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We study the following p(x)-Laplacian problem with singular term: —div(|[Vu[/®2Vu) +
[ulP® 2y = Mul*™2u + f(x,u), x € Q u = 0, x € 3Q, where Q C R" is a bounded domain,

1<p~ <p(x) <p* < N. We obtain the existence of solutions in W;’p ) (Q).

1. Introduction

After Kovatik and Rékosnik first discussed the LP®™ (Q) spaces and W*?™)(Q) spaces in [1], a
lot of research has been done concerning these kinds of variable exponent spaces, for example,
see [2-5] for the properties of such spaces and [6-9] for the applications of variable exponent
spaces on partial differential equations. Especially in W'#(™(Q) spaces, there are a lot of
studies on p(x)-Laplacian problems; see [8, 9]. In the recent years, the theory of problems
with p(x)-growth conditions has important applications in nonlinear elastic mechanics and
electrorheological fluids (see [10-14]).

In this paper, we study the existence of the weak solutions for the following p(x)-
Laplacian problem:

—div<|Vu|”(x)_2Vu> +ufPy = Mu|* 2 u+ f(x,u), xeQ,
(1.1)
u=0, x € 09,

where Q ¢ RN is a bounded domain, 0 < A € R, p(x) is Lipschitz continuous on Q, and
1<p <p(x)<p*<N.
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Let P(Q) be the set of all Lebesgue measurable functions p : Q — (1,0). For all
p(x) € P(Q), we denote p* = sup, sp(x), p~ = inf, gp(x), and denote by p;(x) < p2(x) the
fact that inf{p> (x) — p1(x)} > 0.

We impose the following condition on f:

(F) f(x,t) = b(x)g(x,t),0 < b(x) € L'™(Q), 1 < r(x) € C(Q) and for g(x,t) € C(Q x
R), there exist M > 0 such that |g(x,t)| < c1 + c[t|1¥)7!, whenever || > M.

A typical example of (1.1) is the following problem involving subcritical Sobolev-
Hardy exponents of the form

A _
—div<|Vu|p(x)_2Vu> + P70 = )"+ W|u|‘7(x) u, xeQ,
|x| (1.2)

u=0, x € 09,

where 0 < X € R, s(x),q(x) € C(Q),0<s <s"<N,1<« q(x) < (N =s(x))/N)p*(x),
for all x € Q. In fact, take b(x) = X/|x|*®), g(x, t) = |12, and r(x) = (1/2)(1+ N/s*), then
it is easy to verify that (F) is satisfied.

Our object is to obtain the existence of solutions in the following four cases:

(1) a(x) > p(x), g(x) > p(x);
(2) a(x) <p(x), g(x) > p(x);
(3) a(x) <p(x), g(x) < p(x);

)
)
)
(4) a(x) > p(x), q(x) <p(x).

When b(x) = 1, the solution of the p-Laplacian equations without singularity has been
studied by many researchers. The study of problem (1.1) with variable exponents is a new
topic.

The paper is organized as follows. In Section 2, we present some necessary preliminary
knowledge of variable exponent Lebesgue and Sobolev spaces. In Section 3, we prove our
main results.

2. Preliminaries

In this section we first recall some facts on variable exponent Lebesgue space LP*)(Q) and
variable exponent Sobolev space W17 (Q), where Q C R is an open set; see [1-4, 8, 15] for
the details.

Let p(x) € P(2) and

u |p(x)
u :inf{)t>0:f - dxgl}. (2.1)
ol 5

The variable exponent Lebesgue space LP™¥)(Q) is the class of functions u such that
fg [u(x)|P®dx < co. LP®(Q) is a Banach space endowed with the norm (2.1).
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For a given p(x) € P(Q), we define the conjugate function p'(x) as

' p(x)
= 2.2
p(x) -1 22)
Theorem 2.1. Let p(x) € P(Q). Then the inequality
[ 17 gldx <5 if1, sl @3)
Q

holds for every f € LP®(Q) and g € LV (Q) with the constant r,, depending on p(x) and Q only.

Theorem 2.2. The dual space of LP®™ (Q) is LP'*)(Q) if and only if p € L*(Q). The space LP™) (Q)
is reflexive if and only if

1<p <p"<oo. (2.4)
Theorem 2.3. Suppose that p(x) satisfies (2.4). Let measQ < oo, p1(x),p2(x) € P(Q), then

necessary and sufficient condition for LP2™(Q) ¢ LP*(®)(Q) is that for almost all x € Q one has
p1(x) < pa(x), and in this case, the imbedding is continuous.

Theorem 2.4. Suppose that p(x) satisfies (2.4). Let p(u) = [o [u(x)P@dx. If u,ux € LF™(Q),
then

(1) llull, < 1(= 1;> 1) ifand only if p(u) < 1(= 1;> 1),
(2) if lull, > 1, then lully, < p(u) < IIuII?,

)
)

@) if lull, <1, then |lull} < p(u) < |lull),

(4) limg — oo l|ugllp = 0 if and only if limy _ op(ux) = 0,

)

(5) llukll, — oo if and only if p(ux) — oo.

We assume that k is a given positive integer.

Given a multi-index & = (aq,...,a,) € N, weset |a| = a1+ --+a,, and D* = Di‘l -..D
where D; = 0/0x; is the generalized derivative operator.

The generalized Sobolev space W*?®)(Q) is the class of functions f on Q such that
DefelLr ®) for every multi-index a with |a| < k, endowed with the norm

1flle, = 2 1D F1l,- (2.5)

lal<k
By Wg P (x)(Q) we denote the subspace of W*?(®)(Q) which is the closure of Cy(Q) with

respect to the norm (2.5).
In this paper we use the following equivalent norm on W7 (Q):

llully, = il’lf{/\ >0: f
Q

Then we have the inequality (1/2)([Vull, + [[ull,) < l[ully < 2(IVull, + ull,).

Vu |P®)

u
T tlT

P e < 1}. (2.6)
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Theorem 2.5. The spaces W*P ™) (Q) and W(l; P() (Q) are separable reflexive Banach spaces, if p(x)
satisfies (2.4).

Theorem 2.6. Suppose that p(x) satisfies (2.4). Let I(u) = [ [Vu(x)[P®) + |u(x)P@dx. If u, ux €
WP (Q), then

(1) ”ulll,p <1(=1;>1) ifand only if I(u) < 1(=1;> 1),
(2) if lfully,, > 1, then [ull], < I(u) < [lulf,,
@) if lully,, <1, then |ull] , < I(u) < Julf,,

(4) limy— oo [luxll1p = O if and only if limg_ o, I (ux) = 0,

(5) llukllip — oo ifand only if I(uy) — oo.

We denote the dual space of Wg P() (Q) by W) (Q), then we have the following.

Theorem 2.7. Let p € P(Q)NL®(Q). Then for every G € WK ) (Q) there exists a unique system
of functions {g, € LF'*)(Q) : |a| < k} such that

G(f) = > fQ Df(x)ga(x)dx, feWy™™ (). 2.7)

|or|<k
The norm of W=*¥')(Q) is defined as

G|
A1k,

IGk, = sup{ L few PP @)\ {o) } (2.8)

Theorem 2.8. Let Q be a domain in R" with cone property. If p : Q — R is Lipschitz continuous
and 1 < p~ < p* < N/k, q(x) : Q — R is measurable and satisfies p(x) < q(x) < p*(x) =
Np(x)/(N - kp(x)) a.e. x € Q, then there is a continuous embedding W*?() (Q) — L16)(Q).

Theorem 2.9. Let Q be a bounded domain. If p(x) € L*(Q) and u € WS’P(X)(Q), then
llull, < Cl[Vull,, (2.9)

where C is a constant depending on Q.

Next let us consider the weighted variable exponent Lebesgue space. Let a(x) € P(Q),
and a(x) > 0 for x € Q. Define

'Y(Q) = {u € P(Q): J a(x)[u(x)PPdx < oo} (2.10)
Q

a(x)
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with the norm

u(x)

A

p(x)
|u|LpEx;(Q) = ||u||p,u = inf{)u >0: ’[ a(x) dx < 1}, (2.11)
alx Q

then L% (Q) is a Banach space.

a(x)

Theorem 2.10. Suppose that p(x) satisfies (2.4). Let p(u) = [, a(x)|u(x)POdx. If uux €
L'0)(Q), then

a(x
(1) foru#0, |lullp,a = A ifand only if p(u/A) = 1,
2) llully,e <1(=1>1) ifand only if p(u) <1(= 1;> 1),

3) i lully > 1, then |[ullya < p(w) < lull)a,

@) if lull,, <1, then |[ully o < p(u) < |[ull}q,
(5) limg -, oo [[14k|lp,a = O if and only if limy . op(ux) =0,
(6) llukllp,a — oo if and only if p(ux) — oo.

Theorem 2.11. Assume that the boundary of Q possesses the cone property and p(x) € C(Q).
Suppose that 0 < a(x) € L'™(Q), and 1 < r(x) € C(Q), for x € Q. If gx) € C(Q)
amd 1 < q(x) < ((r(x) = 1)/r(x))p*(x), forall x € Q, then there is a compact embedding
WP (Q) < LI (Q).

a(x

Theorem 2.12. Let Q C R" be a measurable subset. Let g : Q x R — R be a Caracheodory function
and satisfies

|g(x, u)| < a(x) + blul'™/PX) for any x € Q, teR, (2.12)

where pi(x) > 1,1 =1,2, a(x) € LP2(x) (Q), a(x) > 0, b > 0is a constant, then the Nemytsky
operator from LP*™ (Q) to LP2*) (Q) defined by (Ngu)(x) = g(x, u(x)) is a continuous and bounded
operator.

3. Existence and Multiplicity of Solutions

Let

|u|a(X)

I(u) = f ) et
Q

) () — F(x,u)dx,

t t (3.1)
F(x,t) = fo f(x,s)ds, G(x,t) = fo g(x,s)ds.
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The critical points of I(u), that is,

0=T'(up= J‘Q IVuPO29uVe + (1P 2up - Mu|™®2up - f(x, u)p dx (3.2)

forall ¢ € W;’p (x)(Q), are weak solutions of problem (1.1). So we need only to consider the
existence of nontrivial critical points of I(u).

Denote by ¢, ¢;, C, C;, K, and K; the generic positive constants. Denote by |Q| the
Lebesgue measure of Q.

To study the existence of solutions for problem (1.1) in the first case, we additionally
impose the following conditions.

(A-1) a(x),q(x) € C(Q) and p(x) < a(x) < p*(x), p(x) < g(x) < ((r(x) = 1)/7(x))p* (x).

(B-1) There exists a function p(x) € C! (Q), such that p(x) < p(x) and 0 < p(x)G(x, t) <
tg(x,t) for x € Q, |t| > M.

(C-1) there exist & > 0 such that |g(x, t)| < c3|t{T™®! for x € Q, |t| < 6, where §(x) € c(Q)
and p(x) < q(x) < ((r(x) —1)/r(x))p*(x).

(D-1) g(x,-t) = —g(x,t), forallx € Q, t e R.
Theorem 3.1. Under assumptions (F) and (A-1)-(C-1), problem (1.1) admits a nontrivial solution.
Proof. First we show that any (PS), sequence is bounded. Let {u,} C Wg’p(x) (Q) and ¢ €
R, such that I(u,) — cand I'(u,) — 0in W™ ®(Q). By (A-1) and (B-1), inf{1/p(x) -
1/a(x)} = a1 > 0, and inf{1/p(x) — 1/pu(x)} = a» > 0. Let ap = min{ay, a>} and I(x) =

1/p(x) — ag/2, then I(x) > 1/a(x), I(x) > 1/pu(x), |VI(x)| < C, 1/p(x) — l(x) = ay/2 and
I(x)=1/a(x) > ag/2. Let Qy = {x € Q: [u(x)| > M} and Q; = Q \ Q. Then

I(un) = (I'(un), 1(x)tin)

= J;(r% - l(x)) <|Vu,,|”<") + |un|p(x)>dx + fQ )L<1(x) - ﬁ) |14 dx

(3.3)
+f l(x)f(x,un)un—F(x,un)dx—f F(x,u,)dx
Ql QZ

+ f 1(x) f (x, up ) updx — f Vit P92V, V1 - u, dx.
Q Q

By (B-1), we get

1
Lz] I(x) f (xx, up)un — F(x, u,)dx > J‘Q1 <l(x) - m)f(x, Uy, dx > 0. (3.4)
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By (F), we get g(x,t) € C(Q x [-M, M]), so there exist K > 0 such that |g(x,t)| < K on
Q x [-M, M]. Note f(x,t) = b(x)g(x,t), so we have

< MKDb(x)dx < oo,
Q

J F(x,u,)dx
@)

(3.5)

f(x, up)uy, dx
Q)

< J‘ MKb(x)dx < co.
(973

By Young’s inequality, for €; € (0,1), we get
f Vit P 2V, V1 - 1y, dox < Cglf Vit P¥ dx + Ce; P I P dx. (3.6)
Q Q Q

Take € sufficiently small so that ap/2 > Ce;.
Note that p(x) <« a(x), by Young’s inequality again and for ¢, € (0,1), we get

f |Vun|”(x)_2VunVl U, dx
Q
(3.7)
<Cg J‘ |Vun|p(x)dx + Csi_fsz I |un|“(x)dx + Cei_fs;pv(“_p) Q.
Q Q

Take ¢, sufficiently small so that A(ag/2) > Cgi_er .
From the above remark, we have

T(u) = (T (1), 1(x) 11 ) > IQ (% - C51> (|vun|r’<x) + |un|”(x))dx ~Ci. (3.8)

As 1) unllp < Fllunllp, 1) Vitn|lp < I Vunllp and [|VI(x) - unllp < Cllunllp, we have
l1(x)tunll1p < 4CIH||ty||1p. Since I(u,) — cand I'(u,) — 0, by Theorem 2.6 we have

. )
¢ +0(1) +4CT [[unly , > (50 - Ce1) i}, - C1, (3.9)

when |[u,|l1, > 1 and 7 is sufficiently large. Then it is easy to see that {u,} is bounded in

Wg’p(x) (Q). Next we show that {u,} possesses a convergent subsequence (still denoted by

{un}).
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Note that

’[ <|Vun|”(x)_2Vun - |Vu|”(x)_2Vu> (Vu, — Vu)dx
Q

< (I (n), un — u)| + |(I'(u), 10y — )| + IQ|A<|un|“(x)_2un — Ju]*®)2 u) (u, - u)'dx

[ 10w = Fw) - w)d
Q

=hL+DL+13+ 14

(3.10)

Because {u,} is bounded in Wé’p (x)(Q), there exists a subsequence {u,} (still denoted

by {u,}), such that u, — u weakly in W&’p ) (Q). By Theorem 2.11, there are compact
embeddings WP (Q) < L*®)(Q) and WP@(Q) — LI*)/(Q), then u, — u in L*&)(Q)

b(x)

and ngg (Q). So we get

L= f@|x(|un|“<x>—2un = [0 (- u)|dx

< 20| a7 | ot = 1l + 2| 10|l = el

Hence I; — 0Oasn — oo.
By (F), we have

f | f (o, 1) (n — u) | dx < J Cob(x)|u, — u|dx + f b(x) |up — ul[u] ™ dx
Q Q)

Q

< f Cob(x)|uy, — uldx + f b(x) |y — ul|u)?™dx,
Q Q

and similarly for every n,

f | f (%, un) (uy — 1) |dox < I Cob(x)|uy — uldx + f b(x) [ty — 1|14, dx.
Q Q Q

Since

f b(x) [y — | dx = f b(x) 1O p ()T [y, — || 1O dx
Q Q

< 26T o)1 s, - ul|
q q

(3.11)

(3.12)

(3.13)

(3.14)
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and u, — wuin L} (Q) and Lq(x)(Q), we obtain [, b(x)|u, — uldx — 0 and [, b(x)|u, -

b(x) b(x)
u||ul™®)-1dx — 0. Similarly,

f B(2) [t — 12|19 dx < 2||b(x)1/q’<x>|un|q<">-1 || ,||b(x)1/q(x)|un - u|“ . (3.15)
Q q q

Because [|b(x)"7®|u, |11 || is bounded, we get Jo ()1, = ul|1, |1 dx — 0,asn — oo.
From the above remark, we conclude I, = jQ [(f (x,uy) = f(x,u)) (1, —u)ldx — 0,asn — oo.

Thus [y +I+I3+1; — 0,asn — oo. Then we get [, (| Vi, [P 2V, — | VuP X2V ) (Vi —
Vu)dx — 0. Asin the proof of Theorem 3.1in [6, 7], we divide Q into the following two parts:

Qs ={xeQ:1<p(x) <2}, Q= {xeQ:p(x)>2}. (3.16)

On Q3, we have

(x)/2
f |V, — VulPPdx < f K <<|Vun|’”(x)_2Vun - |Vu|"’(x)_2Vu> (Vu, - Vu))p 8
Q3 Q3

(2-p(x))/2
) dx

x (1P + [Vup®

p(x)/2 (3.17)
< 2K, )

<<|Vun|p(x)_2Vun - |Vu|p(x)_2Vu> (Vu, — Vu)
2/p(x),Q3

@-p())/2
: )

<|Vun|”(x) +|VuP®

2/(2-p(x)),25

Then [, |[Vu, — VulP¥dx — 0,asn — co.
On Q4, we have

J' Vi, — VulP®dx < Kzf (|Vun|”(x)_2Vun - |Vu|’”(x)_2Vu) (Vi - Vuydx,  (3.18)
Q

Qy

s0 [q, [Vitn — VulP®@dx — 0,asn — oo.

Thus we get [, |Vu, - Vul/*®dx — 0. Thenu,, — uin Wg’p(x) (Q).

From (F) and (B-1) we have G(x,t) > cy|t|™ - cs, for all x € Q, t € R. So we get
F(x,t) > cab(x)|HF™ —csb(x), forall x € Q, t € R. for all xg € Q, take £ = (1/6)(a(xo) —p(x0)),
then p(xp) < a(xp)—3e. Since p(x) and a(x) € C(Q), there exists 6 > 0 such that |p(x)-p(xo)| <
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g, and |a(x) — a(x)| < ¢, for x € B(xo,0). Let ¢ € C§°(B(xo,0)), such that ¢(x) = 1 for
x € B(xp,6/2), p(x) =0 for x € Q \ B(x9,6),and 0 < ¢(x) < 1in B(xo, 6). Then we have

vol" gl gl
I(sp) < | s*® | + st b(x0)s#0 0] 4 esb(x)dx
o<, < TORMNTE aey PSR b

p(x) p(x) a(x)
SJ‘ sP™) |V('0| + |('0| —)Ls“m—l(p' dx+05f b(x)dx
B(x0,5) p(x) p(x) a(x) B(x0,5)

X v p(x) p(x) ) a(x)
SS,,BI Vo™ | l#] dx_San Lol
B(x0,5) p(x) p(x) B(x0,6) a(x)

+ cs5 f b(x)dx,
B(x0,6)

(3.19)

where pj;, < aj;. So if s is sufficiently large, we obtain I(s¢) < 0.
From (F) and (C-1), we have |G(x, t)| < c3]t|7®) +¢(8)|t|7%), then |F (x, t)| < c3b(x)|t7™) +
c(8)b(x)[t1™). So we get

) > — f <|Vu|P<x>+|u|P<x>)dx—i_ f ") — e3b(x) [ufT — c(6)b(x)[ul"Pdx. (3.20)
P Ja a Jo

Let O(x) = min{a(x),qg(x),q(x)}, then O(x) € c(Q). By Theorem 2.11, [lulls < csllull1,p,
lullge < crllullip, and [lullgp < csllullp- When [[ullq, is sufficiently small, [[ull, <1, [Jullzs < 1
and |[lullqpy < 1. For any x € Q, as p(x),0(x) € C(Q), for any ¢ > 0, we can find
Qr(x) = {y = yY,...,y" : |y* = x*| < R, k = 1,...,n} such that |p(y) - p(x)| < € and
|0(y)—0(x)| < e whenever y € Qr(x)NQ. Take ¢ = (1/4)(0(x)—p(x)), then supyeQR(x)nﬁp(y) <
infyeQR(x)nﬁe(y). {Qr(x)},cg5 is an open covering of Q. As Qis compact, we can pick a finite
subcovering {Qr, (xx) } ey for Q from the covering {Qr(x)} .- If Qr,(xx) ¢ Q we define

= 0 on Qg,(xx) \ Q. We can use all the hyperplanes, for each of which there exists at
least one hypersurface of some Qg, (xx) lying on it, to divide |J{_; Qr, (xx) into finite open
hypercubes {Ql} which mutually have no common points. It is obvious that Q C U Qi
and for each Q; there exists at least one Qg, (xx) such that Q; C Qg, (xx). Let Q; = QiNQ, then
pi =sup,cqp(y) <infyeq,0(y) = 6; and we have

Q ~
> <Pl j (IVuP® + ™) dx - ai f i )" — 3b () | T — c(6)b(x)|u|q(")dx>
i=1 i

i

Q _ -
a. a.
> 3 (el 0, = et Tl = s N, = @) T, ).
1:1

(3.21)
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If [|ull1p = k > [lull1p,9, is sufficiently small such that
L A oy e 01 a1
el g, = 2 Wl g, esc] il g, ~c@)cd il >0 (3.22)

we have I(u) > 0.
The mountain pass theorem guarantees that I has a nontrivial critical point u. O

Since W&’p(x) (Q) is a separable and reflexive Banach space, there exist {e,},; C
W,"*(Q) and {e}}2, ¢ W) (Q) such that

<ei,e}'.‘> — {(1)' i=7,

) (3.23)
Wo’p(x)(Q) =span{e,:n=1,2,...},

WP ) (Q) =span{ey;:n=1,2,...}.

Fork=1,2, ..., denote X = span{ex}, Yk = ea;.‘:lXj, Zi = ea;?‘;ka.

Theorem 3.2. Under assumptions (F), (A-1)—(D-1), problem (1.1) admits a sequence of solutions
{10} € Wy™N(Q) such that I(u,) — oo.

Proof. Let ¢(u) = fQ(MuI“(x)/a(x)) + F(x,u)dx. We first show that ¢(u) is weakly strongly
continuous. Let u, — u weakly in Wé’p (x)(Q). By the compact embedding Wé’p(x)(Q) —
L*)(Q), we have fQ lun — ul*®dx — 0and u, — u a.e. on Q. By the inequality |u,|**) <
27 (Juy — ul*™ + [u|*™®)) and the Vitali Theorem, we get [, [u,|*®dx — [, [u|*®dx.

Note that

J‘ |F(x,uy,) — F(x,u)|dx = J‘ b(x)|G(x, u,) — G(x,u)|dx
Q Q

(3.24)
<26 NG (x, 1) = Glx, w0
When |u| > M,
x (x) x x
|G(x,u)| <1 [ +C2|u|q( ) C? + |u|q( ) +C2|u|q( )
ZCY px) T qx)  p(x)1®q(x) p(x) (3.25)

<G(1+ Iul"(")> = G3(1+ |u|r’(x>q<x>/r'<x>>.
When |u| < M, G(x,u) is bounded. So we get

IG(x, u)| < c4<1 + [ @A), (3.26)
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By the compact embedding Wg’p Q) « L'®I(Q), we get u, — uin L"™1(Q). So
by Theorem 2.12 we obtain |G(x, u,) — G(x,u)|» — 0, that is, fQ |F(x,u,) — F(x,u)|dx — O.
Hence we obtain that ¢(u) is weakly strongly continuous. By Proposition 3.5 in [8], fx =
Pr(r) = SupueZk,||u||1/p§r|(P(u)| — 0as k — oo for r > 0. For all n, there exists a positive integer
k, such that fx(n) < 1 for all k > k,,. Assume k, < kj.1 for each n. Define {r, : k =1,2,...} in
the following way:

n, k,<k<k,+1,
Tk = (3.27)
1, 1Sk<k1

Note that 7, — oo as k — oo. Hence for u € Zy with |[ul|y, = rr, we get

1 1 .
— p(x) p(x) _ > P
I(u) pr(x)GV”' +[uf)dx P02 ], - 1. (3.28)

So

inf I(u) — oo as k — co. (3.29)

uEZk,HuHLp:rk

Note that F(x, u) = b(x)G(x, 1) > csb(x)[ul"™ —csb(x) and p(x), a(x) € C(Q). Since the
dimension of Y is finite, any two norms on Yj are equivalent, then colul1, < |u|, < crolu1p.

If uly, < 1, it is immediate that |ul, < c10 If ||, > 1/cy, then |u|, > 1. As in the proof of
Theorem 3.1 we can find hypercubes {Ql} which mutually have no common points such

that Q C Ui:1 Q; and pi = supyegip(y) < mfyegia(y) = a;, where Q; = Q; N Q. Then we need
only to consider the case: [u[1, 0, > max{1,1/cy} for every i. We have

p(x) p(x)
I(u)gfg<|vp’é|x) + |;|(x)> e |( ) — eab(2) U™ + esb(x)dx

|Vu|p(x) |u|P(X) |u|“(x)
Lz< oo ) My s o

Q .)L a; a;
Z( Ml g~ e ||u||1:p,gi)+csfgb<x>dx

i=1

Q .)L a a s

Dl (=l - g, ) e [ b,
i=1 p‘)tcg Q

Let ¢g = lX+/P_)LCg;, fi(t) = t% — Cotp;. Let fi(si) = mil’ltzofi(t) < 0 and fi(ti) = 0.
Denote t = Zigzl llull1p,0.- Let t be sufficiently large such that ¢ > max{Q, Qt;, Q(2co) /@),

IN

(3.30)

IN
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i=12,...,Q}. There at least exists one i such that [|ul|1,0, > (1/Q) Zgl lullipo = (£/Q).
We have

Q

Q + — 3t
Pi a; —p;
S il pe,) = Sl o, (Il 6 — <o)
i=1

i1

_ pi a-p; 28 @ —pi

= #Z||u||1:p,gi(||u||1,p,gi —co) + [l o <||u||1,;;,g,.g -
1F1

() (8" -<)

2 ifi(si) + 2,
P Q

(3.31)

and Zinl filllullipe) — cast — oo. Hence we obtain that I'(#) — —oo as [|ull1, — oo. Thus
for each k, there exists px > r¢ such that I(u) < 0 for u € Yk N S,,. From Theorem 3.1 I(u)
satisfies (PS), condition. In view of (D-1), by Fountain Theorem (see [16]), we conclude the
result. O

In the second case, we additionally impose the following condition:
(A-2) a(x),q(x) € C(Q) and 1 < a(x) < p(x) < g(x) < ((r(x) = 1) /r(x))p*(x).

Theorem 3.3. Under assumptions (F), (A-2), (B-1), and (C-1) there exist A* > 0 such that when
A € (0, %), problem (1.1) admits a nontrivial solution.

Proof. 1t is obvious that &~ < p~. Let ¢y > 0 be such that a™ + £y < p~. Since a(x) € C (Q), there
exists & > 0 and xy € Q such that |a(x) — a™| < g, for all x € B(xp,6). Thus a(x) < a” + g
for all x € B(xg,6). Let ¢ be as defined in Theorem 3.1. By (C-1), |G(x,t)| < c3|t|1®), and
|F(x,t)| < c3b(x)|t7®), when t < 6. Then for any t € (0,1) and t < 6, we have

VolP® p(x) a(x)
I(t(p) :J‘ tp(x)<| (Pl + |(P| ) _)Lta(x)|(P| —F(x,t(p)dx
Q

p(x) p(x) a(x)
B \v4 p(x) p(x) N a(x)
Stpf Vo™ | lol dx_tuf o™
Bxos) \  P(%) p(x) Bxo,5) (%)
+1 I c3b(x) |go|‘7(x)dx (3.32)
B(x0,6)

a(x)

] VolP®@  [oP® ]
<t f Vol ™ 1ol \ 4y e f el
Bxo5) \ P(%X) p(x) Bxs) (x)

+ 7 J c3b(x) |(p|q(x)dx.
B(x,0)

If ¢ is sufficiently small, I(tp) < 0.
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From (F) and (C-1), we have |G(x, t)| < c3[t|7®) +¢(8)|t]1%) and |F (x, t)| < c3b(x)[tT®) +
c(6)b(x)|t]1%). By Theorems 2.8 and 2.11, there exist positive constants ki, ki, k; such that
lula < kilulip, [ulgp < koltthyp, |ulge < kslulip. When ||ull1, is sufficiently small, we have
lulla < 1, [lullze < 1, and |luflyp < 1. As in the proof of Theorem 3.1 we can find hypercubes
{Qi}iQ=1 which mutually have no common points such that Qc U,-Q:1 Qi p; = supyeQip(y) <
inf,eq,q(v) = q; and p; < g;, where Q; = Q; N Q. Then

Q -
I(u) > Z(J %<|Vu|r1(x) + |u|P(X)> _ c3b(x)|u|q(x) _ c(6)b(x)|u|‘7<")dx> _ % J‘Q |u|a(x)dx

Q

1 ')L a” a”
> (P Il o, = csk lull? o - c<6>k;’*||u||1,,g> — ki ullf,-
i=1

(3.33)

Since ||u||1p ||u||1pg , for all i, when |[ull1, = p, |[ull1p0 = pi < p. Fix p such that (1/p+)pl’ -
kq‘ N —c(6)k2 pl > (. Then we have

I(u) 2 Z( —pl' = skl - c(6)K] p] ) - %ki"ﬂ" =h(p) - Aa(p). (3.34)

Let \* = I1(p)/2(p). When A € (0,1*), I(u) > I;/2 > 0. As in the proof of Theorem 2.1
n [17], denote B,(0) = {u € WS’P(X)(Q) :|lully < p}, we have infap,0)I(u) > 0 and —co <
c = infgI(u) < 0. Let 0 < & < infsp, (o) (1) — infp,0)I(1). Applying Ekeland’s variational
5, (O)I(u)+
g, I(ue) < I(u)+e|lu—uell1p, us #u € BP(O), and [|I'(u)[|-1, < €. Thus we get a sequence {u,} C
B,(0) such that I(u,) — cand I'(u,) — 0. Itis clear that {u,} is bounded in Wé’p(x)(Q). As
in the proof of Theorem 3.1, we get a subsequence of {u,}, still denoted by {u,}, such that
U, — uin Wg’p(x)(Q).So I(u) =c<0and I'(u) = 0. O

B,(0)
principle to the functional I(u) : B (O) — R,wefindu, € B (0) such that I (u,) < infz—

Theorem 3.4. Under assumptions (F), (A-2), and (B-1)—(D-1), problem (1.1) has a sequence of
solutions {u,} € Wé’p(x)(Q) such that I(u,) — oo.

Proof. First we show that any (PS). sequence is bounded. Let {u,} € W;’p(x) (Q) and ¢ € R,

such that I(u,) — cand I'(u,) — 0in W-#®)(Q). By (B-1), there exist o > 0 such that
inf(1/p(x) - (1+0)/pu(x)} = p1 > 0. From (F), (A-2), and (B-1)—(D-1), we have

1
fgl Mf(x, Uy )uy, — F(x,u,)dx >0,

J.

f e —— f (%, Up)updx + Cy > JQ F(x, ty)dx > f . Cab(x) [ dx - IQ csb(x)dx.

——f(x, un)uy — F(x,u,)|dx < Cy, (3.35)

1
p(x)
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Thus we have

! Ll
Tun) = | = (IVataP™ + ') —F X, Up)dx
(1) IQP(X)<| | [ ) a(x) ( )
1 l1+o |un| o)
= _— p(x) p(x) 3
- Jg(p(x) u(x) ) <|V”"| + [t ) —( ) F(x,u,)dx
l+o I+o 1+o0
+ Muy, tl(x)dx J‘ — (X, uy)u, + Vu, p(x) +lu, p(x)
Jo ey o S+ S (Tl )
1+O alx +0
- () |14, — wf(x,un)undx

v

1 l1+o l1+o0
— — ) (VU™ + |u, p(x) dx - I Vu, P9 2vy V( >undx
Jo G~ i ) (7™ Vil )

- f A'”"(' S+ | oeb@ln Vx| o
Q

i ).

(3.36)
By Young’s inequality, for €1, €2, €3 € (0,1), we get
p(x)-2 1+0
|Vu | Vu,V Uy dx
H(x)
< Cier f Vi@ dx + Cre, 7 ez j un @ + Cre, V" MTIQ, (337)
Q Q

|un|a(X) ( ) _u+/(p_a)_

f dxgggj [un P dx + € Q.

3
o a(x) Q

Take €1, €, and €3 sufficiently small so that 11 —Cie1 > 0, 1 —Aes > 0 and ocsb(x) —Cl‘si_’[J+ & >
0, then

10 = (1, %0, ) > [ CalvinPaz-C (3.39)

Therefore by Theorems 2.6 and 2.9, we get that {u,} is bounded in Wg’p(x) (Q). Then as in the
proof of Theorem 3.1{u, } possesses a convergent subsequence {u,} (still denoted by {u,}).
By Theorem 3.2, we can also have

inf I(u) — oo as k — co. (3.39)

uEZk,||u||1,p:rk
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As in the proof of Theorem 3.1 we can find hypercubes {Q; }181 which mutually have
no common points such that Q C Uinl Q; and pi = sup,cqp(y) < infyequ(y) = p;, where
Q; = Q;NQ. Since the dimension of Yy is finite, any two norms on Y} are equivalent. Then we
need only to consider the cases |u|1, 0, > 1 and ||ul|, 0, > 1 for every i. We have

p(x) p(x) a(x)
I(u) < f <|V”| i > M b @ + esb(x)dx
Q

p(x)  px) a(x)
p(x) p()
< Lz <% + %) — cab(x)|[ul™dx + cs ’[Q b(x)dx (3.40)

Q 1 * -
<y (Fnuni’m ~Callllf g, ) + 5 fQ b(x)dx.
i=1

1

Hence I(u) — —coas ||ully, — oo. Asin the proof of Theorem 3.2, we complete the proof. [

In the third case, we additionally impose the following condition:

(A-3) a(x),q(x) € C(ﬁ), and 1 < a(x), g(x) < p(x),

(B-3) there exist 6 > 0 such that G(x,t) > 0 for t € (0,0).
Theorem 3.5. Under assumptions (F), (A-3), and (B-3), problem (1.1) admits a nontrivial solution.

Proof. By Young’s inequality, for € € (0,1), we get |[u,|*® /a(x) < e|u,|[P®) + ¢ /P-®)" By (F),
we have F(x, 1) < Cb(x)|u|7 + C1b(x). Thus

~ |Vu|p(x) |u|p(x) - |u|tx(x}_
I“”‘L( P ey ) T Vagy T Fewdx

p(x) p(x)
> f Ay e Y )Lgf P dx
Q p(x) p(x) Q

- cf b(x)|[ul1® dx — Ae™/ P~ |Q| - Cy f b(x)dx
Q Q

(3.41)

> j (%-)Lg>(|w|P<x>+|u|P<x>)dx—CJ b(x)[u " dx - Cs.
Q\p Q

Take ¢ sufficiently small so that 1/p* — Ae > 0. From Theorem 2.11, [Jull4p < cllull1p. If [lufl1p <
1, [[ull4» is bounded. Then we need only to consider the case |u1,, > 1. As in the proof of
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Theorem 3.1 we can find hypercubes {Q; }I.Q=1 which mutually have no common points such
that Q C Ufil Q; and q; =sup,coq(y) <infyeqp(y) = p;, where Q; = Q; N Q. Then we have

J
P; q;
(el g, - calll] g, ) + Co
=1

M
pi a;
1w) 2 Y, (crllulll, o, - collullf, g ) +
i=1 ]

(3.42)

M=

1]
—_

> 12 _ 97 C
2 ). ”u”l,p,gi C4||u||1,P,Qi +hy

where jQi b(x)|u|"dx >1,i=1,2,...M, and IQ; b(x)|u1dx <1,i=1,2,...], M+ ] =Q.
As in the proof of Theorem 3.2, we obtain that I(u) is coercive, that is, I(u) — oo as [[ull1, —
oo. Thus I has a critical point u such that I(u) = inf I(u) and further u is a weak
solution of (1.1).

Next we show that u is nontrivial. Let B(xp, 6) be the same as that in Theorem 3.3. By
(B-3), F(x,tp) > 0. Then

uew,”™ (@)

\v/ p(x) p(x) a(x)
I(tp) =I t"’(x)<| ol + 2] > —)Lt“(")—wl — F(x,tp)dx
Q

P P 2()
N G AV T s
< fg< pe e )TN o e G4

a(x)

Vel (ol )
gtpf Vo~ lol dx—t“*goj el
a\ PK) p(x) o a(x)

If t is sufficiently small, I (typ) < 0. O

In the fourth case, we additionally impose the following condition:

(A-4) a(x),q(x) € C(Q)and 1< g(x) € p(x) <€ a(x) < p*(x).

Theorem 3.6. Under assumptions (F), (A-4), and (D-1), problem (1.1) admits a sequence of solutions
(un} € WyN(Q) such that I(u,) — oo.

Proof. First we show that any (PS). sequence is bounded. Let {u,} € Wg’p(x) (Q) and ¢ € R,
such that I(u,) — cand I'(u,) — 0in W7 ®(Q). Denote inf{1/p(x) - 1/a(x)} = a >0
and I(x) =1/p(x) —a/2. We have 1/p(x) —I(x) =a/2 and I(x) - 1/a(x) > a/2.
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We can get

I(up) = (I (un), 1(x)tt)

1 |un|'x(x)
= | —(IVun P + [, P = A 2— — F(x, u,)dx
Jo ey (7 ) =2 B2 P
-[ G —l(x))(wunv’("’+|un|P<x>)—A—'”"'am P, u)dx
a\pX) a(x)
(3.44)
+ j 1(20) M|, | ) dox + J 1(x) (%, tty )ity — |Vt POV, VI(x) - u, dx
Q Q
zj E<|Vun|’”(x) +|un|”(x)>dx—j V1P 2V 10, VI(x) - 1 dox
Q 2 Q
1
+ I(x ——))Lun“(x)wL 1(x) f (x, uy)u, — F(x,u,))dx.
[ (160~ 25 )Aal + Q7o) = Pt )
By Young’s inequality, for €1, &, € (0,1), we get
f Vit P92V, VI(x) - 1y dx
¢ (3.45)

<Cg f |V, [P dx + Cs}frﬁez J |14, dox + Cg}7p+e£p+/(”fp)i|£2|.
Q Q

Take € and &, sufficiently small so that Ce; < a/2 and Cz-:f;7 +52 < a/2. Then
+0oo > I(un) - <Il(un)/l(x)un>
a X X
> J’Q<§ = Cen) (198l + 1aP) = (1) f (x, )t + [P, ) )z =Cr 540

a X X X
> ,[Q<§ = Cer) (IVaal?™ + [P ) dx = C fQ b(x) || dx - Cs.

As in the proof of Theorem 3.5, I(u,) — (I'(un),l(x)u,) — +oo, when |[u,ll1, — oo. Thus,

we conclude that {u,} is bounded in Wg'p(x) (Q). Then as in the proof of Theorem 3.1{u,,}
possesses a convergent subsequence {u,} (still denoted by {u,}). By Theorem 3.2, we can
also get

inf I(u) — o0 as k — oo. (3.47)

u€Zi ||ully p=r

As in the proof of Theorem 3.1 we can find hypercubes {Q; }181 which mutually have
no common points such that Q C U,%@ and p} = sup, o p(y) < infycqa(y) = a;, where



Boundary Value Problems 19

Q; = Q;NQ. Since the dimension of Y is finite, any two norms on Y} are equivalent. Then we
need only to consider the cases |u|1p0, > 1|u|sq, > 1 and |ulyp0, > 1 for every i. We have

|Vu|P(x) |u|P(x) |u|a(x) J' )
I(u) < + - dx+C b(x)|u,|"dx + C
) L:( p T pe ) Ve BTG Pl i

(3.48)

Q N . ~
Pi i a;

< > (co(llull g, + 1l 0,) = cllullf, g, ) + Ce.

1

Hence we obtain I(u) — —oo as [[ully, — oo. As in the proof of Theorem 3.2, we complete
the proof. O
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