| P dx < oo, (4.11)
Q

then the weak solution u € W™P(Q) N Xy, p=26/(1+0).

Proof. According to Lemma 4.1, it suffices to prove that there is a constant C > 0 such that for
any u € X (X is as that in Section 3) with (Au, u) = 0, we have

26
lullwne <C, P =16 (4.12)
From (4.10) we know
<Au,u> = f [ Z Aup (x, f)u)DﬁuD"‘u + Z bay (x)DYuD"u
@ |a|:|ﬁ|:m |a\:m,|y|:m—1
+ Z Sy <x, f)u)Dyu —fu] dx (4.13)
ylsm-1

1/2
le le .
J‘ hi( x)< BDY]u> ds, xe€X.
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Due to (By) and (Bs) we have

Au,u) = aus(x, Du)DPuD"u + S bt DYuD*%y
o p ay(x)

la|=||=m =1 al=|y|=m-1

[ylsm-1

+ Z 8y <x, 15u>DYu - fu] dx
Nm,1 Nmfl . :

- > f hi(x)( >, Ci(x)D"u ) ds
i=1 )= i=1

~ 1 .
= I Z Aup (x, Du> DPuD*u - EZ Z Dibfxy(x)DYuD”‘u
2 Llal=|g=m i=1|af=|y[=m-1

ly|l<m-1

+ Z 8y <x, I5u>DVu - fu] dx
Nm—l Nm—l . g
- f hi(x)<z cg(x)DWu> ds

i-1 /= =1

ZJQ [A(x)IVu|2m+C > |De”|p9]dx—fg[fu+|f1|]dx

|O]<m-1

1Nm71 Ny . 2
*3 > IZB i) D CEx)Du ) |ds. (4.14)
i=1 i T2 j=1

Noticing that hj|ys >0,  hi[gc <0, SPNYE =09, and f € [ consequently we have

sf |u|r’°’dx+f |l + [ f1]] dx
Q Q

(4.15)
> ’[Q [fu+|fi|]dx > IQ |:)L(x)|Vu|2m +C D] |D9u|P9] dx,

|0|<m—1

where the pg > 1 or pg = 0, pp is the critical embedding exponent from WIF:I am-1(@) 10 L (L).
By the reversed Holder inequality (see [14])

-1/6 (1+6)/6
[ acorwupm> [ peortas] [ wapertoax] (4.16)
Q Q Q
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Then we obtain

g
C> f A@)IVuPm+C Y |D9u| " dx. (4.17)
Q |6]<m—1
From (4.15) and (4.17), the estimates (4.12) follows. This completes the proof. O

Next, we consider a quasilinear equation

(-1)"D" (aap(x, D) DP i + b (x)DYu)
l={pl-my|-m-1

(4.18)
+ 3 (-)VMDVg(x,Ou) = f(x), x€Q
|Y|Sm71
where Cu = {u, ..., D"u}.
Suppose that the following holds.
(B}) There is a real number 6 > 1 such that
f A (x)| P dx < 0. (4.19)
Q
(Bg) The structural conditions are
|laap(x, )| < C,
(4.20)

| gy (x,8)] SC[ 3 alP+ D T+ 1],

|0|<m-1 |a|=m

where Cis a constant, 0 < Sy9 < ((qy = 1)/qy)qe, 0 < t, <p(gy-1)/qy, p=26/(1+06), 4y,
are the critical embedding exponents from Wﬁ;mfl‘ (Q) to LIQ.

Theorem 4.4. Let the conditions (B1)—(B3) and (B}), (Bs) be satisfied. If f € LP'(Q), then the
problem (4.2)—(4.5) has a weak solution u € W™?(Q) N )N(l,p =26/(1+0).

The proof of Theorem 4.4 is parallel to that of Theorem 4.3; here we omit the detail.
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