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Using a fixed point theorem of general α-concave operators, we present in this paper criteria which
guarantee the existence and uniqueness of positive solutions for two classes of nonlinear perturbed
Neumann boundary value problems for second-order differential equations. The theorems for
Neumann boundary value problems obtained are very general.

1. Introduction and Preliminaries

In this paper, we are interested in the existence and uniqueness of positive solutions for the
following nonlinear perturbed Neumann boundary value problems (NBVPs):

(P±)

⎧
⎨

⎩

±u′′(t) +m2u(t) = f(t, u(t)) + g(t), 0 < t < 1,

u′(0) = u′(1) = 0,
(1.1)

where m is a positive constant, f : [0, 1] × [0,+∞) → [0,+∞) and g : [0, 1] → [0,+∞) are
continuous.

It is well known that Neumann boundary value problem for the ordinary differential
equations and elliptic equations is an important kind of boundary value problems. During
the last two decades, Neumann boundary value problems have deserved the attention of
many researchers [1–10]. By using-fixed point theorems in cone, in [1, 5, 7–9], the authors
discussed the existence of positive solutions for ordinary differential equation Neumann
boundary value problems.
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Recently, the authors [4] discussed second-order superlinear repulsive singular
Neumann boundary value problems by using a nonlinear alternative of Leray-Schauder and
Krasnosel’skii fixed-point theorem on compression and expansion of cones, and obtained the
existence of at least two positive solutions under reasonable conditions. In [6], the authors
established the existence of sign-changing solutions and positive solutions for fourth-order
Neumann boundary value problem by using the fixed-point index and the critical group.
Besides the above methods mentioned, the method of upper and lower solutions is also used
in the literature [2, 3, 10]. However, to the best of our knowledge, few papers can be found
in the literature on the existence and uniqueness of positive solutions for the NBVPs (P±).
Different from the above works mentioned, in this paper, we will use a fixed-point theorem
of general α-concave operators to show the existence and uniqueness of positive solutions for
the NBVPs (P±).

By a positive solution of (P±), we understand a function u(t) ∈ C2[0, 1] which is
positive on 0 < t < 1 and satisfies the differential equation and the boundary conditions
in (P±).

We now present a fixed point theorem of general α-concave operators which will be
used in the latter proofs. Let E be a real Banach space and P be a cone in E, θ denotes the null
element. Given h > θ(i.e., h ≥ θ and h/= θ), we denote by Ph the set

Ph =
{
x ∈ P | ∃λ(x), μ(x) > 0 such that λ(x)h ≤ x ≤ μ(x)h

}
. (1.2)

See [11] for further information.

Theorem 1.1 (see [11]). Assume that cone P is normal and operator A satisfies the following
conditions:

(B1) A : Ph → Ph is increasing in Ph,

(B2) for for all x ∈ Ph and t ∈ (0, 1), there exists α(t) ∈ (0, 1) such that A(tx) ≥ tα(t)Ax,

(B3) there is a constant l ≥ 0 such that x0 ∈ [θ, lh].

Then operator equation x = Ax + x0 has a unique solution in Ph.

Remark 1.2. An operator A is said to be general α-concave if A satisfies condition (B2).

2. Positive Solutions for the Problems (P±)

In this section, we will apply Theorem 1.1 to study the general NBVPs (P±) and then we will
obtain new results on the existence and uniqueness of positive solutions for the problems
(P±). The following conditions will be assumed:

(H1) f(t, x) is increasing in x for fixed t,

(H2) for any γ ∈ (0, 1) and x ≥ 0, there exists ϕ(γ) ∈ (γ, 1] such that f(t, γx) ≥
ϕ(γ)f(t, x) for t ∈ [0, 1],

(H3) for any t ∈ [0, 1], f(t, a) > 0, where a = 1/2(chm + 1).

In the following, we will work in the Banach space C[0, 1] and only the sup-norm is
used. Set P = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. It is easy to see that P is
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a normal cone of which the normality constant is 1. Let G(t, s) be the Green’s function for the
boundary value problem

−u′′(t) +m2u(t) = 0, 0 < t < 1,

u′(0) = u′(1) = 0.
(2.1)

Then,

G(t, s) =
1
ρ

⎧
⎨

⎩

ψ(s)ψ(1 − t), 0 ≤ s ≤ t ≤ 1,

ψ(t)ψ(1 − s), 0 ≤ t ≤ s ≤ 1,
(2.2)

where ρ = m · shm, ψ(t) = chmt. It is obvious that ψ(t) is increasing on [0, 1], and

0 < G(t, s) ≤ G(t, t), 0 ≤ t, s ≤ 1. (2.3)

Lemma 2.1 (see [9]). Let G(t, s) be the Green’s function for the NBVP (2.1). then,

G(t, s) ≥ 1
ch2m

chmt · ch(1 − t)m ·G(t0, s), t, t0, s ∈ [0, 1]. (2.4)

Theorem 2.2. Assume (H1) − (H3) hold. Then the NBVP (P−) has a unique positive solution u∗ in
Ph, where h(t) = ψ(t)ψ(1 − t) = (1/2)(chm + ch(m − 2mt)), t ∈ [0, 1].

Remark 2.3. Let b = (1/2)(em + e−m). Then it is easy to check that a = min{h(t) : t ∈ [0, 1]} =
(1/2)(chm + 1), b = max{h(t) : t ∈ [0, 1]} = chm.

Proof of Theorem 2.2. It is well known that u is a solution of the NBVP (P−) if and only if

u(t) =
∫1

0
G(t, s)

[
f(s, u(s)) + g(s)

]
ds, (2.5)

where G(t, s) is the Green’s function for the NBVP (2.1). For any u ∈ P, we define

Au(t) =
∫1

0
G(t, s)f(s, u(s))ds, x0(t) =

∫1

0
G(t, s)g(s)ds. (2.6)

It is easy to check that A : P → P. From (H1), we know that A : P → P is an increasing
operator. Next we show that A satisfies the conditions (B1), (B2) in Theorem 1.1. From (H2),
for any γ ∈ (0, 1) and u ∈ P, there exists ϕ(γ) ∈ (γ, 1] such that

A
(
γu

)
(t) =

∫1

0
G(t, s)f

(
s, γu(s)

)
ds ≥

∫1

0
G(t, s)ϕ

(
γ
)
f(s, u(s))ds = ϕ

(
γ
)
Au(t), t ∈ [0, 1].

(2.7)
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That is, A(γu) ≥ ϕ(γ)Au, for all u ∈ P, γ ∈ (0, 1). Set

α
(
γ
)
=

lnϕ
(
γ
)

ln γ
, (2.8)

then α(γ) ∈ (0, 1) and

A
(
γu

) ≥ γα(γ)Au, for γ ∈ (0, 1), u ∈ P. (2.9)

In the following, we show that A : Ph → Ph. On one hand, it follows from (H1), (H3),
Lemma 2.1 and Remark 2.3, that

Ah(t) =
∫1

0
G(t, s)f(s, h(s))ds

≥
∫1

0

1
ch2m

ψ(t)ψ(1 − t)G(t0, s)f(s, a)ds

=
1

ch2m
h(t)

∫1

0
G(t0, s)f(s, a)ds, t ∈ [0, 1].

(2.10)

On the other hand, from (2.3), (H1), and Remark 2.3, we obtain

Ah(t) =
∫1

0
G(t, s)f(s, h(s))ds

≤
∫1

0
G(t, t)f(s, b)ds

=
1
ρ
h(t)

∫1

0
f(s, b)ds, t ∈ [0, 1].

(2.11)

Let

r1 = min
t∈[0,1]

f(t, a), r2 = max
t∈[0,1]

f(t, b). (2.12)

Then 0 < r1 ≤ r2. Note that

∫1

0
G(t0, s)ds =

1
ρ

∫ t0

0
ψ(s)ψ(1 − t0)ds +

1
ρ

∫1

t0

ψ(t0)ψ(1 − s)ds =
1
m2

. (2.13)

Consequently,

r1
ch2m

· 1
m2

h(t) ≤ Ah(t) ≤ r2 · 1
mshm

h(t), t ∈ [0, 1]. (2.14)
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Hence Ah ∈ Ph. For any u ∈ Ph, we can choose a small number t0 ∈ (0, 1) such that

t0h ≤ u ≤ 1
t0
h. (2.15)

By (2.9), we get

A

(
1
γ
u

)

≤ 1
γα(γ)

Au, ∀γ ∈ (0, 1), u ∈ P. (2.16)

Thus, from (2.9), (2.16), we have

Au ≥ A(t0h) ≥ t0
α(t0)Ah, Au ≤ A

(
1
t0
h

)

≤ 1

t0
α(t0)

Ah. (2.17)

Thus, Au ∈ Ph. Therefore, A : Ph → Ph. This together with (2.9) implies that A is general
α-concave. That is, A satisfies the conditions (B1), (B2) in Theorem 1.1.

Next we show that the condition (B3) is satisfied. If g(t) ≡ 0, then x0(t) ≡ 0; if g(t)/≡ 0,
let l = ρmaxt∈[0,1]g(t), then l > 0. It is easy to prove that

0 ≤ x0(t) ≤ l

ρ

∫1

0
G(t, t)ds = lh(t). (2.18)

Hence, 0 ≤ x0 ≤ lh. Finally, using Theorem 1.1, u = Au + x0 has a unique solution u∗ in Ph.
That is, u∗ is a unique positive solution of the NBVP (P−) in Ph.

In the following, using the same technique, we study the general NBVP (P+) with
m ∈ (0, π/2). Let G(t, s) be the Green’s function for the boundary value problem

u′′(t) +m2u(t) = 0, 0 < t < 1,

u′(0) = u′(1) = 0.
(2.19)

Then,

G(t, s) =
1

m sinm

⎧
⎨

⎩

cosms cosm(1 − t), 0 ≤ s ≤ t ≤ 1,

cosmt cosm(1 − s), 0 ≤ t ≤ s ≤ 1.
(2.20)

It is obvious that cos mt is decreasing on [0, 1], and

G(t, s) ≥ G(t, t), 0 ≤ t, s ≤ 1. (2.21)

Lemma 2.4. Let G(t, s) be the Green’s function for the NBVP (2.19). Then,

G(t, s) ≤ 1
cos2m

cosmt cosm(1 − t) ·G(t0, s), t, t0, s ∈ [0, 1]. (2.22)
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Proof. When t, t0 ≤ s,

G(t, s)
G(t0, s)

=
cosm(1 − s) cosmt

cosm(1 − s) cosmt0
=

cosm(1 − t) cosmt

cosm(1 − t) cosmt0

≤ 1
cos2m

cosm(1 − t) cosmt = C cosm(1 − t) cosmt.

(2.23)

If t ≤ s ≤ t0,

G(t, s)
G(t0, s)

=
cosm(1 − s) cosmt

cosm(1 − t0) cosms
=

cosm(1 − t) cosmt

cosm(1 − t) cosms
· cosm(1 − s)
cosm(1 − t0)

≤ 1
cos2m

cosm(1 − t) cosmt = C cosm(1 − t) cosmt.

(2.24)

If t0 ≤ s ≤ t,

G(t, s)
G(t0, s)

=
cosm(1 − t) cosms

cosm(1 − s) cosmt0
=

cosm(1 − t) cosmt

cosm(1 − s) cosmt
· cosms

cosmt0

≤ 1
cos2m

cosm(1 − t) cosmt = C cosm(1 − t) cosmt.

(2.25)

For s ≤ t, t0,

G(t, s)
G(t0, s)

=
cosm(1 − t) cosms

cosm(1 − t0) cosms
=

cosm(1 − t) cosmt

cosm(1 − t0) cosmt

≤ 1
cos2m

cosm(1 − t) cosmt = C cosm(1 − t) cosmt.

(2.26)

Therefore,

G(t, s) ≤ 1
cos2m

cosm(1 − t) cosmt ·G(t0, s), t, t0, s ∈ [0, 1]. (2.27)

This completes the proof.

Theorem 2.5. Assume (H1), (H2) hold and f(t, cos2m) > 0 for any t ∈ [0, 1]. Then theNBVP(P+)
has a unique positive solution u∗ in Ph, where h(t) = cosm(1 − t) cosmt, t ∈ [0, 1].

Remark 2.6. It is easy to check that cos2m ≤ h(t) ≤ 1 for t ∈ [0, 1].

Proof of Theorem 2.5. It is well known that u is a solution of the NBVP (P+) if and only if

u(t) =
∫1

0
G(t, s)

[
f(s, u(s)) + g(s)

]
ds, (2.28)
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where G(t, s) is the Green’s function for the NBVP (2.19). For any u ∈ P,we define

Au(t) =
∫1

0
G(t, s)f(s, u(s))ds, x0(t) =

∫1

0
G(t, s)g(s)ds. (2.29)

Similar to the proof of Theorem 2.2, we know that A : P → P is an increasing operator and
satisfies the condition

A
(
γu

) ≥ ϕ
(
γ
)
Au = γα(γ)Au, ∀u ∈ P, γ ∈ (0, 1), (2.30)

where α(γ) = lnϕ(γ)/ ln γ.
It follows from condition (H1), Lemma 2.4, and Remark 2.6 that

Ah(t) =
∫1

0
G(t, s)f(s, h(s))ds

≤
∫1

0

1
cos2m

cosmt cosm(1 − t) ·G(t0, s)f(s, 1)ds

=
1

cos2m
h(t)

∫1

0
G(t0, s)f(s, 1)ds, t ∈ [0, 1].

(2.31)

From (2.21), (H1), and Remark 2.6, we obtain

Ah(t) =
∫1

0
G(t, s)f(s, h(s))ds

≥
∫1

0
G(t, t)f

(
s, cos2m

)
ds

=
1

m sinm
h(t)

∫1

0
f
(
s, cos2m

)
ds, t ∈ [0, 1].

(2.32)

Let

r1 = min
t∈[0,1]

f
(
t, cos2m

)
, r2 = max

t∈[0,1]
f(t, 1). (2.33)

Then 0 < r1 ≤ r2. Consequently,

Ah(t) ≤ r2
1

cos2m

∫1

0
G(t0, s)ds · h(t), Ah(t) ≥ r1

1
m sinm

h(t), t ∈ [0, 1]. (2.34)
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Note that

∫1

0
G(t0, s)ds=

1
m sinm

∫ t0

0
cos m(1−t0) cos msds+

1
m sinm

∫1

t0

cosm(1−s) cosmt0 ds=
1
m2

,

(2.35)

we have r2(1/cos2m)
∫1
0 G(t0, s)ds > 0. Hence Ah ∈ Ph. The same reasoning as Theorem 2.2

shows that A is general α-concave and (B3) is satisfied. Using Theorem 1.1, u = Au + x0 has a
unique solution u∗ in Ph. That is, u∗ is a unique positive solution of the NBVP (P+) in Ph.

Remark 2.7. For the case of g(t) ≡ 0, the problems (P±) reduce to the usual forms of Neumann
boundary value problems for ordinary differential equations. We can establish the existence
and uniqueness of positive solutions for these problems by using the same method used in
this paper, which is new to the literature. So the method used in this paper is different from
previous ones in literature and the results obtained in this paper are new.

3. Examples

To illustrate how our main results can be used in practice we present two examples.

Example 3.1. Consider the following NBVP:

−u′′(t) + (ln 2)2u(t) = uβ(t) + q(t) + t2, 0 < t < 1,

u′(0) = u′(1) = 0,
(3.1)

where β ∈ (0, 1) and q : [0, 1] → [0,+∞) is a continuous function. In this example, we let
m = ln 2, f(t, x) := xβ + q(t), g(t) := t2. After a simple calculation, we get a = 9/8, b = 5/4 and

h(t) =
5
8
+
1
4

(
21−2t + 22t−1

)
, t ∈ [0, 1]. (3.2)

Evidently, f(t, x) is increasing for x ≥ 0, and g(t)/≡ 0,

f(t, a) =
(
9
8

)β

+ q(t) > 0. (3.3)

Moreover, set ϕ(γ) = γβ, γ ∈ (0, 1). Then,

f
(
t, γx

)
= γβxβ + q(t) ≥ γβ

(
xβ + q(t)

)
= ϕ

(
γ
)
f(t, x), x ≥ 0. (3.4)

Hence, all the conditions of Theorem 2.2 are satisfied. An application of Theorem 2.2 implies
that the NBVP (3.1) has a unique positive solution u∗ in Ph.
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Example 3.2. Consider the following NBVP:

u′′(t) +
(
π

3

)2

u(t) = u1/3(t) + q(t) + t3, 0 < t < 1,

u′(0) = u′(1) = 0,

(3.5)

where q : [0, 1] → [0,+∞) is a continuous function. In this example, we letm = π/3, f(t, x) :=
x1/3 + q(t), g(t) := t3. Then, m ∈ (0, π/2) and

h(t) = cos
π

3
t cos

π

3
(1 − t), t ∈ [0, 1]. (3.6)

Evidently, f(t, x) is increasing for x ≥ 0, and g(t)/≡ 0,

f

(

t, cos2
π

3

)

+ q(t) =
(
1
4

)1/3

+ q(t) > 0. (3.7)

Moreover, set ϕ(γ) = γ1/3, γ ∈ (0, 1). Then,

f
(
t, γx

)
= γ1/3x1/3 + q(t) ≥ γ1/3

(
x1/3 + q(t)

)
= ϕ

(
γ
)
f(t, x), x ≥ 0. (3.8)

Hence, all the conditions of Theorem 2.5 are satisfied. An application of Theorem 2.5 implies
that the NBVP (3.5) has a unique positive solution u∗ in Ph.
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