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We study the existence of multiple positive solutions for nth-order multipoint boundary value
problem. u(n)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1), u(j−1)(0) = 0(j = 1, 2, . . . , n − 1), u(1) =

∑m
i=1 αiu(ηi),

where n ≥ 2, 0 < η1 < η2 < · · · < ηm < 1, αi > 0, i = 1, 2, . . . , m. We obtained the existence of multiple
positive solutions by applying the fixed point theorems of cone expansion and compression
of norm type and Leggett-Williams fixed-point theorem. The results obtained in this paper are
different from those in the literature.

1. Introduction

The existence of positive solutions for nth-order multipoint boundary problems has been
studied by some authors (see [1, 2]). In [1], Pang et al. studied the expression and properties
of Green’s funtion and obtained the existence of at least one positive solution for nth-order
differential equations by applying means of fixed point index theory:

u(n)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(j−1)(0) = 0
(
j = 1, 2, . . . , n − 1

)
, u(1) =

m∑

i=1

αiu
(
ηi
)
,

(1.1)

where n ≥ 2, 0 < η1 < η2 < · · · < ηm < 1, αi > 0, i = 1, 2, . . . , m.
By using the fixed point theorems of cone expansion and compression of norm type,

Yang and Wei in [2] also obtained the existence of at least one positive solutions for the BVP
(1.1) if m ≥ 2. This work is motivated by Ma (see [3]). This method is simpler than that



2 Boundary Value Problems

of [1]. In addition, Eloe and Ahmad in [4] had solved successfully the existence of positive
solutions to the BVP (1.1) ifm = 1. Hao et al. in [5] had discussed the existence of at least two
positive solutions for the BVP (1.1) by applying the Krasonse’skii-Guo fixed point theorem
on cone expansion and compression ifm = 1. However, there are few papers dealing with the
existence of multiple positive solutions for nth-order multipoint boundary value problem.

In this paper, we study the existence of at least two positive solutions associated with
the BVP (1.1) by applying the fixed point theorems of cone expansion and compression of
norm type ifm ≥ 2 and the existence of at least three positive solutions for BVP (1.1) by using
Leggett-Williams fixed-point theorem. The results obtained in this paper are different from
those in the literature and essentially improve and generalize some well-known results (see
[1–8]).

The rest of the paper is organized as follows. In Section 2, we present several lemmas.
In Section 3, we give some preliminaries and the fixed point theorems of cone expansion and
compression of norm type. The existence of at least two positive solutions for the BVP (1.1)
is formulated and proved in Section 4. In Section 5, we give Leggett-Williams fixed-point
theorem and obtain the existence of at least three positive solutions for the BVP (1.1).

2. Several Lemmas

Definition 2.1. A function u(t) is said to be a position of the BVP (1.1) if u(t) satisfies the
following:

(1) u(t) ∈ C[0, 1] ∩ Cn(0, 1);

(2) u(t) > 0 for t ∈ (0, 1) and satisfies boundary value conditions (1.1);

(3) u(n)(t) = −a(t)f(u(t)) hold for t ∈ (0, 1).

Lemma 2.2 (see [1]). Suppose that

D =
m∑

i=1

αiη
n−1
i /= 1; (2.1)

then for any y ∈ C[0, 1], the problem

u(n)(t) + y(t) = 0, t ∈ (0, 1),

u(j−1)(0) = 0
(
j = 1, 2, . . . , n − 1

)
, u(1) =

m∑

i=1

αiu
(
ηi
) (2.2)

has a unique solution:

u(t) = − 1
(n − 1)!

∫ t

0
(t − s)n−1y(s)ds +

tn−1

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1y(s)ds

− tn−1

(n − 1)!(1 −D)

m−2∑

i=1

αi

∫ηi

0

(
ηi − s

)n−1
y(s)ds =

∫1

0
K(t, s)y(s)ds,

(2.3)
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where

K(t, s) = K1(t, s) +K2(t, s),

K1(t, s) =
1

(n − 1)!

⎧
⎨

⎩

tn−1(1 − s)n−1 − (t − s)n−1, 0 ≤ s < t ≤ 1,

tn−1(1 − s)n−1, 0 ≤ t ≤ s ≤ 1,

K2(t, s) =
D

(n − 1)!(1 −D)
tn−1(1 − s)n−1 − 1

(n − 1)!(1 −D)

∑

s≤ηi
αit

n−1(ηi − s
)n−1

.

(2.4)

Lemma 2.3 (see [1]). Let D < 1; Green’s function K(t, s) defined by (2.4) satisfies

0 ≤ K(t, s) ≤ K(s), ∀t, s ∈ [0, 1],

min
t∈[η1,1]

K(t, s) ≥ γK(s), ∀s ∈ [0, 1],
(2.5)

where γ = ηn−1
1 :

K(s) = max
t∈[0,1]

K1(t, s) + max
t∈[0,1]

K2(t, s) =
sn−1(1 − s)n−1

(n − 1)!

[
1 − (1 − s)(n−1)/(n−2)

]2−n
+K2(1, s). (2.6)

We omit the proof Lemma 2.3 here and you can see the detail of Theorem 2.2 in [1].

Lemma 2.4 (see [2]). Let D < 1, y ∈ C[0, 1], and y ≥ 0; the unique solution u(t) of the BVP (2.2)
satisfies

min
t∈[η1,1]

u(t) ≥ γ‖u‖, (2.7)

where γ is defined by Lemma 2.3, ‖u‖ = maxt∈[0,1]|u(t)|.

3. Preliminaries

In this section, we give some preliminaries for discussing the existence of multiple positive
solutions of the BVP (1.1) in the next. In real Banach spaceC[0, 1] in which the norm is defined
by

‖u‖ = max
t∈[0,1]

|u(t)|, (3.1)

set

P =

{

u ∈ C[0, 1] | u(0) = 0, u(t) > 0 for 0 < t ≤ 1, min
t∈[η1,1]

u(t) ≥ γ‖u‖
}

. (3.2)

Obviously, P is a positive cone in C[0, 1], where γ is from Lemma 2.3.
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For convenience, we make the following assumptions:

(A1) a : [0, 1] → [0,+∞] is continuous and a(t) does not vanish identically, for t ∈
[η1, 1];

(A2) f : [0,+∞) → [0,+∞) is continuous;

(A3) D =
∑m

i=1 αiη
n−1
i < 1.

Let

(Au)(t) =
∫1

0
K(t, s)a(s)f(u(s))ds, ∀t ∈ [0, 1], (3.3)

where K(t, s) is defined by (2.4).
From Lemmas 2.2–2.4, we have the following result.

Lemma 3.1 (see [2]). Suppose that (A1)–(A3) are satisfied, then A : C[0, 1] → C[0, 1] is a
completely continuous operator,A(P) ⊂ P , and the fixed points of the operatorA in P are the positive
solutions of the BVP (1.1).

For convenience, one introduces the following notations. Let

r =
1

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)ds,

R =
γ
∑m

i=2 αi

(n − 1)!(1 −D)

∫ηi

η1

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)ds (m ≥ 2).

(3.4)

Problem 1. Inspired by the work of the paper [2], whether we can obtain a similar conclusion
or not, if

lim
u→ 0+

inf
f(u)
u

> R−1, lim
u→+∞

inf
f(u)
u

> R−1; (3.5)

or

lim
u→ 0+

sup
f(u)
u

< r−1, lim
u→+∞

sup
f(u)
u

< r−1. (3.6)

The aim of the following section is to establish some simple criteria for the existence of
multiple positive solutions of the BVP (1.1), which gives a positive answer to the questions
stated above. The key tool in our approach is the following fixed point theorem, which is
a useful method to prove the existence of positive solutions for differential equations, for
example [2–5, 9].

Lemma 3.2 (see [10, 11]). Suppose that E is a real Banach space and P is cone in E, and let Ω1,Ω2

be two bounded open sets in E such that 0 ∈ Ω1, Ω1 ⊂ Ω2. Let operator A : P ∩ (Ω2 \Ω1) → P be
completely continuous. Suppose that one of two conditions holds:

(i) ‖Au‖ ≤ ‖u‖, for all u ∈ P ∩ ∂Ω1; ‖Au‖ ≥ ‖u‖, for all u ∈ P ∩ ∂Ω2;

(ii) ‖Au‖ ≥ ‖u‖, for all u ∈ P ∩ ∂Ω1; ‖Au‖ ≤ ‖u‖, for all u ∈ P ∩ ∂Ω2.

then A has at least one fixed point in P ∩ (Ω2 \Ω1).
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4. The Existence of Two Positive Solutions

Theorem 4.1. Suppose that the conditions (A1)–(A3) are satisfied and the following assumptions
hold:

(B1) limu→ 0+ inf(f(u)/u) > R−1;

(B2) limu→+∞ inf(f(u)/u) > R−1;

(B3) There exists a constant ρ > 0 such that f(u) ≤ r−1ρ, u ∈ [0, ρ].

Then the BVP (1.1) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < ρ < ‖u2‖. (4.1)

Proof. At first, it follows from the condition (B1) that we may choose ρ1 ∈ (0, ρ) such that

f(u) > R−1u, 0 < u ≤ ρ1. (4.2)

Set Ω1 = {u ∈ C[0, 1] : ‖u‖ < ρ1}, and u ∈ P ∩ ∂Ω1; from (3.3) and (2.4) and Lemma 2.4, for
0 < t ≤ 1, we have

Au(1) =
1

(n − 1)!(1 −D)

[∫1

0
D(1 − s)n−1a(s)f(u(s))ds −

m−2∑

i=1

αi

∫ηi

0

(
ηi − s

)n−1
a(s)f(u(s))ds

]

≥
∑m

i=1 αi

(n − 1)!(1 −D)

∫ηi

0

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)f(u(s))ds

>
R−1 ∑m

i=1 αi

(n − 1)!(1 −D)

∫ηi

0

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)u(s)ds

>
R−1 ∑m

i=2 αi

(n − 1)!(1 −D)

∫ηi

η1

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)u(s)ds

>
R−1γ‖u‖∑m

i=2 αi

(n − 1)!(1 −D)

∫ηi

η1

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)ds

= R−1R‖u‖ = ‖u‖.
(4.3)

Therefore, we have

‖Au‖ ≥ ‖Au(1)‖ > ‖u‖, u ∈ P ∩ ∂Ω1. (4.4)

Further, it follows from the condition (B2) that there exists ρ2 > ρ such that

f(u) > R−1u, u ≥ ρ2. (4.5)
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Let ρ∗ = max{2ρ, γ−1ρ2}, set Ω2 = {u ∈ C[0, 1] : ‖u‖ < ρ∗}, then u ∈ P ∩ ∂Ω2 and Lemma 2.4
imply

min
η1≤t≤1

u(t) ≥ γ‖u‖ ≥ ρ2, (4.6)

and by the condition (B2), (2.4), (3.3), and Lemma 2.4, we have

Au(1) =
1

(n − 1)!(1 −D)

[∫1

0
D(1 − s)n−1a(s)f(u(s))ds −

m∑

i=1

αi

∫ηi

0

(
ηi − s

)n−1
a(s)f(u(s))ds

]

≥
∑m

i=1 αi

(n − 1)!(1 −D)

∫ηi

0

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)f(u(s))ds

>
R−1 ∑m

i=1 αi

(n − 1)!(1 −D)

∫ηi

0

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)u(s)ds

>
R−1 ∑m

i=2 αi

(n − 1)!(1 −D)

∫ηi

η1

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)u(s)ds

>
R−1γ‖u‖∑m−2

i=2 αi

(n − 1)!(1 −D)

∫ηi

η1

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)ds

= R−1R‖u‖ = ‖u‖.
(4.7)

Therefore, we have

‖Au‖ ≥ ‖Au(1)‖ > ‖u‖, u ∈ P ∩ ∂Ω2. (4.8)

Finally, let Ω3 = {u ∈ C[0, 1] : ‖u‖ < ρ} and u ∈ P ∩ ∂Ω3. By (2.3), (3.3), and the condition
(B3), we have

Au(t) ≤ tn−1

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)f(u(s))ds

≤ r−1ρ
(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)ds = r−1rρ = ‖u‖,

(4.9)

which implies

‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω3. (4.10)

Thus from (4.4)–(4.10) and Lemmas 3.1 and 3.2, A has a fixed point u1 in P ∩ (Ω3 \Ω1) and a
fixed u2 in P ∩ (Ω2 \Ω3). Both are positive solutions of BVP (1.1) and satisfy

0 < ‖u1‖ < ρ < ‖u2‖. (4.11)

The proof is complete.
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Corollary 4.2. Suppose that the conditions (A1)–(A3) are satisfied and the following assumptions
hold:

(B′
1) limu→ 0+ inf(f(u)/u) = +∞;

(B′
2) limu→+∞ inf(f(u)/u) = +∞;

(B′
3) there exists a constant ρ

′ > 0 such that f(u) ≤ r−1ρ′, u ∈ [0, ρ′].

Then the BVP (1.1) has at least two positive solutions u1and u2 such that

0 < ‖u1‖ < ρ′ < ‖u2‖. (4.12)

Proof. From the conditions (B′
i) (i = 1, 2), there exist sufficiently big positive constantsMi(i =

1, 2) such that

lim
u→ 0+

sup
f(u)
u

> M2, lim
u→+∞

sup
f(u)
u

> M1 (4.13)

by the condition (B′
3); so all the conditions of Theorem 4.1 are satisfied; by an application of

Theorem 4.1, the BVP (1.1) has two positive solutions u1 and u2 such that

0 < ‖u1‖ < ρ′ < ‖u2‖. (4.14)

Theorem 4.3. Suppose that the conditions (A1)–(A3) are satisfied and the following assumptions
hold:

(C1) limu→ 0+ sup(f(u)/u) < r−1;

(C2) limu→+∞ sup(f(u)/u) < r−1;

(C3) there exists a constant l > 0 such that f(u) ≥ R−1l, u ∈ [γl, l].

Then the BVP (1.1) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < l < ‖u2‖. (4.15)

Proof. It follows from the condition (C1) that we may choose ρ3 ∈ (0, l) such that

f(u) < r−1u, 0 < u ≤ ρ3. (4.16)

Set Ω4 = {u ∈ C[0, 1] : ‖u‖ < ρ3}, and u ∈ P ∩ ∂Ω4; from (3.2) and (2.4), for 0 < t ≤ 1, we have

Au(t) ≤ tn−1

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)f(u(s))ds

<
r−1‖u‖

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)ds = r−1r‖u‖ = ‖u‖.

(4.17)
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Therefore, we have

‖Au‖ < ‖u‖, u ∈ P ∩ ∂Ω4. (4.18)

It follows from the condition (C2) that there exists ρ4 > l such that f(u) < r−1u for u ≥ ρ4, and
we consider two cases.

Case i. Suppose that f is unbounded; there exists l∗ > ρ4 such that f(u) ≤ f(l∗) for 0 < u ≤ l∗.
Then for u ∈ P and ‖u‖ = l∗, we have

Au(t) ≤ tn−1

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)f(u(s))ds

≤ tn−1

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)f(l∗)ds

<
r−1l∗

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)ds = r−1rl∗ = l∗ = ‖u‖.

(4.19)

Case ii. If f is bounded, that is, f(u) ≤ N for all u ∈ [0,+∞), taking l∗ ≥ max{2l,Nr}, for
u ∈ P and ‖u‖ = l∗, we have

Au(t) ≤ tn−1

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)f(u(s))ds

≤ N

(n − 1)!(1 −D)

∫1

0
(1 − s)n−1a(s)ds ≤ Nr ≤ l∗ = ‖u‖.

(4.20)

Hence, in either case, we always may set Ω5 = {u ∈ C[0, 1] : ‖u‖ < l∗} such that

‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω5. (4.21)

Finally, set Ω6 = {u ∈ C[0, 1] : ‖u‖ < l}; then u ∈ P ∩ ∂Ω6 and Lemma 2.4 imply

min
t∈[η1,1]

u(t) ≥ γ‖u‖ = γl, (4.22)
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and by the condition (C3), (2.4), and (3.3), we have

Au(1) =
1

(n − 1)!(1 −D)

[∫1

0
D(1 − s)n−1a(s)f(u(s))ds −

m∑

i=1

αi

∫ηi

0

(
ηi − s

)n−1
a(s)f(u(s))ds

]

≥
∑m

i=1 αi

(n − 1)!(1 −D)

∫ηi

0

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)f(u(s))ds

≥ R−1l
∑m

i=2 αi

(n − 1)!(1 −D)

∫ηi

η1

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)ds

≥ R−1lγ
∑m

i=2 αi

(n − 1)!(1 −D)

∫ηi

η1

[(
ηi − ηis

)n−1 − (
ηi − s

)n−1]
a(s)ds

= R−1lR = ‖u‖.
(4.23)

Hence, we have

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω6. (4.24)

From (4.18)–(4.24) and Lemmas 3.1 and 3.2,A has a fixed point u1 in P ∩ (Ω6 \Ω4) and a fixed
u2 in P ∩ (Ω5 \Ω6). Both are positive solutions of the BVP(1.1) and satisfy

0 < ‖u1‖ < l < ‖u2‖. (4.25)

The proof is complete.

Corollary 4.4. Suppose that the conditions (A1)–(A3) are satisfied and the following assumptions
hold:

(C′
1) limu→ 0+ sup(f(u)/u) = 0;

(C′
2) limu→+∞ sup(f(u)/u) = 0;

(C′
3) there exists a constant ρ

′′ > 0 such that f(u) ≥ R−1ρ′′, u ∈ [γρ′′, ρ′′].

Then BVP (1.1) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < ρ′′ < ‖u2‖. (4.26)

The proof of Corollary 4.4 is similar to that of Corollary 4.2; so we omit it.
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5. The Existence of Three Positive Solutions

Let E be a real Banach space with cone P . A map β : P → [0,+∞) is said to be a nonnegative
continuous concave functional on P if β is continuous and

β
(
tx + (1 − t)y

) ≥ tβ(x) + (1 − t)β
(
y
)

(5.1)

for all x, y ∈ P and t ∈ [0, 1]. Let a, b be two numbers such that 0 < a < b and let β be a
nonnegative continuous concave functional on P . We define the following convex sets:

Pa = {x ∈ P : ‖x‖ < a}, ∂Pa = {x ∈ P : ‖x‖ = a}, Pa = {x ∈ P : ‖x‖ ≤ a},
P
(
β, a, b

)
=
{
x ∈ P : a ≤ β(x), ‖x‖ ≤ b

}
.

(5.2)

Lemma 5.1 (see [12]). Let A : Pc → Pc be completely continuous and let β be a nonnegative
continuous concave functional on P such that β(x) ≤ ‖x‖ for x ∈ Pc. Suppose that there exist
0 < d < a < b ≤ c such that

(i) {x ∈ P(β, a, b) : β(x) > a}/= ∅ and β(Ax) > a for x ∈ P(β, a, b),

(ii) ‖Ax‖ < d for ‖x‖ ≤ d,

(iii) β(Ax) > a for x ∈ P(β, a, c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2, x3 in Pc such that

‖x1‖ < d, a < β(x2), and ‖x3‖ > d with β(x3) < a. (5.3)

Now, we establish the existence conditions of three positive solutions for the BVP (1.1).

Theorem 5.2. Suppose that (A1)–(A3) hold and there exist numbers a and d with 0 < d < a such
that the following conditions are satisfied:

(D1) limu→∞(f(u)/u) < (1/G),

(D2) f(u) < d/G, u ∈ [0, d],

(D3) f(u) > a/F, u ∈ [a, a/γ],

where

F = min
t∈[η1,1]

∫1

η1

K(t, s)a(s)ds, G = max
t∈[0,1]

∫1

0
K(t, s)a(s)ds, (5.4)

Then the boundary value problem (1.1) has at least three positive solutions.

Proof. Let P be defined by (3.2) and let A be defined by (3.3). For u ∈ P , let

β(u) = min
t∈[η1,1]

u(t). (5.5)
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Then it is easy to check that β is a nonnegative continuous concave functional on P with
β(u) ≤ ‖u‖ for u ∈ P and A : P → P is completely continuous.

First, we prove that if (D1) holds, then there exists a number c > a/γ andA : Pc → Pc.
To do this, by (D1), there exist M > 0 and λ < 1/G such that

f(u) < λu, for u > M. (5.6)

Set

δ = max
u∈[0,M]

f(u); (5.7)

it follows that f(u) < λu + δ for all u ∈ [0,+∞). Take

c > max
{

δG

1 − λG
,
a

γ

}

. (5.8)

If u ∈ Pc, then

(Au)(t) ≤ max
t∈[0,1]

∫1

0
K(t, s)a(s)f(u(s))ds < max

t∈[0,1]

∫1

0
K(t, s)a(s)ds(λ‖u‖ + δ) < (λc + δ)G < c,

(5.9)

that is,

‖Au‖ < c. (5.10)

Hence (5.10) show that if (D1) holds, then there exists a number c > a/γ such that A maps
Pc into Pc.

Now we show that {u ∈ P(β, a, a/γ) : β(u) > a}/= ∅ and β(Au) > a for all u ∈
P(β, a, a/γ). In fact, take x(t) ≡ (a + (a/γ))/2 > a, so x ∈ {u ∈ P(β, a, a/γ) : β(u) > a}.
Moreover, for u ∈ P(β, a, a/γ), then β(u) > a, and we have

a

γ
≥ ‖u‖ ≥ β(u) > a. (5.11)

Therfore, by (D3) we obtain

β(Au) = min
t∈[η1,1]

∫1

0
K(t, s)a(s)f(u(s))ds >

a

F
min
t∈[η1,1]

∫1

η1

K(t, s)a(s)ds = a. (5.12)

Next, we assert that ‖Au‖ < d for ‖u‖ ≤ d. In fact, if u ∈ Pd, by (D2) we have

‖Au‖ <
d

G

(

max
t∈[0,1]

∫1

0
K(t, s)a(s)ds

)

= d. (5.13)

Hence, A : Pd → Pd for u ∈ Pd.
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Finally, we assert that if u ∈ P(β, a, c) and ‖Au‖ > a/γ , then β(Au) > a. To see this, if
u ∈ P(β, a, c) and ‖Au‖ > a/γ ,then we have from Lemma 2.3 that

β(Au) = min
t∈[η1,1]

∫1

0
K(t, s)a(s)f(u(s))ds

≥
∫1

0
min

t∈[η1,1]
K(t, s)a(s)f(u(s))ds ≥ γ

∫1

0
K(s)a(s)f(u(s))ds

≥ γ

∫1

0
max
t∈[0,1]

K(t, s)a(s)f(u(s))ds ≥ γmax
t∈[0,1]

∫1

0
K(t, s)a(s)f(u(s))ds = γ‖Au‖.

(5.14)

So we have

β(Au) ≥ γ‖Au‖ > γ · a
γ
= a. (5.15)

To sum up (5.10)∼(5.15), all the conditions of Lemma 5.1 are satisfied by taking b = a/γ .
Hence, A has at least three fixed points; that is, BVP (1.1) has at least three positive solutions
u1, u2, and u3 such that

‖u1‖ < d, a < β(u2), and ‖u3‖ > d with β(u3) < a. (5.16)

The proof is complete.
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