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We study the generalized Keldys-Fichera boundary value problem for a class of higher order equa-
tions with nonnegative characteristic. By using the acute angle principle and the Hölder inequali-
ties and Young inequalities we discuss the existence of the weak solution. Then by using the inverse
Hölder inequalities, we obtain the regularity of the weak solution in the anisotropic Sobolev space.

1. Introduction

Keldys [1] studies the boundary problem for linear elliptic equations with degenerationg on
the boundary. For the linear elliptic equations with nonnegative characteristic forms, Oleinik
and Radkevich [2] had discussed the Keldys-Fichera boundary value problem. In 1989, Ma
and Yu [3] studied the existence of weak solution for the Keldys-Fichera boundary value of
the nonlinear degenerate elliptic equations of second-order. Chen [4] and Chen and Xuan
[5], Li [6], and Wang [7] had investigated the existence and the regularity of degenerate
elliptic equations by using different methods. In this paper, we study the generalized Keldys-
Fichera boundary value problem which is a kind of new boundary conditions for a class of
higher-order equations with nonnegative characteristic form. We discuss the existence and
uniqueness of weak solution by using the acute angle principle, then study the regularity of
solution by using inverse Hölder inequalities in the anisotropic Sobolev Space.

We firstly study the following linear partial differential operator

Lu =
∑

|α|=|β|=m,|γ|=m−1

(−1)mDα
(
aαβ(x)Dβu + bαγ(x)Dγu

)

+
∑

|θ|,|λ|≤m−1

(−1)|θ|Dθ
(
dθλ(x)Dλu

)
,

(1.1)
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where x ∈ Ω, Ω ⊂ Rn is an open set, the coefficients of L are bounded measurable, and the
leading term coefficients satisfy

aαβ(x)ξαξβ ≥ 0. (1.2)

We investigate the generalized Keldys-Fichera boundary value conditions as follows:

Dαu|∂Ω = 0, |α| ≤ m − 2, (1.3)
Nm−1∑

j=1

CB
ij(x)D

λju|∑B
i
= 0,

∣∣∣λj
∣∣∣ = m − 1, 1 ≤ i ≤ Nm−1, (1.4)

Nm∑

j=1

CM
ij (x)D

αj−δkj u · nkj |∑M
i
= 0, ∀δkj ≤ αj , (1.5)

with |αj | = m and 1 ≤ i ≤ Nm, where δkj = {0, . . . , 1︸ ︷︷ ︸
kj

, . . . , 0}.

The leading term coefficients are symmetric, that is, aαβ(x) = aβα(x) which can be
made into a symmetric matrix M(x) = (aαiαj ). The odd order term coefficients bθλ(x) can be
made into a matrix B(x) = (

∑n
k=1 bλiλj (x) · nk),

−→n = (n1, . . . , nn) is the outward normal at ∂Ω.
{ei(x)}Nm

i=1 and {hi(x)}Nm−1
i=1 are the eigenvalues of matrices M(x) and B(x), respectively. CB

ij(x)
and CM

ij (x) are orthogonal matrix satisfying

CM
ij (x)M(x)CM

ij (x)
′ =

(
ei(x)δij

)
i,j=1,...,Nm

,

CB
ij(x)B(x)C

B
ij(x)

′ =
(
hi(x)δij

)
i,j=1,...,Nm−1

.
(1.6)

The boundary sets are

M∑

i

= {x ∈ ∂Ω | ei(x) > 0}, 1 ≤ i ≤ Nm,

B∑

i

= {x ∈ ∂Ω | hi(x) > 0}, 1 ≤ i ≤ Nm−1.

(1.7)

At last, we study the existence and regularity of the following quasilinear differential
operator with boundary conditions (1.3)–(1.5):

Au =
∑

|α|=|β|=m,|γ|=m−1

(−1)mDα
(
aαβ

(
x,
∧

u
)
Dβu + bαγ(x)Dγu

)

+
∑

|γ|=|θ|=m−1

(−1)m−1Dγ
(
dγθ

(
x,
∧

u
)
Dθu

)
+

∑

|λ|≤m−1

(−1)|λ|Dλgλ
(
x,
∧

u
)
,

(1.8)

where m ≥ 2 and
∧
u = {Dαu}|α|≤m−2.

This paper is a generalization of [3, 8–10].
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2. Formulation of the Boundary Value Problem

For second-order equations with nonnegative characteristic form, Keldys [1] and Fichera
presented a kind of boundary that is the Keldys-Fichera boundary value problem, with that
the associated problem is of well-posedness. However, for higher-order ones, the discussion
of well-posed boundary value problem has not been seen. Here we will give a kind of
boundary value condition, which is consistent with Dirichlet problem if the equations are
elliptic, and coincident with Keldys-Fichera boundary value problem when the equations are
of second-order.

We consider the linear partial differential operator

Lu =
∑

|α|=|β|=m,|γ|=m−1

(−1)mDα
(
aαβ(x)Dβu + bαγ(x)Dγu

)

+
∑

|θ|,|λ|≤m−1

(−1)|θ|Dθ
(
dθλ(x)Dλu

)
,

(2.1)

where x ∈ Ω, Ω ⊂ Rn is an open set, the coefficients of L are bounded measurable functions,
and aαβ(x) = aβα(x).

Let {gαβ(x)} be a series of functions with gαβ = gβα, |α| = |β| = k. If in certain order we
put all multiple indexes α with |α| = k into a row {α1, . . . , αNk}, then {gαβ(x)} can be made
into a symmetric matrix (gαiαj ). By this rule, we get a symmetric leading term matrix of (2.1),
as follows:

M(x) = (aαiαj (x))i,j=1,...,Nm
. (2.2)

Suppose that the matrix M(x) is semipositive, that is,

0 ≤ aαiαj (x)ξiξj , ∀x ∈ Ω, ξ ∈ RNm, (2.3)

and the odd order part of (2.1) can be written as

∑

|α|=m,|γ|=m−1

(−1)mDα(bαγ(x)Dγu
)
=

n∑

i=1

∑

|λ|=|θ|=m−1

(−1)mDλ+δi
(
biλθ(x)D

θu
)
, (2.4)

where δi = {δi1, . . . , δin}, δij is the Kronecker symbol. Assume that for all 1 ≤ i ≤ n, we have

biλθ(x) = biθλ(x), x ∈ Ω. (2.5)

We introduce another symmetric matrix

B(x) =

(
n∑

k=1

bk
λiλj

(x) · nk

)

i,j=1,...,Nm−1

, x ∈ ∂Ω, (2.6)
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where −→n = {n1, n2, . . . , nn} is the outward normal at x ∈ ∂Ω. Let the following matrices be
orthogonal:

CM(x) =
(
CM

ij (x)
)

i,j=1,...,Nm

, x ∈ Ω,

CB(x) =
(
CB

ij(x)
)

i,j=1,...,Nm−1
, x ∈ ∂Ω,

(2.7)

satisfying

CM(x)M(x)CM(x)′ =
(
ei(x)δij

)
i,j=1,...,Nm

,

CB(x)B(x)CB(x)′ =
(
hi(x)δij

)
i,j=1,...,Nm−1

,
(2.8)

where C(x)′ is the transposed matrix of C(x), {ei(x)}Nm

i=1 are the eigenvalues of M(x) and
{hi(x)}Nm−1

i=1 are the eigenvalues of B(x). Denote by

M∑

i

= {x ∈ ∂Ω | ei(x) > 0}, 1 ≤ i ≤ Nm,

B∑

i

= {x ∈ ∂Ω | hi(x) > 0}, 1 ≤ i ≤ Nm−1,

C∑

i

= ∂Ω \
B∑

i

, 1 ≤ i ≤ Nm−1.

(2.9)

For multiple indices α, β, α ≤ β means that αi ≤ βi, for all 1 ≤ i ≤ n. Now let us consider the
following boundary value problem,

Lu = f(x), x ∈ Ω, (2.10)

Dαu|∂Ω = 0, |α| ≤ m − 2, (2.11)

Nm−1∑

j=1

CB
ij(x)D

λju|∑B
i
= 0,

∣∣∣λj
∣∣∣ = m − 1, 1 ≤ i ≤ Nm−1, (2.12)

Nm∑

j=1

CM
ij (x)D

αj−δkj u · nkj |∑M
i
= 0, (2.13)

for all δkj ≤ αj , |αj | = m and 1 ≤ i ≤ Nm, where δkj = {0, . . . , 1︸ ︷︷ ︸
kj

, . . . , 0}.
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We can see that the item (2.13) of boundary value condition is determined by the
leading term matrix (2.2), and (2.12) is defined by the odd term matrix (2.6). Moreover, if
the operator L is a not elliptic, then the operator

L′u =
∑

|θ|,|λ|≤m−1

(−1)|θ|Dθ
(
dθλ(x)Dλu

)
(2.14)

has to be elliptic.
In order to illustrate the boundary value conditions (2.11)–(2.13), in the following we

give an example.

Example 2.1. Given the differential equation

∂4u

∂x4
1

+
∂4u

∂x2
1∂x

2
2

+
∂3u

∂x3
2

−Δu = f, x ∈ Ω ⊂ R2. (2.15)

Here Ω = {(x1, x2) ∈ R2 | 0 < x1 < 1, 0 < x2 < 1}. Let α1 = {2, 0}, α2 = {1, 1}. α3 = {0, 2} and
λ1 = {1, 0}, λ2 = {0, 1}, then the leading and odd term matrices of (2.15) respectively are

M =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 0

⎞
⎟⎟⎠,

B =

(
0 0

0 n2

)
,

(2.16)

and the orthogonal matrices are

CM =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠,

CB =

(
1 0

0 1

)
.

(2.17)

We can see that
∑M

1 = ∂Ω,
∑M

2 = ∂Ω,
∑M

3 = φ, and
∑B

1 = φ,
∑B

2 as shown in Figure 1.
The item (2.12) is

2∑

j=1

CB
2jD

λju|∑B
2
= Dλ2

u|∑B
2
=

∂u

∂x2

∣∣∣∣∑B
2

= 0, (2.18)
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x2

x1

ΣB
2

Γ

Ω

Figure 1

and the item (2.13) is

3∑

j=1

CM
1j D

αj−δkj u · nkj |∑M
1
= Dα1−δk1u · nk1 |∑M

1
= 0,

3∑

j=1

CM
2j D

αj−δkj u · nkj |∑M
2
= Dα2−δk2u · nk2 |∑M

2
= 0,

(2.19)

for all δk1 ≤ α1 and δk2 ≤ α2. Since only δk1 = {1, 0} ≤ α1 = {2, 0}, hence we have

Dα1−δk1u · nk1 |∑M
1
=

∂u

∂x1
· n1|∂Ω = 0, (2.20)

however, δk2 = {1, 0} < α2 = {1, 1} and δk2 = {0, 1} < α2, therefore,

Dα2−δk2u · nk2 |∑M
2
=

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂x2
· n1|∂Ω = 0,

∂u

∂x1
· n2|∂Ω = 0.

(2.21)

Thus the associated boundary value condition of (2.15) is as follows:

u|∂Ω = 0,
∂u

∂x2

∣∣∣∣
∂Ω/Γ

= 0,
∂u

∂x1

∣∣∣∣
∂Ω

= 0, (2.22)

which implies that ∂u/∂x2 is free on Γ = {(x1, x2) ∈ ∂Ω | 0 < x1 < 1, x2 = 0}.

Remark 2.2. In general the matrices M(x) and B(x) arranged are not unique, hence the
boundary value conditions relating to the operator L may not be unique.

Remark 2.3. When all leading terms of L are zero, (2.10) is an odd order one. In this case, only
(2.11) and (2.12) remain.
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Now we return to discuss the relations between the conditions (2.11)–(2.13) with
Dirichlet and Keldys-Fichera boundary value conditions.

It is easy to verify that the problem (2.10)–(2.13) is the Dirichlet problem provided the
operator L being elliptic (see [11]). In this case,

∑M
i = ∂Ω for all 1 ≤ i ≤ Nm. Besides, (2.13)

run over all 1 ≤ i ≤ Nm and δkj ≤ αi, moreover CB(x) is nondegenerate for any x ∈ ∂Ω.
Solving the system of equations, we get Dαu|∂Ω = 0, for all |α| = m − 1.

When m = 1, namely, L is of second-order, the condition (2.12) is the form

u|∑B = 0,
B∑

=

{
x ∈ ∂Ω |

n∑

i=1

bi(x)ni > 0

}
, (2.23)

and (2.13) is

n∑

j=1

CM
ij (x)nju|∑M

i
= 0, 1 ≤ i ≤ n. (2.24)

Noticing

n∑

i,j=1

aij(x)ninj =
n∑

i=1

ei(x)

⎛

⎝
n∑

j=1

CM
ij (x)nj

⎞

⎠
2

, (2.25)

thus the condition (2.13) is the form

u|∑M = 0,
M∑

=

⎧
⎨

⎩x ∈ ∂Ω |
n∑

i,j=1

aij(x)ninj > 0

⎫
⎬

⎭. (2.26)

It shows that when m = 1, (2.12) and (2.13) are coincide with Keldys-Fichera boundary value
condition.

Next, we will give the definition of weak solutions of (2.10)–(2.13) (see [12]). Let

X =
{
v ∈ C∞

(
Ω
)
| Dαv|∂Ω = 0, |α| ≤ m − 2, and v satisfy (2.13), ‖v‖2 < ∞

}
, (2.27)

where ‖ · ‖2 is defined by

‖v‖2 =

⎡

⎣
∫

Ω

∑

|α|≤m
|Dαv|2dx +

∫

∂Ω

∑

|γ|=m−1

|Dγv|2ds

⎤

⎦
1/2

. (2.28)
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We denote by X2 the completion of X under the norm ‖ · ‖2 and by X1 the completion of X
with the following norm

‖v‖1 =

⎡
⎢⎣
∫

Ω

⎛

⎝
∑

|α|=|β|=m
aαβ(x)DαvDβv +

∑

|γ|≤m−1

|Dγv|2
⎞

⎠dx

+
∫

∂Ω

Nm−1∑

i=1

|hi(x)|

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj v

⎞

⎠
2

ds

⎤
⎥⎦

1/2

.

(2.29)

Definition 2.4. u ∈ X1 is a weak solution of (2.10)–(2.13) if for any v ∈ X2, the following
equality holds:

∫

Ω

⎡

⎣
∑

|α|=|β|=m,|γ|=m−1

(
aαβ(x)Dβu + bαγ(x)Dγu

)
Dαv +

∑

|θ|,|λ|≤m−1

dθλ(x)DλuDθv

⎤

⎦dx

−
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u

⎞

⎠

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj v

⎞

⎠ds =
∫

Ω
f(x)v dx.

(2.30)

We need to check the reasonableness of the boundary value problem (2.10)–(2.13)
under the definition of weak solutions, that is, the solution in the classical sense are
necessarily the solutions in weak sense, and conversely when a weak solution satisfies certain
regularity conditions, it will surely satisfy the given boundary value conditions. Here, we
assume that all coefficients of L are sufficiently smooth.

Let u be a classical solution of (2.10)–(2.13). Denote by

〈Lu, v〉 =
∫

Ω
Lu · v dx, ∀v ∈ X. (2.31)

Thanks to integration by part, we have

∫

Ω
Lu · v dx

=
∫

Ω

⎡

⎣
∑

|α|=|β|=m,|γ|=m−1

(
aαβ(x)Dβu + bαγ(x)Dγu

)
Dαv +

∑

|θ|,|λ|≤m−1

dθλ(x)DλuDθv

⎤

⎦dx

−
∫

∂Ω

⎡

⎣
∑

|α|=|β|=m
aαβ(x)DβuDα−δkv · nk +

∑

|λ|=|θ|=m−1

n∑

i=1

biλθ(x) · niD
θuDλv

⎤

⎦ds.

(2.32)
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Since v ∈ X, we have

∫

∂Ω

∑

|α|=|β|=m
aαβ(x)DβuDα−δkv · nkds

=
∫

∂Ω

Nm∑

i=1

ei(x)

⎛

⎝
Nm∑

j=1

CM
ij D

αj

u

⎞

⎠

⎛

⎝
Nm∑

j=1

CM
ij D

αj−δkj v · nkj

⎞

⎠ds = 0.

(2.33)

Because u satisfies (2.12),

∫

∂Ω

∑

|λ|=|θ|=m−1

n∑

i=1

biλθ(x) · niD
θuDλv ds

=
∫

∂Ω

Nm−1∑

i=1

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u

⎞

⎠

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj v

⎞

⎠ds

=
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u

⎞

⎠

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj v

⎞

⎠ds.

(2.34)

From the three equalities above we obtain (2.30).
Let u ∈ X1 be a weak solution of (2.10)–(2.13). Then the boundary value conditions

(2.11) and (2.13) can be reflected by the space X1. In fact, we can show that if u ∈ X1, then u
satisfies

Nm∑

i=1

∫

∑M
i

ei(x)

⎛

⎝
Nm∑

j=1

CM
ij D

αj−δkj u · nkj

⎞

⎠

⎛

⎝
Nm∑

j=1

CM
ij D

αj

v

⎞

⎠ds = 0, ∀v ∈ X1 ∩Wm+1,2(Ω).

(2.35)

Evidently, when u ∈ X, v ∈ X1 ∩Wm+1,2(Ω), we have

∫

Ω

∑

|α|=|β|=m
aαβ(x)DβuDαv dx = −

∫

Ω

∑

|α|=|β|=m
Di

(
aαβ(x)Dαv

)
Dβ−δiu dx. (2.36)

If we can verify that for any u ∈ X1, (2.36) holds true, then we get

∫

∂Ω

∑

|α|=|β|=m
aαβ(x)DαvDβ−δiu · nids = 0, (2.37)
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which means that (2.35) holds true. Since X is dense in X1, for u ∈ X1 given, let uk ∈ X and
uk → u in X1. Then

lim
k→∞

∫

Ω

∑

|α|=|β|=m
aαβD

βukD
αv dx =

∫

Ω

∑

|α|=|β|=m
aαβD

βuDαv dx,

lim
k→∞

∫

Ω

∑

|α|=|β|=m
Di

(
aαβD

αv
)
Dβ−δiukdx =

∫

Ω

∑

|α|=|β|=m
Di

(
aαβD

αv
)
Dβ−δiu dx.

(2.38)

Due to uk satisfying (2.36), hence u ∈ X1 satisfies (2.36). Thus (2.31) is verified.

Remark 2.5. When (2.2) is a diagonal matrix, then (2.13) is the form

Dγu|∑M
γ
= 0, for

∣∣γ
∣∣ = m − 1, (2.39)

where
∑M

γ = {x ∈ ∂Ω |
∑n

i=1 aγ+δiγ+δi(x) · ni
2 > 0}. In this case, the corresponding trace

embedding theorem can be set, and the boundary value condition (2.13) is naturally satisfied.
On the other hand, if the weak solution u of (2.10)–(2.13) belongs to X1 ∩Wm,p(Ω) for some
p > 1, then by the trace embedding theorems, the condition (2.13) also holds true.

It remains to verify the condition (2.12). Let u0 ∈ X1 ∩Wm+1,2(Ω) satisfy (2.30). Since
Wm+1,2(Ω) ↪→ X2, hence we have

∫

Ω

⎡

⎣
∑

|α|=|β|=m,|γ|=m−1

(
aαβ(x)Dβu0 + bαγ(x)Dγu0

)
Dαu0 +

∑

|θ|,|λ|≤m−1

dθλ(x)Dλu0D
θu0 − fu0

⎤

⎦ds

−
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u0

⎞

⎠
2

ds = 0.

(2.40)

On the other hand, by (2.30), for any v ∈ C∞
0 (Ω), we get

∫

Ω

⎡

⎣−
∑

|α|=|β|=m
Di

(
aαβ(x)Dαu0

)
Dβ−δiv +

∑

|θ|,|λ|≤m−1

dθλ(x)Dλu0D
θv

−fv −Di

⎛

⎝
∑

|θ|=|γ|=m−1

biθγ(x)D
γu0

⎞

⎠Dθv

⎤

⎦dx = 0.

(2.41)
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Because the coefficients of L are sufficiently smooth, and C∞
0 is dense in Wm−1,2

0 (Ω), equality
(2.41) also holds for any v ∈ Wm−1,2

0 (Ω). Therefore, due to u0 ∈ Wm−1,2
0 (Ω), we have

∫

Ω

⎡

⎣−
∑

|α|=|β|=m
Di

(
aαβ(x)Dαu0

)
Dβ−δiu0 +

∑

|θ|,|λ|≤m−1

dθλ(x)Dλu0D
θu0

−fu0 −Di

⎛

⎝
∑

|θ|=|γ |=m−1

biθγ(x)D
γu0

⎞

⎠Dθu0

⎤

⎦dx = 0.

(2.42)

From (2.36), one drives

−
∫

Ω

∑

|α|=|β|=m
Di

(
aαβ(x)Dαu0

)
Dβ−δiu0dx =

∫

Ω

∑

|α|=|β|=m
aαβ(x)Dαu0D

βu0 dx, (2.43)

Furthermore,

−
∫

Ω
Di

⎛

⎝
∑

|θ|=|γ|=m−1

biθγ(x)D
γu0

⎞

⎠Dθu0dx

=
∫

Ω

∑

|α|=m,|γ|=m−1

bαγ(x)Dγu0D
αu0dx −

Nm−1∑

i=1

∫

∑C
i ∪

∑B
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u0

⎞

⎠
2

ds.

(2.44)

From (2.30) and (2.42), one can see that

Nm−1∑

i=1

∫

∑B
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u0

⎞

⎠
2

ds = 0. (2.45)

Noticing hi(x) > 0 in
∑B

i , one deduces that u0 satisfies (2.12) provided u0 ∈ X1 ∩Wm+1,2(Ω).
Finally, we discuss the well-posedness of the boundary value problem (2.10)–(2.13).

Let X be a linear space, and X1, X2 be the completion of X, respectively, with the norm
‖ · ‖1, ‖ · ‖2. Suppose that X1 is a reflexive Banach space and X2 is a separable Banach space.

Definition 2.6. A mapping G : X1 → X2
∗ is called to be weakly continuous, if for any xn, x0 ∈

X1, xn ⇀ x0 in X1, one has

lim
n→∞

〈
Gxn, y

〉
=
〈
Gx0, y

〉
, ∀y ∈ X2. (2.46)

Lemma 2.7 (see [3]). Suppose that G : X1 → X2
∗ is a weakly continuous, if there exists a bounded

open set Ω ⊂ X1, such that

〈Gu, u〉 ≥ 0, ∀u ∈ ∂Ω ∩X, (2.47)

then the equation Gu = 0 has a solution in X1.
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Theorem 2.8 (existence theorem). Let Ω ⊂ Rn be an arbitrary open set, f ∈ L2(Ω) and bαγ ∈
C1(Ω). If there exist a constant C > 0 and g ∈ L1(Ω) such that

C
∑

|γ |=m−1

∣∣ξγ
∣∣2 + C|ξi|2 − g ≤

∑

|λ|,|θ|≤m−1

dθλ(x)ξθξλ −
1
2

n∑

i=1

∑

|γ |=|β|=m−1

Dib
i
γβ(x)ξγ ξβ, (2.48)

where ξα is the component of ξ ∈ RNm−1 corresponding to Dαu, then the problem (2.10)–(2.13) has a
weak solution in X1.

Proof. Let 〈Lu, v〉 be the inner product as in (2.31). It is easy to verify that 〈Lu, v〉 defines a
bounded linear operator L : X1 → X2

∗. Hence L is weakly continuous (see [3]). From (2.42),
for u ∈ X we drive that

〈Lu, u〉 =
∫

Ω

⎡

⎣
∑

|α|=|β|=m
aαβ(x)DαuDβu +

n∑

i=1

∑

|λ|=|θ|=m−1

biλθ(x)D
θuDλ+δiu

+
∑

|γ |,|α|≤m−1

dγα(x)DγuDαu

⎤

⎦dx

−
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u

⎞

⎠
2

ds

=
∫

Ω

⎡

⎣
∑

|α|=|β|=m
aαβ(x)DαuDβu +

∑

|γ|,|α|≤m−1

dγα(x)DγuDαu

−1
2

n∑

i=1

∑

|γ |=|β|=m−1

Dib
i
γβ(x)D

γuDβu

⎤

⎦dx

+
1
2

Nm−1∑

i=1

⎡
⎢⎣
∫

∑B
i

−
∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u

⎞

⎠
2
⎤
⎥⎦ds

≥
∫

Ω

⎡

⎣
∑

|α|=|β|=m
aαβ(x)DαuDβu + C

∑

|γ|=m−1

|Dγu|2 + Cu2 − g(x)

⎤

⎦

+
1
2

Nm−1∑

i=1

⎡
⎢⎣
∫

∑B
i ∪

∑C
i

|hi(x)|

⎛

⎝
Nm−1∑

j=1

CB
ij(x)D

γju

⎞

⎠
2
⎤
⎥⎦ds.

(2.49)

Hence we obtain

〈Lu, u〉 ≥ C‖u‖2
1 − C, ∀u ∈ X. (2.50)
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Thus by Hölder inequality (see [13]), we have

〈
Lu − f, u

〉
≥ 0, ∀u ∈ X, ‖u‖1 = R great enough. (2.51)

By Lemma 2.7, the theorem is proven.

Theorem 2.9 (uniqueness theorem). Under the assumptions of Theorem 2.8 with g(x) = 0 in
(2.48). If the problem (2.10)–(2.13) has a weak solution in X1 ∩ Wm,p(Ω) ∩ Wm−1,q(Ω)((1/p) +
(1/q) = 1), then such a solution is unique. Moreover, if bαγ(x) = 0 in L, for all |α| = m, |γ | = m − 1,
then the weak solution u ∈ X1 of (2.10)–(2.13) is unique.

Proof. Let u0 ∈ X1 ∩ Wm,p(Ω) ∩ Wm−1,q be a weak solution of (2.10)–(2.13). We can see that
(2.30) holds for all v ∈ X1 ∩ Wm,p ∩ Wm−1,q(Ω). Hence Lu0, u0 is well defined. Let u1 ∈ X1 ∩
Wm,p∩Wm−1,q(Ω). Then from (2.49) it follows that < Lu1−Lu0, u1−u0 >= 0, we obtain u1 = u0,
which means that the solution of (2.10)–(2.13) in X1 ∩Wm,p ∩Wm−1,q(Ω) is unique. If all the
odd terms bαγ(x) of L, then (2.30) holds for all v ∈ X1, in the same fashion we known that the
weak solution of (2.10)–(2.13) in X1 is unique. The proof is complete.

Remark 2.10. In next subsection, we can see that under certain assumptions, the weak
solutions of degenerate elliptic equations are in X1 ∩Wm,p(Ω)∩Wm−1,q(Ω)((1/p)+(1/q) = 1).

3. Existence of Higher-Order Quasilinear Equations

Given the quasilinear differential operator

Au =
∑

|α|=|β|=m,|γ|=m−1

(−1)mDα
(
aαβ

(
x,
∧

u
)
Dβu + bαγ(x)Dγu

)

+
∑

|γ|=|θ|=m−1

(−1)m−1Dγ
(
dγθ

(
x,
∧

u
)
Dθu

)

+
∑

|λ|≤m−1

(−1)|λ|Dλgλ
(
x,
∧

u
)
,

(3.1)

where m ≥ 2 and
∧
u = {Dαu}|α|≤m−2.

Let aαβ(x, ξ) = aβα(x, ξ), the odd order part of (3.1) be as that in (2.4), bαγ ∈ C1(Ω), and
∑B

i

∑C
i , be the same as those in Section 2. The leading matrix is

M(x, ξ) = (aαiαj (x, ξ))i,j=1,...,Nm
, (3.2)

and the eigenvalues are {ei(x, ξ)}Nm

i=1 . We denote
∑M

i = {x ∈ ∂Ω | ei(x, 0) > 0}, 1 ≤ i ≤ Nm.
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We consider the following problem:

Au = f(x), x ∈ Ω,
∧

u|∂Ω = 0,

Nm−1∑

j=1

CB
ij(x)D

λju|∑B
i
= 0,

∣∣∣λj
∣∣∣ = m − 1, 1 ≤ i ≤ Nm−1,

Nm∑
j=1

CM
ij (x, 0)D

αj−δkj u · nkj |∑M
i
= 0, ∀δkj ≤ αj ,

with
∣∣αj

∣∣ = m, 1 ≤ i ≤ Nm, δkj =

⎧
⎪⎨

⎪⎩
0, . . . , 1︸ ︷︷ ︸

kj

, . . . , 0

⎫
⎪⎬

⎪⎭
.

(3.3)

Denote the anisotropic Sobolev space by

W
pα
|α|≤k(Ω) =

{
u ∈ Lp0(Ω) | p0 ≥ 1, Dαu ∈ Lpα(Ω), ∀1 ≤ |α| ≤ k, and pα ≥ 1, or pα = 0

}
,

(3.4)

whose norm is

‖u‖ =
∑

|α|≤k
sign pα‖Dαu‖Lpα , (3.5)

when all pα = p for |α| = k, then the space is denoted by W
p,pα
k,|α|≤k−1(Ω). qθ(|θ| ≤ k) is termed

the critical embedding exponent from W
pα
k,|α|≤k(Ω) to Lp(Ω), if qθ is the largest number of the

exponent p in where Dθu ∈ Lp(Ω), for all u ∈ W
pα
|α|≤k(Ω), and the embedding is continuous.

For example, when Ω is bounded, the space X = {u ∈ Lk(Ω) | k ≥ 1, Diu ∈ L2(Ω), 1 ≤
i ≤ n} with norm ‖u‖ = ‖∇u‖L2 + ‖u‖Lk is an anisotropic Sobolev space, and the critical
embedding exponents from X to LP (Ω) are qi = 2(1 ≤ i ≤ n), and q0 = max{k, 2n/(n − 2)}.

Suppose that the following hold.

(A1) The coefficients of the leading term of A satisfy one of the following two conditions:

(1) aαβ(x, η) = aαβ(x);

(2) aαβ(x, η) = 0, as α/= β.

(A2) There is a constant M > 0 such that

0 ≤ M
∑

|α|=|β|=m
aαβ(x, 0)ξαξβ ≤

∑

|α|=|β|=m
aαβ

(
x, η

)
ξαξβ

≤ M−1
∑

|α|=|β|=m
aαβ(x, 0)ξαξβ.

(3.6)
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(A3) There are functions Gi(x, η) (i = 0, 1, . . . , n) with Gi(x, 0) = 0, for all 1 ≤ i ≤ n, such
that

∑

|γ |=m−1

gγ
(
x,
∧

u
)
Dγu =

n∑

i=1

DiGi

(
x,
∧

u
)
= G0

(
x,
∧

u
)
. (3.7)

(A4) There is a constant C > 0 such that

C|ξ|2 ≤
∑

|α|=|β|=m−1

[
dαβ(x)ξαξβ −

1
2

n∑

i=1

Dib
i
αβ(x)ξαξβ

]
,

C
∑

|λ|≤m−1

sign pλ
∣∣ηλ

∣∣pλ − f1 ≤
∑

|θ|≤m−2

gθ
(
x, η

)
ηθ +G0

(
x, η

)
,

(3.8)

where f1 ∈ L1(Ω), p0 > 1, pλ > 1 or pλ = 0, for all 1 ≤ |λ| ≤ m − 2.

(A5) There is a constant c > 0 such that

∣∣aαβ

(
x, η

)∣∣ ≤ C,

∣∣dγθ

(
x, η

)∣∣ ≤ C

⎡

⎣
∑

|β|≤m−2

∣∣ηβ
∣∣Sβ + 1

⎤

⎦,

∣∣gγ
(
x, η

)∣∣ ≤ C

⎡

⎣
∑

|β|≤m−2

∣∣ηβ
∣∣Sβ + 1

⎤

⎦,

(3.9)

where 1 ≤ Sβ < qβ/2, 1 ≤ Sβ < qβ, qβ is a critical embedding exponent from
W

2,pλ
m−1,|λ|≤m−1(Ω) to LP (Ω). Let X be defined by (2.27) and X1 be the completion of X

under the norm

‖v‖1 =

⎡

⎣
∫

Ω

⎛

⎝
∑

|α|=|β|=m
aαβ(x, 0)DαvDβv +

∑

|γ|=m−1

|Dγv|2
⎞

⎠dx

+
∫

∂Ω

Nm−1∑

i=1

|hi(x)|

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj v

⎞

⎠
2

ds

⎤
⎥⎦

1/2

+
∑

|γ |≤m−2

sign pγ‖Dγv‖Lpγ ,

(3.10)
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and X2 be the completion of X with the norm

‖v‖ = ‖v‖Wm,p + ‖v‖Wm,2 +

⎡

⎣
∫

∂Ω

∑

|γ|=m−1

|Dγv|2ds

⎤

⎦
1/2

, (3.11)

where p ≥ max{2, qβ/(qβ − Sβ), 2qβ/(qβ − 2Sβ)}.
u ∈ X1 is a weak solution of (3.3), if for any v ∈ X2, we have

∫

Ω

⎡

⎣
∑

|α|=|β|=m
aαβ

(
x,
∧

u
)
DβuDαv +

∑

|α|=m,|γ|=m−1

bαγ(x)DγuDαv

+
∑

|γ|=|θ|=m−1

dγθ

(
x,
∧

u
)
DθuDγv +

∑

|λ|≤m−1

gλ
(
x,
∧

u
)
Dλv − fv

⎤

⎦dx

−
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u

⎞

⎠

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj v

⎞

⎠ds = 0.

(3.12)

Theorem 3.1. Under the conditions (A1)–(A5), if f ∈ Lp0
′
(Ω), (1/p0+1/p0

′) = 1, then the problem
(3.3) has a weak solution in X1.

Proof. Denote by 〈Au, v〉 the left part of (3.12). It is easy to verify that the inner product
〈Au, v〉 defines a bounded mapping A : X1 → X2

∗ by the condition (A5).
Let u ∈ X, by (A2)–(A4), one can deduce that

〈Au, u〉 ≥
∫

Ω

⎡

⎣M
∑

|α|=|β|=m
aαβ(x, 0)DαuDβu + C

∑

|γ|=m−1

|Dγu|2 + C
∑

|θ|≤m−2

∣∣∣Dθu
∣∣∣
pθ

⎤

⎦dx

+
1
2

Nm−1∑

i=1

⎡
⎢⎣
∫

∑B
i

−
∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ij(x)D

γju

⎞

⎠
2
⎤
⎥⎦ds −

∫

Ω

[
fu +

∣∣f1
∣∣]dx.

(3.13)

Noticing that hi|∑B
i
> 0, hi|∑C

i
≤ 0,

∑B
i ∪

∑C
i = ∂Ω, by Hölder and Young inequalities (see[13]),

from (3.13) we can get

〈Au, u〉 ≥ 0, ∀u ∈ X, ‖u‖X1
large enough. (3.14)

Ones can easily show that the mapping A : X1 → X2
∗ is weakly continuous. Here we omit

the details of the proof. By Lemma 2.7, this theorem is proven.
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Figure 2

In the following, we take an example to illustrate the application of Theorem 3.1.

Example 3.2. We consider the boundary value problem of odd order equation as follows:

∂3u

∂x3
+
∂3u

∂y3
−Δu + u3 = f

(
x, y

)
,

(
x, y

)
∈ Ω ⊂ R2, (3.15)

where Ω is an unit ball in R2, see Figure 2
The odd term matrix is

B
(
x, y

)
=
(
nx 0
0 ny

)
=
(
x 0
0 y

)
. (3.16)

It is easy to see that

B∑

1

= {x ∈ ∂Ω | nx = x > 0} =
{
−π

2
< θ <

π

2

}
,

B∑

2

=
{
x ∈ ∂Ω | ny = y > 0

}
= {0 < θ < π}.

(3.17)

The boundary value condition associated with (3.15) is

u|∂Ω = 0,

∂u

∂x

∣∣∣∣∑B
1

=
∂u

∂x
(cos θ, sin θ) = 0, −π

2
< θ <

π

2
,

∂u

∂x

∣∣∣∣∑B
2

=
∂u

∂x
(cos θ, sin θ) = 0, 0 < θ < π.

(3.18)
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Applying Theorem 3.1, if f ∈ L4/3(Ω), then the problem (3.15)–(3.18) has a weak solution
u ∈ W1,2(Ω).

4. Wm,p-Solutions of Degenerate Elliptic Equations

We start with an abstract regularity result which is useful for the existence problem of
Wm,p(Ω)-solutions of degenerate quasilinear elliptic equations of order 2m. Let X,X1, X2 be
the spaces defined in Definition 2.6, and Y be a reflective Banach space, at the same time
Y ↪→ X1.

Lemma 4.1. Under the hypotheses of Lemma 2.7, there exists a sequence of {un} ⊂ X, un ⇀ u0 in
X1 such that 〈Gun, un〉 = 0. Furthermore, if, we can derive that ‖u‖Y < C, C is a constant, then the
solution u0 of Gu = 0 belongs to Y .

In the following, we give some existence theorems of Wm,p-solutions for the boundary
value conditions (4.3)–(4.5) of higher-order degenerate elliptic equations.

First, we consider the quasilinear equations

Ãu =
∑

|α|=|β|=m,|γ|=m−1

(−1)mDα
(
aαβ

(
x, D̃u

)
Dβu + bαγ(x)Dγu

)

+
∑

|γ|≤m−1

(−1)|γ |Dγgγ
(
x, D̃u

)
= f(x), x ∈ Ω,

(4.1)

where D̃u = {Dαu}|α|≤m−1. Now, we consider the following problem

Ãu = f(x), x ∈ Ω, (4.2)

D̃u|∂Ω = 0, (4.3)

Nm−1∑

j=1

CB
ij(x)D

λju|∑B
i
= 0,

∣∣∣λj
∣∣∣ = m − 1, 1 ≤ i ≤ Nm−1, (4.4)

Nm∑
j=1

CM
ij (x, 0)D

αj−δkj u · nkj |∑M
i
= 0, ∀δkj ≤ αj ,

∣∣αj
∣∣ = m, 1 ≤ i ≤ Nm, δkj =

⎧
⎪⎨

⎪⎩
0, . . . , 1︸ ︷︷ ︸

kj

, . . . , 0

⎫
⎪⎬

⎪⎭
.

(4.5)

The boundary value condition associated with (4.1) is given by (4.3)–(4.5). Suppose
that Ω ⊂ Rn is bounded, and the following assumptions hold.
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(B1) The condition (3.6) holds, and there is a continuous function λ(x) ≥ 0 on Ω such
that

λ(x)|ξ|2m ≤
∑

|α|=|β|=m
aαβ(x, 0)ξαξβ, ∀ξ ∈ Rn, (4.6)

where ξα = ξα1
1 · · · ξαn

n , α = (α1, . . . , αn).

(B2) Ω′ = {x ∈ Ω | λ(x) = 0} is a measure zero set in Rn, and there is a sequence of
subdomains Ωk with cone property such that Ωk ⊂⊂ Ω/Ω′, Ωk ⊂ Ωk+1 and ∪kΩk =
Ω/Ω′.

(B3) The positive definite condition is

C
∑

|λ|≤m−1

|ξλ|pλ − f1 ≤
∑

|θ|≤m−1

gθ(x, ξ)ξθ −
1
2

n∑

i=1

∑

|γ |=|α|=m−1

Dib
iξαξγ , (4.7)

where C is a constant, p0 > 1, pλ > 1 or pλ = 0 for 1 ≤ |λ| ≤ m − 1, f1 ∈ L1(Ω).

(B4) The structure conditions are

∣∣aαβ(x, ξ)
∣∣ ≤ C,

∣∣gγ(x, ξ)
∣∣ ≤ C

⎡

⎣
∑

|θ|≤m−1

|ξθ|Sθ + 1

⎤

⎦,
(4.8)

where C is a constant, 0 ≤ Sθ < qθ, qθ is the critical embedding exponent from
W

pλ
|λ|≤m−1(Ω) to LP (Ω).

Let X be defined by (2.27) and X̃1 be the completion of X with the norm

‖u‖ =

⎡

⎣
∫

Ω

∑

|α|=|β|=m
aαβ(x, 0)DαuDβudx

⎤

⎦
1/2

+
∑

|α|≤m−1

sign pα‖Dαu‖Lpα

+

⎡

⎣
Nm−1∑

i=1

∫

∂Ω
|hi(x)|

⎛

⎝
Nm−1∑

j=1

CB
ij(x)D

γju

⎞

⎠ds

⎤

⎦
1/2

.

(4.9)
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Definition 4.2. u ∈ X̃1 is a weak solution of (4.2)–(4.5), if for any v ∈ X2, the following equality
holds:

∫

Ω

⎡

⎣
∑

|α|=|β|=m
aαβ

(
x, D̃u

)
DβuDαv +

∑

|α|=m,|γ|=m−1

bαγ(x)DγuDαv +
∑

|γ|≤m−1

gγ
(
x, D̃u

)
Dγv − fv

⎤

⎦dx

−
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u

⎞

⎠

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj v

⎞

⎠ds = 0.

(4.10)

Theorem 4.3. Under the assumptions (B1)–(B4), if f ∈ Lp0
′
, then the problem and (4.2)–(4.5) has a

weak solution u ∈ X̃1. Moreover, if there is a real number δ ≥ 1, such that

∫

Ω
|λ(x)|−δdx < ∞, (4.11)

then the weak solution u ∈ Wm,p(Ω) ∩ X̃1, p = 2δ/(1 + δ).

Proof. According to Lemma 4.1, it suffices to prove that there is a constant C > 0 such that for
any u ∈ X (X is as that in Section 3) with 〈Ãu, u〉 = 0, we have

‖u‖Wm,p ≤ C, p =
2δ

1 + δ
. (4.12)

From (4.10) we know

〈
Ãu, u

〉
=
∫

Ω

⎡

⎣
∑

|α|=|β|=m
aαβ

(
x, D̃u

)
DβuDαu +

∑

|α|=m,|γ|=m−1

bαγ(x)DγuDαu

+
∑

|γ |≤m−1

gγ
(
x, D̃u

)
Dγu − fu

⎤

⎦dx

−
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ijD

γj u

⎞

⎠
1/2

ds, x ∈ X1.

(4.13)
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Due to (B1) and (B3) we have

〈
Ãu, u

〉
=
∫

Ω

⎡

⎣
∑

|α|=|β|=m
aαβ

(
x, D̃u

)
DβuDαu +

n∑

i=1

∑

|α|=|γ|=m−1

biαγ(x)D
γuDα+δiu

+
∑

|γ |≤m−1

gγ
(
x, D̃u

)
Dγu − fu

⎤

⎦dx

−
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ij(x)D

γju

⎞

⎠
2

ds

=
∫

Ω

⎡

⎣
∑

|α|=|β|=m
aαβ

(
x, D̃u

)
DβuDαu − 1

2

n∑

i=1

∑

|α|=|γ|=m−1

Dib
i
αγ(x)D

γuDαu

+
∑

|γ |≤m−1

gγ
(
x, D̃u

)
Dγu − fu

⎤

⎦dx

−
Nm−1∑

i=1

∫

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ij(x)D

γju

⎞

⎠
2

ds

≥
∫

Ω

⎡

⎣λ(x)|∇u|2m + C
∑

|θ|≤m−1

∣∣∣Dθu
∣∣∣
pθ

⎤

⎦dx −
∫

Ω

[
fu +

∣∣f1
∣∣]dx

+
1
2

Nm−1∑

i=1

⎡
⎢⎣
∫

∑B
i −

∑C
i

hi(x)

⎛

⎝
Nm−1∑

j=1

CB
ij(x)D

γju

⎞

⎠
2
⎤
⎥⎦ds. (4.14)

Noticing that hi|∑B
i
> 0, hi|∑C

i
≤ 0,

∑B
i ∩

∑C
i = ∂Ω, and f ∈ Lp0

′
consequently we have

ε

∫

Ω
|u|p0

′
dx +

∫

Ω

[
C1
∣∣f
∣∣p0

′
+
∣∣f1

∣∣
]
dx

≥
∫

Ω

[
fu +

∣∣f1
∣∣]dx ≥

∫

Ω

⎡

⎣λ(x)|∇u|2m + C
∑

|θ|≤m−1

∣∣∣Dθu
∣∣∣
Pθ

⎤

⎦dx,
(4.15)

where the pθ > 1 or pθ = 0, pθ is the critical embedding exponent from W
pθ
|θ|≤m−1(Ω) to Lp(Ω).

By the reversed Hölder inequality (see [14])

∫

Ω
λ(x)|∇u|2m ≥

[∫

Ω
|λ(x)|−δdx

]−1/δ[∫

Ω
|∇u|2mδ/(1+δ)dx

](1+δ)/δ
. (4.16)
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Then we obtain

C ≥
∫

Ω

⎡

⎣λ(x)|∇u|2m + C
∑

|θ|≤m−1

∣∣∣Dθu
∣∣∣
Pθ

⎤

⎦dx. (4.17)

From (4.15) and (4.17), the estimates (4.12) follows. This completes the proof.

Next, we consider a quasilinear equation

∑

|α|=|β|=m,|γ|=m−1

(−1)mDα
(
aαβ(x,�u)Dβu + bαβ(x)Dγu

)

+
∑

|γ|≤m−1

(−1)|γ |Dγgγ(x,�u) = f(x), x ∈ Ω,
(4.18)

where �u = {u, . . . , Dmu}.
Suppose that the following holds.

(B′
4) There is a real number δ ≥ 1 such that

∫

Ω
|λ(x)|−δdx < ∞. (4.19)

(B′
5) The structural conditions are

∣∣aαβ

(
x, η

)∣∣ ≤ C,

∣∣gγ(x, ξ)
∣∣ ≤ C

⎡

⎣
∑

|θ|≤m−1

|ξθ|Sγθ +
∑

|α|=m
|ξα|tγ + 1

⎤

⎦,
(4.20)

where C is a constant, 0 ≤ Sγθ < ((qγ − 1)/qγ)qθ, 0 ≤ tγ < p(qγ − 1)/qγ , p = 2δ/(1 + δ), qγ , qθ
are the critical embedding exponents from W

pλ
|λ≤m−1|(Ω) to LqΩ.

Theorem 4.4. Let the conditions (B1)–(B3) and (B′
4), (B

′
5) be satisfied. If f ∈ Lp0

′
(Ω), then the

problem (4.2)–(4.5) has a weak solution u ∈ Wm,p(Ω) ∩ X̃1, p = 2δ/(1 + δ).

The proof of Theorem 4.4 is parallel to that of Theorem 4.3; here we omit the detail.
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