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Given a periodic, integrable potential q(t), we will study conditions on q(t) so that the operator
Lqx = x

′′
+ qx admits the maximum principle or the antimaximum principle with respect to the

periodic boundary condition. By exploiting Green functions, eigenvalues, rotation numbers, and
their estimates, we will give several optimal conditions.

1. Introduction and Main Results

Maximum Principle (MP) and AntiMaximum Principle (AMP) are fundamental tools in
many problems. Generally speaking, criteria for MP and AMP are related to the location
of relevant eigenvalues. See, for example, [1–5]. We also refer the reader to Campos et al. [6]
for a recent abstract setting of MP and AMP.

In this paper we are studying criteria of MP and AMP for the periodic solution
problem of ODEs. For such a problem, MP and AMP are not only related to periodic
eigenvalues, but also to antiperiodic eigenvalues. Though there exist several sufficient
conditions of MP and AMP for the periodic solution problem in literature like [7–9] (for a
brief explanation to these conditions, see Section 4.3), an optimal characterization on MP and
AMP is not available. The main aim of this paper is to give several optimal criteria of MP
and AMP of the periodic solution problem of ODEs which are expressed using eigenvalues,
Green functions, or rotation numbers.

Mathematically, let S := R/Z be the circle of length 1. Given a 1-periodic potential
q ∈ L1 := L1(S,R), which defines a linear differential operator Lq : W2,1 := W2,1(S,R) → L1
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by

(
Lqx

)
(t) = x′′(t) + q(t)x(t), (1.1)

we say that Lq : W2,1 → L1 admits the antimaximum principle if

(i) Lq : W2,1 → L1 is invertible, and, moreover,

(ii) for any h ∈ L1 with h � 0, one has mint(L−1
q h)(t) > 0. Here h � 0 means that h(t) ≥ 0

a.e. t and h(t) > 0 on a subset of positive measure.

In an abstract setting, these mean that L−1
q : L1 → W2,1 is a strictly positive operator

with respect to the ordering h1 ≥ h2 defined by h1(t) ≥ h2(t) a.e. t.
In terminology of differential equations, Lq admits AMP if and only if

(i) for any h ∈ L1, the following equation:

x′′ + q(t)x = h(t) (1.2)

has a unique 1-periodic solution x = xh ∈ W2,1, and, moreover,

(ii) if h � 0, one has xh(t) > 0 for all t.

We say that Lq admits the maximum principle if maxt(L−1
q h)(t) < 0 for all h ∈ L1 such

that h � 0.
Using periodic and antiperiodic eigenvalues of Hill’s equations [10, 11], we will obtain

the following complete characterizations on MP and AMP.

Theorem 1.1. Let q ∈ L1. Then Lq admits MP iff λ0(q) > 0, and Lq admits AMP iff λ0(q) < 0 ≤
λ1(q).

Here λ0(q) and λ1(q) are the smallest 1-periodic and the smallest 1-antiperiodic
eigenvalues of

x′′ +
(
λ + q(t)

)
x = 0, (1.3)

respectively. For the precise meaning of these eigenvalues, see Section 2.2.
Given an arbitrary potential q ∈ L1, by introducing the parameterized potentials λ+ q,

λ ∈ R, Theorem 1.1 can be stated as follows.

Theorem 1.2. Let q ∈ L1. Then Lλ+q admits MP iff λ ∈ (−∞, λ0(q)), and Lλ+q admits AMP iff
λ ∈ (λ0(q), λ1(q)].

We will also use Green functions to give complete characterizations on MP and AMP
of Lq. See Theorem 4.1 and Corollary 4.4.

The paper is organized as follows. In Section 2, we will briefly introduce some
concepts on Hill’s equations [10, 12, 13], including the Poincaré matrixes Pq, eigenvalues
{λm(q), λm(q)} and rotation numbers �(q) and oscillation of solutions. In Section 3, we will
use the Poincaré matrixes and fundamental matrix solutions to give the formula of the Green
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functions Gq(t, s) of the periodic solution problem (1.2). We will introduce for each potential
q ∈ L1 two matrixes, Nq and Mq, and two functions, G̃q(t, s) and Ĝq(t). They are related
with the Poincaré matrix Pq and the Green function Gq(t, s), respectively. Some remarkable
properties on these new objects will be established.

Section 4 is composed of three subsections. At first, in Section 4.1, we will use the sign
of Green functions Gq(t, s) to establish in Theorem 4.1 and Corollary 4.4 optimal conditions
for MP and AMP. Then, in Section 4.2, we will use eigenvalues to give a complete description
for the sign of Green functions. The proofs of Theorems 1.1 and 1.2 will be given. One may
notice that in the deduction of the sign of Green functions, besides eigenvalues, rotation
numbers, and oscillation of solutions, some important estimates on Poincaré matrixes in
[10, 12] will be used. Moreover, in the deduction of AMP, a very remarkable reduction
for elliptic Hill’s equations by Ortega [14, 15] is effectively used to simplify the argument.
Note that such a reduction is originally used to deduce the formula for the first Birkhoff
twist coefficient of periodic solutions of nonlinear, scalar Newtonian equations. Finally, in
Section 4.3, we will outline how the known sufficient conditions on AMP can be easily
deduced from Theorem 1.1.

2. Basic Facts on Hill’s Equations

2.1. Fundamental Solutions and Poincaré Matrixes

Given q ∈ L1, let us introduce some basic concepts on the Hill’s equation

x′′ + q(t)x = 0. (2.1)

Let ϕi(t) = ϕi,q(t), i = 1, 2, be the fundamental solutions of (2.1), that is, ϕi(t) are solutions
satisfying the initial values

(
ϕ1(0)

ϕ′
1(0)

)

=

(
1

0

)

,

(
ϕ2(0)

ϕ′
2(0)

)

=

(
0

1

)

. (2.2)

The fundamental matrix solution of (2.1) is

Φ(t) = Φq(t) :=

(
ϕ1(t) ϕ2(t)

ϕ′
1(t) ϕ′

2(t)

)

, t ∈ R. (2.3)

The Liouville theorem asserts that detΦ(t) ≡ +1. That is,

Φ(t) ∈ SL(2,R) :=
{
A ∈ R

2×2 : detA = +1
}
, (2.4)

the symplectic group of R2.
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The Poincaré matrix of (2.1) is

P = Pq :=

(
ϕ1(1) ϕ2(1)

ϕ′
1(t) ϕ′

2(1)

)

=:

(
a b

c d

)

∈ SL(2,R). (2.5)

In particular,

detP = ad − bc = +1. (2.6)

The Floquet multipliers of (2.1) are eigenvalues μ1,2 = μ1,2(q) of P . Then μ1 · μ2 = +1, following
from (2.6).

We say that (2.1) is elliptic, hyperbolic or parabolic, respectively, if |μ1,2(q)| = 1 and
μ1,2(q)/= ± 1, |μ1,2(q)|/= 1, or μ1,2(q) = ±1, respectively. We write the sets of those potentials
as E1,H1 and P1, respectively.

By introducing the trace

tr
(
q
)
:= trace

(
Pq

)
= a + d ∈ R, (2.7)

we have the following classification.

Lemma 2.1 (see [10]). Equaqtion (2.1) is elliptic, hyperbolic, or parabolic, iff | tr(q)| < 2, | tr(q)| > 2,
or | tr(q)| = 2, respectively. In particular, q ∈ E1 implies that bc /= 0.

Proof. We need to prove the last conclusion. Suppose that q ∈ E1. If bc = 0, we have ad =
detP = 1 and |a + d| = | tr(q)| < 2. These are impossible.

2.2. Eigenvalues, Rotation Numbers, and Oscillation of Solutions

Given q ∈ L1, consider eigenvalue problems of (1.3) with respect to the 1-periodic boundary
condition

x(1) − x(0) = x′(1) − x′(0) = 0, (2.8)

or with respect to the 1-antiperiodic boundary condition

x(1) + x(0) = x′(1) + x′(0) = 0. (2.9)

It is well known that one has (real) sequences

λ0
(
q
)
< λ1

(
q
) ≤ λ1

(
q
)
< · · · < λm

(
q
) ≤ λm

(
q
)
< · · · (2.10)
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such that

(i) λm(q) → +∞ and λm(q) → +∞ as m → ∞;

(ii) λ is an eigenvalue of problem (1.3)–(2.8) (of problem (1.3)–(2.9), resp.) iff λ = λm(q)
or λ = λm(q)where m ∈ Z

+ is even (m ∈ N is odd, resp.). Here λ0(q) is void;

(iii) λ is a periodic (an antiperiodic, resp.) eigenvalue of (1.3) iff

tr
(
λ + q

)
= +2

(
tr
(
λ + q

)
= −2, resp.). (2.11)

For these general results, one can refer to [10, 11]. Note that in [10] only piecewise
continuous potentials are considered. However, these are also true for L1 potentials. See
[12, 16].

Denote

I1 :=
{
q ∈ L1 : the associated operator Lq : W2,1 −→ L1 is invertible

}
. (2.12)

Using periodic eigenvalues or traces of Poincaré matrixes, the set I1 can be characterized as

I1 =
{
q ∈ L1 : λ2m

(
q
)
/= 0, λ2m

(
q
)
/= 0 ∀m ∈ Z

+
}

=
{
q ∈ L1 : tr

(
q
)
= a + d /= + 2

}
.

(2.13)

Here the equivalence of (2.13) follows from (2.11).
Let us introduce the rotation number for (2.1). Under the transformation (x, x′) =

(r sin θ, r cos θ), we know from (2.1) that the argument θ satisfies

θ′ = cos2θ + q(t)sin2θ. (2.14)

Definition 2.2 (see [17–19]). Given q ∈ L1. Define

�
(
q
)
:= lim

t→+∞
θ(t)
2πt

, (2.15)

where θ(t) is any solution of (2.14). The limit (2.15) does exist and is independent of the
choice of θ(t). Such a number �(q) is called the rotation number of (2.1). An alternative
definition for (2.15) is

�
(
q
)
:= lim

b−a→+∞
#{s ∈ [a, b) : x(s) = 0}

2(b − a)
∈ [0,∞), (2.16)

where x(t) is any nonzero solution of (2.1).
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The connection between eigenvalues and oscillation of solutions is as follows.

Lemma 2.3. Given q ∈ L1, consider the parameterized Hill’s equations (1.3) where λ ∈ R. Then

(i) in case λ ≤ λ0(q), any nonzero solution x(t) of (1.3) is nonoscillatory. More precisely, x(t)
has at most one zero in the whole line R;

(ii) in case λ > λ0(q), any nonzero solution x(t) of (1.3) is oscillatory. More precisely, x(t) has
infinitely many zeros.

2.3. Continuous Dependence on Potentials

Associated with the Hill’s equation (2.1), we have the objects Φq(t), Pq, {λm(q), λm(q)}, and
�(q). All are determined by the potential q ∈ L1. It is a classical result that all of these objects
are continuously dependent on q ∈ L1 when the L1 topology ‖ · ‖1 := ‖ · ‖L1(0,1) is considered.
For the fundamental matrix solutions, this can be stated as follows.

Lemma 2.4 (see [12, 13]). Given t ∈ R, the following mapping:

(
L1, ‖·‖1

)
� q −→ Φq(t) ∈ R

2×2 (2.17)

is continuously Frechét differentiable. Moreover, the Frechét derivatives can be expressed using ϕi.

In the space L1, one has also the weak topology w1 which is defined by

qn −→ q0 in
(
L1, w1

)
⇐⇒

∫

[0,1]
g(t)qn(t)dt −→

∫

[0,1]
g(t)q0(t)dt ∀g ∈ L∞([0, 1],R).

(2.18)

In a recent paper [20], Zhang has proved that these objects have stronger dependence on
potentials q. Some statements of these facts are as follows.

Lemma 2.5 (Zhang [20]). The following mapping is continuous:

(
L1, w1

)
� q �−→ Φq(·) ∈

(
C
(
[0, 1],R2×2

)
, ‖·‖C([0,1])

)
. (2.19)

Moreover, the following (nonlinear) functionals:

q �−→ λm
(
q
)
, q �−→ λm

(
q
)
, q �−→ �

(
q
)

(2.20)

are also continuous in q ∈ (L1, w1).

From this lemma, the set I1 is open in (L1, ‖ · ‖1) and in (L1, w1).
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3. Green Functions and Their Variants

3.1. Green Functions

Let q ∈ I1. Then, for each h ∈ L1, (1.2) has a unique solution x = xh satisfying the 1-periodic
boundary condition (2.8). From the Fredholm principle, x = xh can be represented as

x(t) = L−1
q h(t) =

∫

[0,1]
Gq(t, s)h(s)ds, t ∈ [0, 1], (3.1)

where

G = Gq : D
def= [0, 1]2 −→ R (3.2)

is the so-called Green function of the periodic solution problem (1.2)–(2.8). Another
definition of the Green function is

Gq(t, s) =
(
L−1
q δs

)
(t). (3.3)

Here δs is the 1-periodic unit Dirac measure located at s. The Green function Gq can be
expressed using ϕi(t) and P as follows.

Lemma 3.1. Given q ∈ I1, we have the following results.

(i) Gq(t, s) is given by

Gq(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
bϕ1(s) + (d − 1)ϕ2(s)

)
ϕ1(t) +

(
(1 − a)ϕ1(s) − cϕ2(s)

)
ϕ2(t)

2 − a − d
for 0 ≤ s ≤ t ≤ 1,

(
bϕ1(s) + (1 − a)ϕ2(s)

)
ϕ1(t) +

(
(d − 1)ϕ1(s) − cϕ2(s)

)
ϕ2(t)

2 − a − d
for 0 ≤ t ≤ s ≤ 1.

(3.4)

(ii) Gq(t, s) is continuous in D and is symmetric

Gq(t, s) ≡ Gq(s, t) on D. (3.5)

Moreover, Gq(t, s) can be extended to a continuous 1-periodic function in both arguments, that is,
Gq ∈ C(T2), T2 = R

2/Z2.

Proof. (i) Formula (3.4) can be found from related references. For completeness, let us give
the proof.

Given h ∈ L1. By the constant-of-variant formula, solutions of (1.2) are given by

x(t) = c1ϕ1(t) + c2ϕ2(t) +
∫

[0,t]

(
ϕ2(t)ϕ1(s) − ϕ1(t)ϕ2(s)

)
h(s)ds, t ∈ [0, 1], (3.6)
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where ci ∈ R are constants. In order that x(t) is 1-periodic, it is necessary and sufficient that
x(t) satisfies (2.8), that is, ci satisfy

c1 = ac1 + bc2 +
∫

[0,1]

(
bϕ1(s) − aϕ2(s)

)
h(s)ds,

c2 = cc1 + dc2 +
∫

[0,1]

(
dϕ1(s) − cϕ2(s)

)
h(s)ds.

(3.7)

Since tr(q) = a + d /= 2, we know that

c1 =
1

2 − a − d

∫

[0,1]

(
bϕ1(s) + (1 − a)ϕ2(s)

)
h(s)ds,

c2 =
1

2 − a − d

∫

[0,1]

(
(d − 1)ϕ1(s) − cϕ2(s)

)
h(s)ds.

(3.8)

Hence

L−1
q h(t) =

∫

[0,1]

(
bϕ1(s) + (1 − a)ϕ2(s)

)
ϕ1(t) +

(
(d − 1)ϕ1(s) − cϕ2(s)

)
ϕ2(t)

2 − a − d
h(s)ds

+
∫

[0,t]

(−ϕ2(s)ϕ1(t) + ϕ1(s)ϕ2(t)
)
h(s)ds

=
∫

[0,t]
Gq(t, s)h(s)ds,

(3.9)

where Gq(t, s) has the form of (3.4).
(ii) From formula (3.4), the symmetry (3.5) is obvious. Moreover, Gq ∈ C(D). Finally,

let us show that Gq can be extended to a continuous function on the torus T2. By using (2.2),
(2.5), and (2.6), one has from (3.4)

Gq(0, s) = Gq(1, s) =
bϕ1(s) + (1 − a)ϕ2(s)

2 − a − d
, s ∈ [0, 1]. (3.10)

By the symmetry (3.5), one has

Gq(t, 0) = Gq(0, t) = Gq(1, t) = Gq(t, 1), t ∈ [0, 1]. (3.11)

Thus Gq(t, s) can be understood as a function on T
2.

In general, Gq(t, s) is not differentiable at the diagonal t = s.
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3.2. Two Matrixes and Two Functions

Let us introduce, for any q ∈ L1, the following two matrixes:

N = Nq :=

(
b d − 1

1 − a −c

)

, (3.12)

M = Mq :=
1
2

(
Nq +Nτ

q

)
=

⎛

⎜
⎝

b
(d − a)

2
(d − a)

2
−c

⎞

⎟
⎠. (3.13)

Note that M is a symmetric matrix. Using the Poincaré matrix P , N and M can be rewritten
as

N = J − JPτ = J − P−1J, M =
1
2
(
PJ + (PJ)τ

)
. (3.14)

Here τ denotes the transpose of matrixes, I is the identity matrix, and

J =

(
0 −1
1 0

)

. (3.15)

Some results onNq andMq and their connections with the Poincaré matrix Pq are as follows.
All of them can be verified directly.

Lemma 3.2. Given q ∈ L1, letN = Nq, M = Mq, and P = Pq. Then

detN = 2 − tr
(
q
)
, (3.16)

detM =
4 − (tr(q))2

4
, (3.17)

PN = Nτ, (3.18)

PNPτ = N. (3.19)

From equalities in Lemma 3.2, we have the following statements.

Lemma 3.3. Given q ∈ L1, then

(i) Nq is nonsingular iff q ∈ I1, and Mq is nonsingular iff q ∈ H1 ∪ E1;

(ii) Equation (2.1) is elliptic, hyperbolic, or parabolic, iff detMq > 0, detMq < 0, or detMq =
0, respectively.

Since q ∈ L1 is 1-periodic, one has the following equality for the fundamental matrix
solution

Φ(t + 1) = Φ(t)P, t ∈ R. (3.20)
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Let us introduce the vector-valued function

ϕ(t) = ϕq(t)
def=

(
ϕ1(t)

ϕ2(t)

)

, t ∈ R, (3.21)

which is composed by the fundamental solutions ϕi(t) of (2.1). Then

(
ϕ(t), ϕ′(t)

)
= Φτ(t),

(
ϕ(t + 1), ϕ′(t + 1)

)
= Φτ(t + 1) = (Φ(t)P)τ = Pτ(ϕ(t), ϕ′(t)

)
.

(3.22)

Hence

ϕ(t + 1) ≡ Pτϕ(t), t ∈ R. (3.23)

In the following, we use 〈x, y〉 = xτy to denote the Euclidean inner product on R
2. In

case q ∈ I1, the Green function Gq(t, s) in (3.4) can be rewritten as

Gq(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 − tr

(
q
)
〈
ϕ(t),Nϕ(s)

〉
for (t, s) ∈ D1

def= {(t, s) : 0 ≤ s ≤ t ≤ 1},

1
2 − tr

(
q
)
〈
ϕ(t),Nτϕ(s)

〉
for (t, s) ∈ D2

def= {(t, s) : 0 ≤ t ≤ s ≤ 1}.
(3.24)

Here N = Nq is as in (3.12). Note that D1 ∪D2 = D.
Suggested by (3.24), let us introduce for any q ∈ L1 two functions

G̃q(t, s) :=
〈
ϕ(t),Nϕ(s)

〉
, (t, s) ∈ R

2, (3.25)

Ĝq(t) := G̃q(t, t) ≡
〈
ϕ(t),Mϕ(t)

〉
, t ∈ R, (3.26)

where N = Nq and M = Mq are as in (3.12) and (3.13). Note that these functions are well
defined on the whole plane and the whole line, respectively. Some properties are as follows.

Lemma 3.4. For any q ∈ L1, one has

G̃q(t + k, s + k) ≡ G̃q(t, s), ∀(t, s) ∈ R
2, k ∈ Z, (3.27)

G̃q(s + 1, s) ≡ G̃q(s, s), ∀s ∈ R, (3.28)

Ĝq(t + k) ≡ Ĝq(t), ∀t ∈ R, k ∈ Z. (3.29)
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Proof. We need only to verify (3.27) for the case k = 1. To this end, one has

G̃q(t + 1, s + 1) =
〈
ϕ(t + 1),Nϕ(s + 1)

〉 (
by (3.25)

)

=
〈
Pτϕ(t),NPτϕ(s)

〉 (
by (3.23)

)

=
〈
ϕ(t), PNPτϕ(s)

〉

=
〈
ϕ(t),Nϕ(s)

〉 (
by (3.19)

)

= G̃q(t, s)
(
by (3.25)

)
.

(3.30)

For (3.28), we have

G̃q(s + 1, s) =
〈
ϕ(s + 1),Nϕ(s)

〉 (
by (3.25)

)

=
〈
Pτϕ(s),Nϕ(s)

〉 (
by (3.23)

)

=
〈
ϕ(s), PNϕ(s)

〉

=
〈
ϕ(s),Nτϕ(s)

〉 (
by (3.18)

)

=
〈
Nϕ(s), ϕ(s)

〉

= G̃q(s, s)
(
by (3.25)

)
.

(3.31)

Finally, equality (3.29) follows simply from (3.26) and (3.27).

We remark that, in general, G̃q(s + k, s) = G̃q(s, s) is not true for k ∈ Z \ {0, 1}. Note
that (3.29) asserts that Ĝq(t) is 1-periodic. Some further properties on Ĝq(t) are as follows.

Lemma 3.5. (i) Let q ∈ E1. Then Ĝq(t) does not have any zero and therefore does not change sign.
(ii) Let q ∈ H1. Then Ĝq(t) has only nondegenerate zeros, if they exist.
(iii) Let q ∈ P1. Then Ĝq(t) has a constant sign. Moreover,

Ĝq(t) ≡ 0 ⇐⇒ Pq = ±I. (3.32)

Proof. (i) Suppose that q ∈ E1 is elliptic. We have b /= 0 from Lemma 2.1. By (3.17), detM > 0.
Hence the symmetric matrix M is either positive definite or negative definite, according to
b > 0 or b < 0. Since ϕ(t)/= 0 for all t, we know that Ĝq(t) = 〈ϕ(t),Mϕ(t)〉/= 0 on R.

(ii) Suppose that q ∈ H1. We have detM < 0. Thus there exists an orthogonal
transformation V = Vq such that

M = V −1 · diag(ν1, ν2) · V. (3.33)
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Here νk = νk(q) are eigenvalues of M and satisfy ν1 · ν2 < 0. Then

Ĝq(t) = ν1ψ
2
1(t) + ν2ψ

2
2(t),

(
ψ1(t)

ψ2(t)

)

:= V

(
ϕ1(t)

ϕ2(t)

)

. (3.34)

Note that {ψ1, ψ2} is also a system of fundamental solutions of (2.1). As ν1 · ν2 < 0, we have

Ĝq(t) = ν1ψ+(t)ψ−(t), (3.35)

where

ψ±(t) := ψ1(t) ± cψ2(t), c :=

√∣
∣
∣
∣
ν2
ν1

∣
∣
∣
∣ > 0. (3.36)

Note that {ψ+, ψ−} is a linearly independent system of solutions of (2.1). From (3.35), Ĝq(t)
has only nondegenerate zeros, if they exist. In fact, suppose that Ĝq(t0) = 0, say ψ+(t0) = 0.
We have ψ ′

+(t0)/= 0 and ψ−(t0)/= 0. Thus

Ĝ′
q(t0) = ν1ψ

′
+(t0)ψ−(t0)/= 0. (3.37)

(iii) Suppose that q ∈ P1. We have detMq = 0. Then one eigenvalue of Mq is 0 and
another is trace(Mq) = b − c. In this case,

Ĝq(t) ≡ (b − c)ψ2(t), (3.38)

where ψ(t) is a nonzero solution of (2.1). This shows that Ĝq(t) does not change sign.
We distinguish two cases.

(i) q ∈ P1 is stable-parabolic, that is, Pq = ±I. In this case, one hasMq = 0 and Ĝq(t) ≡ 0.

(ii) q ∈ P1 is unstable-parabolic, that is, Pq /= ±I. In this case, we assert that b − c /= 0.

Otherwise, assume b − c = 0. Then

Pq =

(
a b

b d

)

. (3.39)

Since ad − b2 = detPq = 1 and a + d = trace(Pq) = ±2, we obtain (a ∓ 1)2 + b2 = 0. Hence
a = ±1 and b = 0. Moreover, d = a = ±1. Thus Pq = ±I and q is stable-parabolic. In conclusion,
for unstable-parabolic case, we have b − c /= 0. Now it follows from (3.38) that Ĝq(t)/≡ 0. As
proved before, Ĝq(t) does not change sign. Moreover, it is easy to see from (3.38) that all zeros
of Ĝq(t) must be degenerate, if they exist.

From these, (3.32) is clear.
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4. Optimal Conditions for MP and AMP

4.1. Complete Characterizations of MP and AMP Using Green Functions

Using Green functions Gq(t, s), we have the following characterizations on MP and AMP.

Theorem 4.1. Let q ∈ I1 with the Green function Gq(t, s). Then Lq admits MP iff
max(t,s)∈DGq(t, s) ≤ 0, and Lq admits AMP iff min(t,s)∈DGq(t, s) ≥ 0.

Proof. We give only the proof for AMP.
The sufficiency is as follows. Suppose that q ∈ I1 satisfies min(t,s)∈DGq(t, s) ≥ 0. Then,

for any h � 0, it is easy to see from (3.1) that xh(t) ≥ 0 for all t ∈ [0, 1]. We will show that
xh(t) > 0 for all t and consequently (1.2) admits AMP.

Otherwise, suppose that xh(t0) = 0 for some t0 ∈ [0, 1], that is,

∫

[0,1]
Gq(t0, s)h(s)ds = 0. (4.1)

Since Gq(t0, ·)h(·) ≥ 0, we have necessarily

Gq(t0, s)h(s) = 0 a.e. s ∈ [0, 1]. (4.2)

From (3.24), we know that

(i) on the interval [0, t0],

Gq(t0, s) =
1

2 − tr
(
q
)
〈
Nτϕ(t0), ϕ(s)

〉
(4.3)

is a solution of (2.1);

(ii) on the interval [t0, 1],

Gq(t0, s) =
1

2 − tr
(
q
)
〈
Nϕ(t0), ϕ(s)

〉
(4.4)

is also a solution of (2.1).

We assert that these solutions are nonzero when the corresponding intervals are
nontrivial. As ϕ(s) is composed of two linearly independent solutions ϕi(s), the nontriviality
of these solutions is the same as

Nτϕ(t0)/= 0, Nϕ(t0)/= 0, (4.5)

which are evident because ϕ(t0)/= 0 and (3.16) shows that detN/= 0.
From the above assertion, we know that Gq(t0, s) (≥ 0) has only isolated zeros for

s ∈ [0, 1]. As h � 0, we have Gq(t0, ·)h(·) � 0, a contradiction with (4.2).
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For the necessity, let us assume that min(t,s)∈DGq(t, s) < 0. Then one has some (t0, s0) ∈
D so that Gq(t0, s0) < 0. Hence one has some δ0 > 0 such that

Gq(t0, s) ≤
Gq(t0, s0)

2
< 0 ∀s ∈ [0, 1] with |s − s0| ≤ δ0. (4.6)

Let us choose h ∈ C∞(S) ⊂ L1 such that

h(s) =

⎧
⎨

⎩

> 0 for |s − s0| ≤ δ0,

0 for |s − s0| > δ0.
(4.7)

Then h � 0. However, the corresponding periodic solution x = xh of (1.2) satisfies

xh(t0) =
∫

[0,1]∩[s0−δ0,s0+δ0]
Gq(t0, s)h(s)ds < 0. (4.8)

Hence Lq does not admit AMP.

In order to apply Theorem 4.1, it is important to compute the signs of the following
nonlinear functionals of potentials:

I1 � q �−→ min
(t,s)∈D

Gq(t, s) ∈ R, I1 � q �−→ max
(t,s)∈D

Gq(t, s) ∈ R. (4.9)

To this end, let us establish some relation between Gq(t, s) and G̃q(t, s).
For general q ∈ L1, denote

sq := sign(2 − a − d) = sign
(
2 − tr

(
q
)) ∈ {0,±1}. (4.10)

Suppose that q ∈ I1 so that Gq(t, s) is meaningful. We assert that

∣∣2 − tr
(
q
)∣∣ ·Gq(t, s) =

⎧
⎨

⎩

sqG̃q(t, s), (t, s) ∈ D1,

sqG̃q(t + 1, s), (t, s) ∈ D2.
(4.11)

In fact, for (t, s) ∈ D1, the first case of (4.11) follows immediately from the defining equalities
(3.24), (3.25), and (4.10). On the other hand, for (t, s) ∈ D2, from the second case of (3.24),
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one has

∣
∣2 − tr

(
q
)∣∣ ·Gq(t, s) = sq

〈
ϕ(t),Nτϕ(s)

〉

= sq
〈
(Pτ)−1ϕ(t + 1),Nτϕ(s)

〉 (
by (3.23)

)

= sq
〈
ϕ(t + 1), P−1Nτϕ(s)

〉

= sq
〈
ϕ(t + 1),Nϕ(s)

〉 (
by (3.18)

)

= sqG̃q(t + 1, s)
(
by (3.25)

)
.

(4.12)

Hence (4.11) is also true for this case.
By introducing the domain

D̃
def= {(t, s) : s ≤ t ≤ s + 1, 0 ≤ s ≤ 1} (4.13)

and the following nonlinear functionals G, G : L1 → R

G
(
q
) def= min

(t,s)∈D̃
sqG̃q(t, s), G

(
q
) def= max

(t,s)∈D̃
sqG̃q(t, s), (4.14)

we have the following statements.

Lemma 4.2. There hold, for all q ∈ I1,

min
(t,s)∈D

Gq(t, s) =
G
(
q
)

∣∣2 − tr
(
q
)∣∣ , max

(t,s)∈D
Gq(t, s) =

G
(
q
)

∣∣2 − tr
(
q
)∣∣ .

(4.15)

Proof. We only prove the first equality of (4.15) because the second one is similar. By (4.11),
for any s ∈ [0, 1], we have

∣∣2 − tr
(
q
)∣∣ · min

t∈[s,1]
Gq(t, s) = min

t∈[s,1]
sqG̃q(t, s),

∣∣2 − tr
(
q
)∣∣ · min

t∈[0,s]
Gq(t, s) = min

t∈[0,s]
sqG̃q(t + 1, s) = min

t∈[1,s+1]
sqG̃q(t, s).

(4.16)

Hence

∣∣2 − tr
(
q
)∣∣ · min

t∈[0,1]
Gq(t, s) = min

{
min
t∈[0,s]

sqG̃q(t, s), min
t∈[s,1]

sqG̃q(t, s)
}

= min
{
min
t∈[s,1]

sqG̃q(t, s), min
t∈[1,s+1]

sqG̃q(t, s)
}

= min
t∈[s,s+1]

sqG̃q(t, s), ∀s ∈ [0, 1].

(4.17)
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Consequently,

∣
∣2 − tr

(
q
)∣∣ · min

(t,s)∈D
Gq(t, s) = min

s∈[0,1]
min

t∈[s,s+1]
sqG̃q(t, s) = min

(t,s)∈D̃
sqG̃q(t, s) = G

(
q
)
. (4.18)

This is just (4.15) because tr(q)/= 2.

Remark 4.3. (i) The functionals G(q) and G(q) are well defined for all potentials q ∈ L1.
Moreover, by (4.15),G(q) andG(q) have the same signs with the functionals in (4.9).

(ii) Compared with the defining formulas in (4.9), the novelty of formulas in (4.14) is
that when s is fixed, sqG̃q(·, s) is a solution of (2.1), while when t is fixed, sqG̃q(t, ·) is also a
solution of (2.1). A similar observation is used in [8] as well.

(iii) Due to the factor sq which is zero at those q ∈ L1 \ I1, G(q) and G(q) are in
general discontinuous at q ∈ L1 \I1. However,G(q) andG(q) are continuous at q ∈ I1 in the
L1 topology ‖ · ‖1 or even in the weak topology w1. See Lemmas 2.4 and 2.5.

By Lemma 4.2, Theorem 4.1 can be restated as follows.

Corollary 4.4. Let q ∈ I1. Then Lq admits MP iffG(q) ≤ 0, and Lq admits AMP iffG(q) ≥ 0.

4.2. Complete Characterizations of MP and AMP Using Eigenvalues

Lemma 4.5. Let q ∈ L1 be such that λ0(q) > 0. ThenG(q) < 0 and Lq admits MP.

Proof. For simplicity, denote

Q0 :=
{
q ∈ L1 : λ0

(
q
)
> 0
}
. (4.19)

For any q ∈ Q0, one has a + d > 2 and sq = −1. See [10]. Thus Q0 ⊂ H1. In the following let us
fix any q ∈ Q0.

Step 1. We assert that

G̃q(t, t) = Ĝq(t)/= 0 ∀t ∈ R. (4.20)

Since q ∈ H1, we can use the representation (3.35) for Ĝq(t) where ν1 /= 0 and ψ±(t) are
nonzero solutions of (2.1). Since λ0(q) > 0, both ψ±(t) have at most one zero. See Lemma 2.3.
Hence Ĝq(t) has at most two zeros. However, as Ĝq(t) is 1-periodic, Ĝq(t) does not have any
zero. This proves (4.20).

Step 2. We assert that

G̃q(t, s)/= 0 ∀(t, s) ∈ D̃. (4.21)
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If (4.21) is false, there exists (t0, s0) ∈ D̃ such that G̃q(t0, s0) = 0. By introducing

x0(t) := G̃q(t, s0), t ∈ R, (4.22)

one has

x0(t0) = 0. (4.23)

We know from (3.28) and (4.20) that x0(t) satisfies

x0(s0 + 1) = G̃q(s0 + 1, s0) = G̃q(s0, s0) = x0(s0)/= 0. (4.24)

This shows that t0 ∈ (s0, s0 + 1). Since x0(t) is a nonzero solution of (2.1), (4.23) implies

x′
0(t0)/= 0. (4.25)

Since x0(t) has the same nonzero value at the end-points of the interval [s0, s0+1], it is easy to
see from (4.24) and (4.25) that x0(t)must have another zero t1 ∈ (s0, s0 + 1)which is different
from t0. Consequently, the solution x0(t) of (2.1) has at least zeros t0 and t1. This is impossible
because λ0(q) > 0. See Lemma 2.3.

Step 3. Let us notice that

b =
〈
(1, 0)τ ,M(1, 0)τ

〉
= Ĝq(0) = G̃q(0, 0) ∀q ∈ L1. (4.26)

We assert that

b = b
(
q
)
> 0 ∀q ∈ Q0. (4.27)

To prove (4.27), let us fix q ∈ Q0 and consider qλ(t) := λ+q(t), where λ ∈ (−∞, 0]. Then q0 = q.
Since λ0(qλ) = −λ + λ0(q), qλ ∈ Q0 for all λ ∈ (−∞, 0]. When λ � −1, b(qλ) can be estimated.
The basic idea is to consider (1.3) as a perturbation of the equation

x′′ + λx = 0 (4.28)

for which

b(λ) =
sinhω

ω
, λ = −ω2, ω > 0. (4.29)

It is well known that the difference b(qλ)− b(λ) can be controlled by the norm of the potential
q when λ � −1. For piecewise continuous and L2 potentials, see [10] and [12], respectively.
Similar estimates are also true for L1 potentials. In fact, these can be generalized to Hill’s



18 Boundary Value Problems

equations with coefficients beingmeasures [16]. We quote from [12, Theorem 3] the following
result:

∣
∣b
(
qλ
) − b(λ)

∣
∣ ≤ exp

(
ω +

∥
∥q
∥
∥
1

)

ω2
. (4.30)

Hence

b
(
qλ
) ≥ sinhω

ω
− exp

(
ω + ‖q‖1

)

ω2

=
sinhω

ω

(
1 +O

(
1
ω

))

−→ +∞

(4.31)

as ω → +∞. We conclude

b
(
qλ
)
> 0 ∀λ � −1. (4.32)

On the other hand, by (4.21) and (4.26),

b
(
qλ
)
/= 0 ∀λ ∈ (−∞, 0]. (4.33)

Moreover, it follows from Lemma 2.4 that b(qλ) is continuous in λ ∈ (−∞, 0]. Thus (4.27)
follows simply from (4.32) and (4.33).

Step 4. Since sq = −1, sqG̃q(t, s) ≡ −G̃q(t, s). It follows from (4.21), (4.26), and (4.27) that, for
all (t, s) ∈ D̃, sqG̃q(t, s) = −G̃q(t, s) has the same sign with −b(q) < 0. Thus G(q) < 0. By
Corollary 4.4, Lq admits MP.

Lemma 4.6. Suppose that q ∈ L1 satisfies λ0(q) < 0 and λ1(q) > 0. Then G(q) > 0 and Lq admits
AMP.

Proof. For simplicity, denote

Q1 :=
{
q ∈ L1 : λ0

(
q
)
< 0 < λ1

(
q
)}

. (4.34)

Recall from [11] that eigenvalues λ0(q) and λ1(q) can be characterized using rotation numbers
by

λ0
(
q
)
= max

{
λ ∈ R : �

(
λ + q

)
= 0
}
, λ1

(
q
)
= min

{
λ ∈ R : �

(
λ + q

)
=

1
2

}
. (4.35)
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Here q ∈ L1 is arbitrary. Hence

Q1 =
{
q ∈ L1 : 0 < �

(
q
)
<

1
2

}
⊂ E1. (4.36)

In the following, let q ∈ E1. We have tr(q) ∈ (−2, 2), sq = +1 and sqG̃q(t, s) ≡ G̃q(t, s).
Now we argue as in the proof of Lemma 4.5. In this case, result (4.20) can be obtained from
Lemma 3.5(i) because q ∈ E1. If (4.21) is false at some (t0, s0) ∈ D̃, we have also t0 ∈ (s0, s0+1).
By letting x0(t) be as in (4.22), one has also some t1 ∈ (s0, s0 + 1) such that x0(t1) = 0 and
t1 /= t0. With loss of generality, let us assume that s0 < t0 < t1 < s0 + 1. Notice that the solution
x0(t) = G̃q(t, s0) of (2.1) has zeros t0 and t1. By the Sturm comparison theorem, any nonzero
solution x(t) of (2.1) has at least one zero in [t0, t1]. In particular, for any n ∈ N, G̃q(t, s0 − n)
is a solution of (2.1). Hence there exists some t̂n ∈ [t0, t1] such that

G̃q

(
t̂n, s0 − n

)
= 0. (4.37)

By equality (3.27),

G̃q(t + n, s0) ≡ G̃q(t, s0 − n). (4.38)

Thus

x0

(
t̃n
)
= G̃q

(
t̃n, s0

)
= 0, t̃n := t̂n + n ∈ [t0 + n, t1 + n] ⊂ (s0 + n, s0 + n + 1). (4.39)

From these, the distribution of zeros of the specific solution x0(t) = G̃q(t, s0) satisfies

#
{
t ∈ [0, s0 + n) : G̃q(t, s0) = 0

}
≥ n + 1 ∀n ∈ N. (4.40)

By definition (2.16) for the rotation number, we obtain

�
(
q
)
= lim

n→+∞

#
{
t ∈ [0, s0 + n) : G̃q(t, s0) = 0

}

2(s0 + n)
≥ 1

2
, (4.41)

a contradiction with the characterization of q ∈ Q1. Thus (4.21) is also true for q ∈ Q1.
Since sq = +1, we have from (4.21) and (4.26) that sign(G(q)) = sign(b) = +1, because

we will prove in Lemma 4.7 that b = b(q) > 0 for all q ∈ Q1.

Note that Q1 is the set of potentials which are in the first ellipticity zone. By Lemmas
2.1 or 3.5, b(q)/= 0 for all q ∈ Q1. It seems that there are several ways to deduce that b(q) > 0
for all q ∈ Q1. However, some remarkable result on elliptic Hill’s equations by Ortega [14, 15]
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can simplify the argument. Let us describe the result. Suppose that q ∈ E1. Consider the
temporal-spatial transformation

τ =
(t − t0)

α
, y(τ) = x(t0 + ατ), (4.42)

where t0 ∈ R and α > 0. Then (2.1) is transformed into a new Hill’s equation

d2y

dτ2
+ q∗(τ)y = 0, (4.43)

where q∗ is now T ∗ := 1/α periodic. The result of Ortega shows that it is always possible
to choose some t0, α such that the Poincaré matrix Pq∗ (of the period T ∗) of (4.43) is a rigid
rotation

Pq∗ = Rϑ :=

(
cosϑ − sinϑ

sinϑ cosϑ

)

. (4.44)

See [15, Lemma 4.1] and [21]. We remark that such a result is very important to study
the twist character and Lyapunov stability of periodic solutions of nonlinear Newtonian
equations and planar Hamiltonian systems. See, for example, [14, 15, 21].

Note that the transformation (4.42) does not change rotation numbers. Recall that the
polar coordinates to define rotation numbers are

x = r cos
(π
2
− θ
)
, x′ = r sin

(π
2
− θ
)
. (4.45)

We see from (4.44) that ϑ is related with �(q) via

−ϑ ≡ 2π�
(
q
)
mod 2πZ. (4.46)

Hence

b
(
q∗
)
= − sinϑ = sin 2π�

(
q
)
. (4.47)

Lemma 4.7. We assert that

b
(
q
)
> 0 ∀q ∈ Q1. (4.48)

Proof. We first prove that sign(b(q)), q ∈ E1, is invariant under transformations (4.42). In fact,
it is well known that Pq∗ and Pq are conjugate

Pq∗ = V −1PqV (4.49)
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for some V ∈ SL(2,R). Denote

V =

(
α β

γ δ

)

∈ SL(2,R). (4.50)

From (4.49), one has the explicit relation

b
(
q∗
)
= bδ2 + (a − d)δγ − cγ2 =

〈
v,Mqv

〉
, v :=

(
δ,−γ)τ . (4.51)

Note that the quadratic form 〈x,Mqx〉 is definite. See the proof of Lemma 3.5(i). Since v /= 0,
we have

sign
(
b
(
q∗
))

= sign
(〈
v,Mqv

〉)
= sign

(〈
(1, 0)τ ,Mq(1, 0)τ

〉)
= sign

(
b
(
q
))
. (4.52)

Hence sign(b(q)) is invariant under transformations (4.42).
Now (4.48) can be obtained as follows. Let q ∈ Q1. Then �(q) ∈ (0, 1/2). By (4.47),

the transformed potential q∗ satisfies b(q∗) > 0. By the invariance, we have the desired result
(4.48).

Lemma 4.8. Suppose that q ∈ L1 satisfies λ1(q) = 0. Then G(q) = 0 and Lq admits AMP.

Proof. Since λ1(q) = 0, we have tr(q) = −2 and sq = +1. See (2.11). Moreover, by (2.10), we
have λ0(q) < λ1(q) = 0. Let qε := q − ε. Then qε ∈ Q1 for all 0 < ε � 1. We know from
Lemma 4.6 thatG(qε) > 0 for 0 < ε � 1. Letting ε ↓ 0 and noticing thatG(qε) is continuous at
ε = 0, we get

G
(
q
)
= lim

ε↓0
G
(
qε
) ≥ 0. (4.53)

On the other hand, let us take an antiperiodic eigen function y(t) of (2.1) associated with
λ1(q) = 0. Denote by t0 the smallest nonnegative zero of y(t). Then t0 ∈ [0, 1). Moreover,
both t0 and t0 + 1 are zeros of y(t) because of the 1-antiperiodicity of y(t). By the Sturm
comparison theorem, the solution G̃q(t, t0) of (2.1) must have some zero in [t0, t0 + 1]. Hence
mint∈[t0,t0+1]G̃q(t, t0) ≤ 0. As sq = +1, we obtain

G
(
q
) ≤ min

t∈[t0,t0+1]
G̃q(t, t0) ≤ 0. (4.54)

In conclusion we have G(q) = 0.

Lemma 4.9. Suppose that q ∈ L1 satisfies λ1(q) < 0. Then Lq does not admit neither MP nor AMP.

Proof. We need not to consider the case q ∈ L1 \ I1 because Lq is not invertible.
In the following let us assume that q ∈ I1 satisfies λ1(q) < 0. Then sq = ±1. The

following is a modification of the last part of the proof of Lemma 4.8.
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Let us take an antiperiodic eigenfunction y(t) associated with λ1(q). Then the set of all
zeros of y(t) is {t0 + k}k∈Z for some t0 ∈ [0, 1). Denote

x0(t) := G̃q(t, t0), t ∈ R. (4.55)

Then x0(t) is a nonzero solution of (2.1). Since λ1(q) < 0, by applying the Sturm comparison
theorem to y(t) and x0(t), we know that x0(t)must have some zero t̂0 in (t0, t0+1), the interior
of the interval [t0, t0 + 1] because t0 and t0 + 1 are consecutive zeros of y(t). As x0(t)/≡ 0, one
must have

t̂0 ∈ (t0, t0 + 1), x0

(
t̂0
)
= 0, x′

0

(
t̂0
)
/= 0. (4.56)

Thus x0(t) changes sign near t̂0. Consequently,

G
(
q
) ≤ min

t∈[t0,t0+1]
sqG̃q(t, t0) = min

t∈[t0,t0+1]
sqx0(t) < 0. (4.57)

Now Corollary 4.4 shows that Lq does not admit AMP. We have also

G
(
q
) ≥ max

t∈[t0,t0+1]
sqx0(t) > 0. (4.58)

Hence Lq does not admit MP.

Due to the ordering (2.10) of eigenvalues, the statements in Theorems 1.1 and 1.2 are
equivalent. Now let us give the proof of Theorem 1.2. Recall that λ0(λ + q) = −λ + λ0(q) and
λ1(λ + q) = −λ + λ1(q) for all λ ∈ R. By Lemma 4.5, if λ ∈ (−∞, λ0(q)), Lλ+q admits MP.
By Lemmas 4.6 and 4.8, Lλ+q admits AMP for λ ∈ (λ0(q), λ1(q)]. By Lemma 4.9, Lλ+q does
not admit MP nor AMP for λ ∈ (λ1(q),∞). Using the ordering (2.10) for eigenvalues, we
complete the proof of Theorem 1.2.

From Lemmas 4.5, 4.6, 4.8, and 4.9, the sign of Green functions is clear in all cases.

Definition 4.10. Given q ∈ L1, we say that Lq admits strong antimaximum principle (SAMP) if
Lq admits AMP and, moreover, there exists cq > 0 such that

min
t

(
L−1
q h
)
(t) ≥ cq‖h‖1 ∀h ∈ L1, h � 0. (4.59)

Then we have the following complete characterizations for SAMP.

Theorem 4.11. Let q ∈ L1. Then Lq admits SAMP iff λ0(q) < 0 < λ1(q) iff 0 < �(q) < 1/2.

4.3. Explicit Conditions for AMP

Let us recall some known sufficient conditions for AMP.
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Lemma 4.12 (Torres and Zhang [9]). Suppose that q ∈ L1 satisfies the following two conditions:

q � 0, (4.60)

λ1
(
q
) ≥ 0. (4.61)

Then Lq admits AMP.

In the proof there, the positiveness condition (4.60) is technically used extensively.
Some optimal estimates on condition (4.61) can be found in Zhang and Li [22]. For an
exponent γ ∈ [1,∞], let us introduce the following Sobolev constant:

K
(
γ
)
:= inf

u∈H1
0 (0,1), u /= 0

‖u′‖22
‖u‖2γ

. (4.62)

Here ‖ · ‖γ = ‖ · ‖Lγ (0,1). These constants K(γ) can be explicitly expressed using the Gamma
function of Euler. The following lower bound for λ1(q) is established in [22]:

∥∥q+
∥∥
p ≤ K

(
2p∗
)
=⇒ λ1

(
q
) ≥ π2

(

1 −
∥∥q+

∥∥
p

K
(
2p∗
)

)

(≥ 0), (4.63)

where p, p∗ := p/(p − 1) ∈ [1,∞]. Hence one sufficient condition for (4.61) is

∥∥q+
∥∥
p ≤ K

(
2p∗
)
. (4.64)

Now such an Lp condition (4.64) is quite standard in literature like [8, 23], because in case
p = ∞, (4.64) reads as the classical condition

∥∥q+
∥∥
∞ ≤ K(2) = π2. (4.65)

In order to overcome the technical assumption (4.60) on positiveness of q(t), one
observation is as follows.

Lemma 4.13 (Torres [8, Theorem 2.1]). Let q ∈ L1. Suppose that all gaps of consecutive zeros of all
nonzero solutions x(t) of (2.1) are strictly greater than the period 1. Then the Green function Gq(t, s)
has a constant sign.

By Theorem 4.1 of this paper, one sees that the hypothesis in Lemma 4.13 on solutions
of (2.1) can yield MP or AMP. Combining ideas from [8, 9, 22], Cabada and Cid have
overcome the positiveness condition (4.60) to obtain the following criteria.
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Lemma 4.14 (Cabada and Cid [7, Theorem 3.1]). Suppose that q ∈ L1 satisfies the following two
conditions:

∫

[0,1]
q(t)dt > 0, (4.66)

∥
∥q+

∥
∥
p < K

(
2p∗
)
. (4.67)

Then Lq admits AMP.

Very recently, Cabada et al. [24, 25] have generalized criteria (4.66)-(4.67) for Lq to
AMP of the periodic solutions of the so-called p-Laplacian problem

(∣
∣x′∣∣p−2x′

)′
+ q(t)|x|p−2x = h(t)

(
1 < p < ∞), (4.68)

with the constants K(2p∗) being replaced by more general Sobolev constants [26].
We end the paper with some remarks.
(i) Recall the following trivial upper bound:

λ0
(
q
) ≤ −

∫

[0,1]
q(t)dt ∀q ∈ L1. (4.69)

See, for example, [26]. Criteria (4.66)-(4.67) can be deduced from Theorem 1.1 with the help
of estimates (4.63) and (4.69). In fact, by Theorem 4.11, conditions (4.66) and (4.67) guarantee
that Lq admits SAMP. For AMP of Lq, condition (4.67) can be improved as

∥∥q+
∥∥
p ≤ K

(
2p∗
)
. (4.70)

Theorem 1.1 shows that condition (4.61) is optimal, while the complete generalization of
condition (4.60) is λ0(q) < 0.

(ii) It is also possible to construct many potentials q for which Lq admits AMP, while
(4.70) is violated. For example, let q̃n(t) = sin 2nπt and q̂n ∈ L1 be defined by

q̂n(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n for t ∈
[
0,

1
n log(n + 2)

)
,

0 for t ∈
[

1
n log(n + 2)

, 1
)
.

(4.71)

Then ‖q̂n‖1 = 1/ log(n + 2) → 0 and the Riemann-Lebesgue lemma shows that Aq̃n + q̂n → 0
in (L1, w1), where A > 0 is arbitrarily fixed. In particular, it follows from Lemma 2.5 that

λ1
(
Aq̃n + q̂n

) −→ λ1(0) = π2 > 0. (4.72)
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Since
∫

[0,1]

(
Aq̃n + q̂n

)
dt =

1
log(n + 2)

> 0, (4.73)

we conclude that for q = Aq̃n + q̂n with n � 1, Lq admits AMP. However, when A > 0 is large
and n � 1,

∥
∥(Aq̃n + q̂n

)
+

∥
∥
1 =

A

π
+ o(1) (4.74)

is also large. Hence Aq̃n + q̂n does not satisfy (4.70).
(iii) Notice that the lower bound (4.63) has actually shown that, under (4.67) ((4.70),

resp.), the gaps of consecutive zeros of all nonzero solutions x(t) of (2.1) are > 1 (≥ 1, resp.).
However, for those potentials as in Theorem 1.1, zeros of solutions of (2.1) may not be so
evenly distributed. This is the difference between the sufficient conditions in this subsection
and our optimal conditions given in Theorem 1.1.

Acknowledgments

The author is supported by the Major State Basic Research Development Program (973
Program) of China (no. 2006CB805903), the Doctoral Fund of Ministry of Education of China
(no. 20090002110079), the Program of Introducing Talents of Discipline to Universities (111
Program) of Ministry of Education and State Administration of Foreign Experts Affairs of
China (2007), and the National Natural Science Foundation of China (no. 10531010).

References

[1] I. V. Barteneva, A. Cabada, and A. O. Ignatyev, “Maximum and anti-maximum principles for the
general operator of second order with variable coefficients,” Applied Mathematics and Computation,
vol. 134, no. 1, pp. 173–184, 2003.

[2] H.-C. Grunau and G. Sweers, “Optimal conditions for anti-maximum principles,” Annali della Scuola
Normale Superiore di Pisa. Classe di Scienze. Serie IV, vol. 30, no. 3-4, pp. 499–513, 2001.
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