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We investigate the existence of multiple nontrivial solutions (ξ, η) for perturbations b1[(u + 2)+ −
2]and b2[(u+3)

+−3] of the beam systemwith Dirichlet boundary condition Lξ = b1[(ξ+3η+2)
+−2]

in (−π/2, π/2) ×R, Lη = b2[(ξ + 3η + 3)+ − 3] in (−π/2, π/2) ×R, where u+ = max {u, 0}, and μ, ν
are nonzero constants. Here L is the beam operator in R

2 , and the nonlinearity (b1[(u + 2)+ − 2] +
b2[(u + 3)+ − 3] crosses the eigenvalues of the beam operator.

1. Introduction

Let L be the beam operator inR
2, Lu = utt+uxxxx. In this paper, we investigate the existence of

multiple nontrivial solutions (ξ, η) for perturbations b1[(ξ+3η+2)
+−2] and b2[(ξ+3η+3)

+−3]
of the beam system with Dirichlet boundary condition

Lξ = b1
[(
ξ + 3η + 2

)+ − 2
]

in
(
−π
2
,
π

2

)
× R,

Lη = b2
[(
ξ + 3η + 3

)+ − 3
]

in
(
−π
2
,
π

2

)
× R,

ξ
(
±π
2
, t
)
= ξxx

(
±π
2
, t
)
= 0,

ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η
(
±π
2
, t
)
= ηxx

(
±π
2
, t
)
= 0,

η(x, t + π) = η(x, t) = η(−x, t),

(1.1)
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where u+ = max{u, 0} and the nonlinearity (b1[(u + 2)+ − 2] + b2[(u + 3)+ − 3]) crosses the
eigenvalues of the beam operator. This system represents a bending beam supported by
cables in the two directions.

In [1, 2], the authors investigated the multiplicity of solutions of a nonlinear
suspension bridge equation in an interval (−π/2, π/2)

utt + uxxxx + bu+ = f(x) in
(
−π
2
,
π

2

)
× R,

u
(
±π
2
, t
)
= uxx

(
±π
2
, t
)
= 0,

u is π − periodic in t and even in x,

(1.2)

where the nonlinearity −(bu+) crosses an eigenvalue. This equation represents a bending
beam supported by cables under a load f. The constant b represents the restoring force if
the cables stretch. The nonlinearity u+ models the fact that cables resist expansion but do not
resist compression.

In [2] Lazer and McKenna point out that the kind of nonlinearity b[(u + 1)+ − 1],

utt + uxxxx = b
[
(u + 1)+ − 1

]
in

(
−π
2
,
π

2

)
× R,

u
(
±π
2
, t
)
= uxx

(
±π
2
, t
)
= 0,

u is π − periodic in t and even in x,

(1.3)

can furnish a model to study travelling waves in suspension bridges. This is a one-
dimensional beam equation that represents only the up and down travelling waves of the
beam. But the beam has also the right and left travelling waves. Hence we can consider two-
dimensional beam equation (1.1).

The nonlinear equation with jumping nonlinearity has been extensively studied by
many authors. For the fourth order elliptic equation, Taratello [3] and Micheletti and Pistoia
[4, 5] proved the existence of nontrivial solutions, by using degree theory and critical point
theory, separately. For one-dimensional case, Lazer and McKenna [6] proved the existence
of nontrivial solution by the global bifurcation method. For this jumping nonlinearity, we
are interested in the multiple nontrivial solutions of the equation. Here we used variational
reduction method to find the nontrivial solutions of problem (1.1).

In Section 2, we investigate some properties of the Hilbert space spanned by
eigenfunctions of the beam operator. We show that only the trivial solution exists for problem
(1.4) when −3 < b1, b2 < 1, and −3 < b1 + b2 < 1. In Section 3, we state the Mountain
Pass Theorem. In Section 4, we investigate the existence of nontrivial solutions u(x, t) for a
perturbation g(u) = b1[(u + 2)+ − 2] + b2[(u + 3)+ − 3] of the asymmetric beam equation

utt + uxxxx = g(u) in
(
−π
2
,
π

2

)
× R,

u
(
±π
2
, t
)
= uxx

(
±π
2
, t
)
= 0,

u(x, t + π) = u(x, t) = u(−x, t),

(1.4)
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where u+ = max{u, 0}, and b1, b2 are constants. This equation satisfies Dirichlet boundary
condition on the interval (−π/2, π/2) and periodic condition on the variable t. We use the
variational reduction method to apply mountain pass theorem in order to get the main result
that for −15 < b1, b2 < −3,−15 < b1 + b2 < −3 (1.2) has at least three periodic solutions, two of
which are nontrivial. In Section 5, we investigate the existence of multiple nontrivial solutions
(ξ, η) for perturbations b1[(ξ + 3η + 2)+ − 2] and b2[(ξ + 3η + 3)+ − 3] of beam system (1.1). We
also prove that for −3 < b1, 3b2 < 1,−3 < b1 + 3b2 < 1 (1.1) has only the trivial solution.

2. Preliminaries

Let L be the differential operator and Lu = utt + uxxxx. Then the eigenvalue problem

Lu = λu in
(
−π
2
,
π

2

)
× R,

u
(
±π
2
, t
)
= 0, u(x, t + π) = u(x, t) = u(−x, t)

(2.1)

has infinitely many eigenvalues λmn = (2n + 1)4 − 4m2(m,n = 0, 1, 2, . . .) and corresponding
normalized eigenfunctions φmn, ψmn(m,n ≥ 0) given by

φ0n =
√
2

π
cos(2n + 1)x for n ≥ 0,

φmn =
2
π

cos 2mt · cos(2n + 1)x for m > 0, n ≥ 0,

ψmn =
2
π

sin 2mt · cos(2n + 1)x for m > 0, n ≥ 0.

(2.2)

We note that all eigenvalues in the interval (−19, 45) are given by

λ20 = −15 < λ10 = −3 < λ00 = 1 < λ41 = 17. (2.3)

Let Ω be the square (−π/2, π/2) × (−π/2, π/2) and H0 the Hilbert space defined by

H0 =
{
u ∈ L2(Ω) : u is even in x

}
. (2.4)

Then the set of functions {φmn, ψmn} is an orthonormal basis inH0. Let us denote an element
u in H0 as

u =
∑(

hmnφmn + kmnψmn

)
, (2.5)

and we define a subspace H of H0 as

H =
{
u ∈ H0 :

∑
|λmn|

(
h2
mn + k2

mn

)
< ∞

}
. (2.6)
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Then this is a complete normed space with a norm

‖u‖H =
[∑

|λmn|
(
h2
mn + k2

mn

)]1/2
. (2.7)

Since |λmn| ≥ 1 for all m,n, we have that

(i) ‖u‖H ≥ ‖u‖, where ‖u‖ denotes the L2 norm of u;

(ii) ‖u‖ = 0 if and only if ‖u‖H = 0.

Define Lβu = Lu + βu. Then we have the following lemma (cf. [7]).

Lemma 2.1. Let β ∈ R, β /= − λmn (m,n ≥ 0). Then we have that

L−1
β is a bounded linear operator from H0 into H. (2.8)

Theorem 2.2. Let −3 < b1, b2 < 1, and −3 < b1+b2 < 1. Then the equation, with Dirichlet boundary
condition,

Lu = b1
[
(u + 2)+ − 2

]
+ b2

[
(u + 3)+ − 3

]
(2.9)

has only the trivial solution in H0.

Proof. Since λ10 = −3 and λ00 = 1, let β = −(1/2)(λ00 + λ10) = −(1/2)(−3 + 1) = 1. The equation
is equivalent to

u =
(
L + β

)−1(
b1
[
(u + 2)+ − 2

]
+ b2

[
(u + 3)+ − 3

]
+ βu

)
. (2.10)

By Lemma 2.1, (L + β)−1 is a compact linear map from H0 into H0. Therefore, it is L2 norm
(1/2). We note that

∥∥b1
[
(u1 + 2)+ − (u2 + 2)+

]
+ b2

[
(u1 + 3)+ − (u2 + 3)+

]
+ β(u1 − u2)

∥∥

≤ max
{∣∣b1 + β

∣∣, ∣∣b2 + β
∣∣, ∣∣b1 + b2 + β

∣∣, ∣∣β∣∣}‖u1 − u2‖ <
1
2
(λ00 − λ10)‖u1 − u2‖

= 2‖u1 − u2‖.

(2.11)

So the right-hand side of (2.10) defines a Lipschitz mapping of H0 into H0 with Lipschitz
constant γ < 1. Therefore, by the contractionmapping principle, there exists a unique solution
u ∈ H0. Since u ≡ 0 is a solution of (2.10), u ≡ 0 is the unique solution.

3. Mountain Pass Theorem

The mountain pass theorem concerns itself with proving the existence of critical points
of functional I ∈ C1(E,R) which satisfy the Palais-Smale (PS) condition, which occurs
repeatedly in critical point theory.
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Definition 3.1. We say that I satisfies the Palais-Smale condition if any sequence {um} ⊂ E for
which I(um) is bounded and I ′(um) → 0 as m → ∞ possesses a convergent sequence.

The following deformation theorem is stated in [8].

Theorem 3.2. Let E be a real Banach space and I ∈ C1(E,R). Suppose I satisfies Palais-Smale
condition. Let N be a given neighborhood of the set Kc of the critical points of I at a given level c.
Then there exists ε > 0, as small as we want, and a deformation η : [0, 1] × E → E such that we
denote by Ab the set {x ∈ E : I(x) ≤ b}:

(i) η(0, x) = x for all x ∈ E,

(ii) η(t, x) = x for all x ∈ Ac−2ε ∪ (E \Ac+2c), for all t ∈ [0, 1],

(iii) η(1, ·)(Ac+ε \N) ⊂ Ac−ε.

We state the Mountain Pass Theorem.

Theorem 3.3. Let E be a real Banach space and I ∈ C1(E,R) satisfy (PS) condition. Suppose that

(I1) there are constants ρ, α > 0 such that I|∂Bρ(0) ≥ I(0) + α, and

(I2) there is an e ∈ E \ Bρ such that I(e) ≤ I(0).

Then I possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

I(u), (3.1)

where

Γ =
{
g ∈ C([0, 1], E) | g(0) = 0, g(1) = e

}
. (3.2)

4. Critical Point Theory and Multiple Nontrivial Solutions

We investigate the existence of multiple solutions of (1.1)when −7 < b1, b2 < −3−7 < b1+b2 <
−3. We define a functional on H by

J(u) =
∫

Ω

[
1
2

(
−|ut|2 + |uxx|2

)
− b1

2
∣∣(u + 2)+

∣∣2 + 2b1u − b2
2
∣∣(u + 3)+

∣∣2 + 3b2u
]
dx dt. (4.1)

Then the functional J is well defined inH and the solutions of (1.4) coincide with the critical
points of J(u). Now we investigate the property of functional J .

Lemma 4.1 (cf. [7]). J(u) is continuous and Frechet differentiable at each u ∈ H with

DJ(u)v =
∫

Ω

(
Lu − b1(u + 2)+ + 2b1 − b2(u + 3)+ + 3b2

)
vdx dt, v ∈ H. (4.2)

We will use a variational reduction method to apply the mountain pass theorem.
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Let V = closure of span{φ10, ψ10} be the two-dimensional subspace ofH. Both of them
have the same eigenvalue λ10. Then ‖v‖H =

√
3‖v‖ for v ∈ V . Let W be the orthogonal

complement of V inH. Let P : H → V denoteH onto V and I − P : H → W denoteH onto
W . Then every element u ∈ H is expressed by

u = v +w, (4.3)

where v = Pu, w = (I − P)u.

Lemma 4.2. Let −15 < b1, b2 < −3, and −15 < b1 + b2 < −3. Let v ∈ V be given. Then we have that
there exists a unique solution z ∈ W of equation

Lz + (I − P)
[−b1(v + z + 2)+ + 2b1 − b2(v + z + 3)+ + 3b2

]
= 0 in W. (4.4)

Let z = θ(v). Then θ satisfies a uniform Lipschitz continuous on v with respect to the L2 norm (also
the norm ‖ · ‖H).

Proof. Choose β = 7 and let g(ξ) = b1(ξ + 2)+ + b2(ξ + 3)+ + βξ. Then (4.4) can be written as

z =
(
L + β

)−1(I − P)
[
g(v + z) − (b1 + b2)

]
. (4.5)

Since (L+β)−1(I−P) is a self-adjoint, compact, linear map from (I−P)H into itself, the
eigenvalues of (L + β)−1(I − P) in W are (λmn + β)−1, where λmn > 1 or λmn ≤ −15. Therefore,
‖(L + β)−1(I − P)‖ is 1/4. Since

∣∣g(ξ1) − g(ξ2)
∣∣ ≤ max

{∣∣b1 + β
∣∣, ∣∣b2 + β

∣∣, ∣∣b1 + b2 + β
∣∣, ∣∣β∣∣}|ξ1 − ξ2| < 8|ξ1 − ξ2|, (4.6)

the right-hand side of (4.5) defines a Lipschitz mapping because for fixed v ∈ V (I − P)H0

maps into itself. By the contraction mapping principle, there exists a unique z ∈ (I − P)H0

(also z ∈ (I − P)H) for fixed v ∈ V . Since (L + β)−1 is bounded from H to W there exists a
unique solution z ∈ W of (4.4) for given v ∈ V .

Let

γ =
max

{∣∣b1 + β
∣∣, ∣∣b2 + β

∣∣, ∣∣b1 + b2 + β
∣∣, ∣∣β∣∣}

8
. (4.7)

Then 0 < γ < 1. If z1 = θ(v1) and z2 = θ(v2) for any v1, v2 ∈ V , then

‖z1 − z2‖ ≤
∥∥∥(L + β

)−1(I − P)
∥∥∥∥∥(g(v1 + z1) − g(v2 + z2)

)∥∥ < γ(‖v1 − v2‖ + ‖z1 − z2‖). (4.8)

Hence

‖z1 − z2‖ ≤ γ

1 − γ
‖v1 − v2‖. (4.9)
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Since ‖(L + β)−1(I − P)‖H ≤ 1/8‖u‖,

‖z1 − z2‖H =
∥∥∥(L + β

)−1(I − P)
(
g(v1 + z1) − g(v2 + z2)

)∥∥∥
H

≤ (‖z1 − z2‖ + ‖v1 − v2‖)

≤ 1
1 − γ

‖v1 − v2‖H.

(4.10)

Therefore, θ is continuous on V with respect to norm ‖ · ‖ (also, to ‖ · ‖H).

Lemma 4.3. If J̃ : V → R is defined by J̃(v) = J(v+θ(v)), then J̃ is a continuous Frechet derivative
DJ̃ with respect to V and

DJ̃(v)s = DJ(v + θ(v))(s) ∀ s ∈ V. (4.11)

If v0 is a critical point of J̃ , then v0 + θ(v0) is a solution of (1.4) and conversely every solution of
(1.4) is of this form.

Proof. Let v ∈ V and set z = θ(v). If w ∈ W , then from (4.4)

∫

Ω

(−θ(v)twt + θ(v)xwx − b1(v + θ(v) + 2)+w + 2b1w

−b2(v + θ(v) + 3)+w + 3b2w
)
dt dx = 0.

(4.12)

Since
∫
Ω vtwt = 0 and

∫
Ω vxwx = 0,

DJ(v + θ(v))(w) = 0 ∀ w ∈ W. (4.13)

Let W1,W2 be the two subspaces of H defined as follows:

W1 = closure of span
{
φmn, ψmn | λmn ≤ −15},

W2 = closure of span
{
φmn, ψmn | λmn ≥ 1

}
.

(4.14)

Given v ∈ V and considering the function h: W1 ×W2 → defined by

h(w1, w2) = J(v +w1 +w2), (4.15)

the function h has continuous partial Fréchet derivativesD1h andD2hwith respect to its first
and second variables given by

D1h(w1, w2)
(
y1
)
= DJ(v +w1 +w2)

(
y1
)

for y1 ∈ W1,

D2h(w1, w2)
(
y2
)
= DJ(v +w1 +w2)

(
y2
)

for y2 ∈ W2.
(4.16)
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Therefore, let θ(v) = θ1(v) + θ2(v)with θ1(v) ∈ W1 and θ2(v) ∈ W2. Then by Lemma 4.2

D1h(θ1(v), θ2(v))
(
y1
)

= 0, for y1 ∈ W1

D2h(θ1(v), θ2(v))
(
y2
)

= 0, for y2 ∈ W2.
(4.17)

If w2, y2 ∈ W2 and w1 ∈ W1, then

[
Dh(w1, w2) −Dh

(
w1, y2

)](
w2 − y2

)

=
(
DJ(v +w1 +w2) −DJ

(
v +w1 + y2

))(
w2 − y2

)

=
∫

Ω
−∣∣(w2 − y2

)
t

∣∣2 +
∣∣∣(w2 − y2

)2
xx

∣∣∣ − b1
[
(v +w1 +w2 + 2)+

− (
v +w1 + y2 + 2

)+ − b2(v +w1 +w2 + 3)+

−(v +w1 + y2 + 3
)+](

w2 − y2
)
dt dx.

(4.18)

Since (s+ − t+) (s − t) ≥ 0 for any s, t ∈ R and −7 < b1, b2, b1 + b2 < −3, it is easy to know that

∫

Ω
−b1

[
(v +w1 +w2 + 2)+ − (

v +w1 + y2 + 2
)+](

w2 − y2
)

− b2
[
(v +w1 +w2 + 3)+ − (

v +w1 + y2 + 3
)+](

w2 − y2
)
dx dt ≥ 0.

(4.19)

And

∫

Ω

[
−∣∣(w2 − y2

)
t

∣∣2 + (
w2 − y2

)2
xx

]
dt dx =

∥∥w2 − y2
∥∥2
H. (4.20)

It follows that

(
Dh(w1, w2) −Dh

(
w1, y2

))(
w2 − y2

) ≥ ∥∥w2 − y2
∥∥2
H. (4.21)

Therefore, h is strictly convex with respect to the second variable.
Similarly, using the fact that −bj(s+ − t+)(s − t) ≤ −bj(s − t)2 for any s, t ∈ R, if w1 and

y1 are inW1 and w2 ∈ W2, then

(
D1h(w1, w2) −D1h

(
y1, w2

))(
w1 − y1

)

≤ −∥∥w1 − y1
∥∥2
H − b1

∥∥w1 − y1
∥∥2 − b2

∥∥w1 − y1
∥∥2

≤
(
−1 − b1 + b2

7

)∥∥w1 − y1
∥∥2
H,

(4.22)



Boundary Value Problems 9

where −15 < b1 + b2 < −3. Therefore, h is strictly concave with respect to the first variable.
From (4.17), it follows that

J(v + θ1(v) + θ2(v)) ≤ J
(
v + θ1(v) + y2

)
for any y2 ∈ W2,

J(v + θ1(v) + θ2(v)) ≥ J
(
v + y1 + θ2(v)

)
for any y1 ∈ W1,

(4.23)

with equality if and only if y1 = θ1(v), y2 = θ2(v).
Since h is strictly concave (convex) with respect to its first (second) variable, [9,

Theorem 2.3] implies that J̃ is C1 with respect to v and

DJ̃(v)(s) = DJ(v + θ(v))(s), any s ∈ V. (4.24)

Suppose that there exists v0 ∈ V such that DJ̃(v0) = 0. From (4.24), it follows that
DJ(v0 + θ(v0))(v) = 0 for all v ∈ V . Then by Lemma 4.2, it follows that DJ(v0 + θ(v0))v = 0
for any v ∈ H. Therefore, u = v0 + θ(v0) is a solution of (1.4).

Conversely, if u is a solution of (1.4) and v0 = Pu, thenDJ̃(v0)v = 0 for any v ∈ H.

Lemma 4.4. Let −15 < b1, b2 < −3, and −15 < b1 + b2 = b < −3. Then there exists a small open
neighborhood B of 0 in V such that v = 0 is a strict local minimum of J̃ .

Proof. For −15 < b1, b2 < −3, and −15 < b1 + b2 = b < −3, problem (1.4) has a trivial solution
u0 = 0. Thus we have 0 = u0 = v + θ(v). Since the subspace W is orthogonal complement of
subspace V , we get v = 0 and θ(v) = 0. Furthermore, θ(0) is the unique solution of (4.4) inW
for v = 0. The trivial solution u0 is of the form u0 = 0 + θ(0) and I + θ, where I is an identity
map on V , θ is continuous, it follows that there exists a small open neighborhood B of 0 in V
such that if v ∈ B then v + θ(v) + 2 > 0, v + θ(v) + 3 > 0. By Lemma 4.2, θ(0) = 0 is the solution
of (4.5) for any v ∈ B. Therefore, if v ∈ B, then for z = θ(v)we have z = 0. Thus

J̃(v) = J(v + z) =
∫

Ω

[
1
2

(
−|(v + z)t|2 + |(v + z)xx|2

)
− b1

2
∣∣(v + z + 2)+

∣∣2

+2b1(v + z) − b2
2
∣∣(v + z + 3)+

∣∣2 + 3b2(v + z)
]
dt dx

=
∫

Ω

[
1
2

(
−|vt|2 + |vxx|2

)
− b1

2
(v + 1)2 + b1v − b2

2
(v + 2)2 + 2b2v

]
dt dx

=
∫

Ω

[
1
2

(
−|vt|2 + |vxx|2

)
− b1

2
v2 − 2b1 − b2

2
v2 − 9

2
b2

]
dt dx.

(4.25)

If v ∈ V , then Lv = −3v. Therefore, in B,

J̃(v) = J̃(v) − J̃(0) =
∫

Ω

[
1
2

(
−|vt|2 + |vx|2

)
− b

2
v2
]
dt dx =

1
2
(−3 − b)

∫

Ω
v2dt dx ≥ 0, (4.26)

where −15 < b = b1 + b2 < −3. It follows that v = 0 is a strict local point of minimum of J̃ .
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Proposition 4.5. If −15 < b < 1, then the equation Lu − bu+ = 0 admits only the trivial solution
u = 0 inH0.

Proof. H1 = span{cosx cos 2mt,m ≥ 0} is invariant under L and under the map u �→ bu+.
So the spectrum σ1 of L restricted to H1 contains λ10 = −3 in (−15, 1). The spectrum σ2 of L
restricted to H2 = H⊥

1 contains λ10 = −3 in (−15, 1). From the symmetry theorem in [10], any
solution y(t) cosx of this equation satisfies y′′ + y − by+ = 0. This nontrivial periodic solution
is periodic with periodic π + (π/

√
−b + 1)/=π . This shows that there is no nontrivial solution

of Lv − bv+ = 0.

Lemma 4.6. Let b = b1 + b2 and −15 < b1, b2, b < −3. Then the functional J̃ , defined on V , satisfies
the Palais-Smale condition.

Proof. Let {vn} ⊂ V be a Palais-Smale sequence that is J̃(vn) is bounded and DJ̃(vn) → 0 in
V . Since V is two-dimensional, it is enough to prove that {vn} is bounded in V .

Let un be the solution of (1.4) with un = vn + θ(vn) where vn ∈ V . So

Lun − b1(un + 2)+ + 2b1 − b2(un + 3)+ + 3b2 = DJ(un) in H. (4.27)

By contradiction, we suppose that ‖vn‖ → +∞, also ‖un‖ → +∞. Dividing by ‖un‖ and

taking wn =
un

‖un‖ , we get

Lwn − b1

(
wn +

2
‖un‖

)+

+
2b1
‖un‖ − b2

(
wn +

3
‖un‖

)+

+
3b2
‖un‖ =

(DJ(un))
‖un‖ −→ 0. (4.28)

Since ‖wn‖ = 1, we get wn → w0 weakly in H0. Since L−1 is a compact operator, passing to
a subsequence, we get wn → w0 strongly in H0. Taking the limit of both sides of (4.28), it
follows that

Lw0 − bw+
0 = 0, (4.29)

with ‖w0‖/= 0. This contradicts to the fact that for −15 < b < −3 the following equation

Lu − bu+ = 0 in H0 (4.30)

has only the trivial solution by Proposition 4.5. Hence {vn} is bounded in V .

We now define the functional on H, for −15 < b < −3,

J∗(u) =
∫

Ω

[
−1
2

(
−|ut|2 + |ux|2

)
− b

2
|u+|2dx dt. (4.31)

The critical points of J∗(u) coincide with solutions of the equation

Lu − bu+ = 0 in H0. (4.32)
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The above equation (−15 < b < −3) has only the trivial solution and hence J∗(u) has only one
critical point u = 0.

Given v ∈ V , let θ∗(v) = θ(v) ∈ W be the unique solution of the equation

Lz + (I − P)
[−b1(v + z + 2)+ + 2b1 − b2(v + z + 3)+ + 3b2

]
= 0 in W, (4.33)

where −15 < b1, b2, b1 + b2 = b < −3. Let us define the reduced functional J̃∗(v) on V by
J(v + θ∗(v)). We note that we can obtain the same results as Lemmas 4.1 and 4.2 when we
replace θ(v) and J̃(v) by θ∗(v) and J̃∗(v). We also note that, for −15 < b < −3, J̃∗(v) has only
the critical point v = 0.

Lemma 4.7. Let −15 < b1, b2 < −3, b = b1 + b2, and −15 < b < −3. Then we have J̃∗(v) < 0 for all
v ∈ V with v /= 0.

The proof of the lemma can be found in [1].

Lemma 4.8. Let −15 < b1, b2 < −3, b = b1 + b2, and −15 < b < −3. Then we have

lim
‖v‖→∞

J̃(v) −→ −∞ (4.34)

for all v ∈ V (certainly for also the norm ‖ · ‖H).

Proof. Suppose that it is not true that

lim
‖v‖→∞

J̃(v) −→ −∞. (4.35)

Then there exists a sequence (vn) in V and a constant C such that

lim
n→∞

‖vn‖ −→ ∞,

J̃(vn) =
∫

Ω

(
1
2
L(vn + θ(vn)) · (vn + θ(vn)) − b1

2
∣∣(vn + θ(vn) + 2)+

∣∣2 + 2b1(vn + θ(vn))

−b2
2
∣∣(vn + θ(vn) + 3)+

∣∣2 + 3b1(vn + θ(vn))dt dx ≥ C

)
.

(4.36)

Given vn ∈ V , let wn = θ(vn) be the unique solution of the equation

Lw + (I − P)
[−b1(vn +w + 2)+ + 2b1 − b2(vn +w + 3)+ + 3b2

]
= 0 in W. (4.37)
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Let zn = vn +wn, v
∗
n = vn/‖vn‖, and z∗n = zn/‖vn‖. Then z∗n = v∗

n +w∗
n. By dividing ‖vn‖, we

have

w∗
n = L−1(I − P)

(
b1

(
vn +wn + 2

‖vn‖
)+

− 2b1
‖vn‖

)

+ L−1(I − P)
(
b2

(
vn +wn + 3

‖vn‖
)+

− 3b2
‖vn‖

)
in W.

(4.38)

By Lemma 4.2, wn = θ(vn) is Lipschitz continuous on V . So the sequence {wn + vn/‖vn‖}
is bounded in H. Since limn→∞(1/‖vn‖) = 0 and limn→∞(bj/‖vn‖) = 0 (j = 1, 2), it follows
that b1(vn +wn + 2/‖vn‖)+−2b1/‖vn‖ and b2((vn +wn + 3)/‖vn‖)+−3b2/‖vn‖ are bounded in
H. Since L−1 is a compact operator, there is a subsequence ofw∗

n converging to somew∗ inW ,
denoted by itself. Since V is a two-dimensional space, assume that sequence (v∗

n) converges
to v∗ ∈ V with ‖v∗‖ = 1. Therefore, we can get that the sequence (z∗n) converges to an element
z∗ inH.

On the other hand, since J̃(vn) ≥ C, dividing this inequality by ‖vn‖2, we get

∫

Ω

1
2
L(z∗n) · z∗n −

b1
2

((
z∗n +

2
‖vn‖

)+) 2

+ 2b1
z∗n
‖vn‖

− b2
2

((
z∗n +

3
‖vn‖

)+)2

+ 3b3
z∗n
‖vn‖dt dx ≥ C

‖vn‖2
.

(4.39)

By Lemma 4.2, it follows that for any y ∈ W

∫

Ω

[−(zn)tyt + (zn)xyx − b1(zn + 2)+y + 2b1y − b2(zn + 3)+y + 3b2y
]
dt dx = 0. (4.40)

If we set y = wn in (4.40) and divide by ‖vn‖2, then we obtain

∫

Ω

[
−∣∣(w∗

n)t
∣∣2 + ∣∣(w∗

n)xx
∣∣2 − b1(z∗n)

+w∗
n +

2b1
‖vn‖w

∗
n − b2(z∗n)

+w∗
n +

3b2
‖vn‖w

∗
n

]
dt dx = 0. (4.41)

Let y ∈ W be arbitrary. Dividing (4.40) by ‖vn‖ and letting n → ∞, we obtain

∫

Ω

[−(z∗)tyt + (z∗)xxyxx − b(z∗)+y
]
dt dx = 0, (4.42)
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where b = b1 + b2. Then (4.42) can be written in the form DJ̃∗(v∗ +w∗)(y) = 0 for all y ∈ W .
Put w∗ = θ(v∗). Letting n → ∞ in (4.41), we obtain

lim
n→∞

∫

Ω

(
−∣∣(w∗

n)t
∣∣2 + ∣∣(w∗

n)xx
∣∣2)dt dx

= lim
n→∞

∫

Ω
b(z∗n)

+w∗
n −

b

‖vn‖w
∗
ndt dx

=
∫

Ω
b(z∗)+w∗dtdz

=
∫

Ω
(−(z∗)t(w∗)t + (z∗)x(w

∗)xx)dt dx

=
∫

Ω

(
−|(w∗)t|2 + |(w∗)xx|2

)
dt dx,

(4.43)

where we have used (4.42). Hence

lim
n→∞

∫

Ω

[
−∣∣(z∗n)t

∣∣2 + ∣∣(z∗n)xx
∣∣2]dt dx =

∫

Ω

[
−|(z∗)t|2 + |(z∗)xx|2

]
dt dx. (4.44)

Letting n → ∞ in (4.39), we obtain

J̃∗(v∗) =
∫

Ω

[
1
2

(
−|(z∗)t|2 + |(z∗)xx|2

)
+
b

2
∣∣(z∗)+∣∣2

]
dt dx ≥ 0. (4.45)

Since ‖v∗‖ = 1, this contradicts to the fact that J̃∗(v) < 0 for all v /= 0. This proves that
lim‖v‖→∞J̃(v) → −∞.

Now we state the main result in this paper.

Theorem 4.9. Let −15 < b1, b2 < −3, b = b1 + b2, and −15 < b < −3. Then there exist at least three
solutions of the equation

utt + uxxxx = b1
[
(u + 2)+ − 2

]
+ b2

[
(u + 3)+ − 3

]
in

(
−π
2
,
π

2

)
× R,

u
(
±π
2
, t
)
= 0, u(x, t + π) = u(x, t),

(4.46)

two of which are nontrivial solutions.

Proof. We remark that u = 0 is the trivial solution of problem (1.4). Then v = 0 is a critical point
of functional J̃ . Next we want to find others critical points of J̃ which are corresponding to
the solutions of problem (1.4).
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By Lemma 4.4, there exists a small open neighborhood B of 0 in V such that v = 0 is
a strict local point of minimum of J̃ . Since lim‖v‖H →∞J̃(v) → −∞ from Lemma 4.8 and V is a
two-dimensional space, there exists a critical point v0 ∈ V of J̃ such that

J̃(v0) = max
v∈V

J̃(v). (4.47)

Let Bv0 be an open neighborhood of v0 in V such that B∩Bv0 = ∅. Since lim‖v‖H →∞J̃(v) → −∞,
we can choose v1 ∈ V \ (B ∪ Bv0) such that J̃(v1) < J̃(0). Since J̃ satisfies the Palais-Smale
condition, by the Mountain Pass Theorem (Theorem 3.3), there is a critical value

c = inf
γ∈Γ

sup
γ

J̃(v), (4.48)

where Γ = {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) = v0}.
If J̃(v0)/= c, then there exists a critical point v of J̃ at level c such that v /=v0, 0 ( since

c /= J̃(v0) and c > J̃(0)). Therefore, in case J̃(v0)/= c, the functional J̃(v) has also at least 3
critical points 0, v0, v.

If J̃(v0) = c, then define

c′ = inf
γ∈Γ′

sup
γ

J̃(v), (4.49)

where Γ′ = {γ ∈ Γ : γ ∩ Bv0 = ∅}. Hence,

c = inf
γ∈Γ

sup
γ

J̃(v) ≤ inf
γ∈Γ′

sup
γ

J̃(v) ≤ max
v∈V

J̃(v) = c. (4.50)

That is c = c′. By contradiction, assume Kc = {v ∈ V | J̃(v) = c and DJ̃(v) = 0} = {v0}. Use
the functional J̃ for the deformation theorem (Theorem 4.9) and taking ε < (1/2)(c−J̃(0)). We
choose γ ∈ Γ′ such that supγ J̃ ≤ c. From the deformation theorem (Theorem 3.2), η(1, ·)◦γ ∈ Γ
and

c = inf
γ∈Γ

sup
γ

J̃(v) ≤ sup
η(1,·)◦γ

J̃(v) ≤ c − ε, (4.51)

which is a contradiction. Therefore, there exists a critical point v of J̃ at level c such that
v /=v0, 0, which means that (1.4) has at least three critical points. Since ‖v‖H and ‖v0‖H /= 0,
these two critical points coincide with two nontrivial period solutions of problem (1.4).
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5. Nontrivial Solutions for the Beam System

In this section, we investigate the existence of multiple nontrivial solutions (ξ, η) for
perturbations b1[(ξ + 3η + 2)+ − 2] and b2[(ξ + 3η + 3)+ − 3] of the beam system with Dirichlet
boundary condition

Lξ = b1
[(
ξ + 3η + 2

)+ − 2
]

in
(
−π
2
,
π

2

)
× R,

Lη = b2
[(
ξ + 3η + 3

)+ − 3
]

in
(
−π
2
,
π

2

)
× R,

ξ
(
±π
2
, t
)
= ξxx

(
±π
2
, t
)
= 0,

ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η
(
±π
2
, t
)
= ηxx

(
±π
2
, t
)
= 0,

η(x, t + π) = ηxx(x, t) = η(−x, t),

(5.1)

where u+ = max{u, 0} and the nonlinearity (b1[(u + 2)+ − 2] + 3b2[(u + 3)+ − 3] crosses the
eigenvalues of the beam operator.

Theorem 5.1. Let −15 < b1, 3b2 < −3, b = b1 + 3b2, and −15 < b < −3. Then beam system (5.1) has
at least three solutions (ξ, η), two of which are nontrivial solutions.

Proof. From problem (5.1), we get the equation

L
(
ξ + 3η

)
= g

(
ξ + 3η + 2

)
in

(
−π
2
,
π

2

)
× R,

ξ
(
±π
2
, t
)
= ξxx

(
±π
2
, t
)
= 0,

ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η
(
±π
2
, t
)
= ηxx

(
±π
2
, t
)
= 0,

η(x, t + π) = ηxx(x, t) = η(−x, t),

(5.2)

where the nonlinearity g(u) = b1[(u + 2)+ − 2] + 3b2[(u + 3)+ − 3].
Let w = ξ + 3η. Then the above equation is equivalent to

Lw = b1
[
(w + 2)+ − 2

]
+ 3b2

[
(w + 3)+ − 3

]
in

(
−π
2
,
π

2

)
× R,

w
(
±π
2
, t
)
= wxx

(
±π
2
, t
)
= 0,

w(x, t + π) = w(x, t) = w(−x, t).

(5.3)



16 Boundary Value Problems

Since −15 < b1, 3b2 < −3, b = b1 +3b2, and −15 < b < −3, the above equation has at least
three solutions, two of which are nontrivial solutions, sayw1, w2. Hence we get the solutions
(ξ, η) of problem (5.1) from the following systems:

Lξ = b1
[
wi + 2)+ − 2

]
in

(
−π
2
,
π

2

)
× R,

Lη = b2
[
(wi + 3)+ − 3

]
in

(
−π
2
,
π

2

)
× R,

ξ
(
±π
2
, t
)
= ξxx

(
±π
2
, t
)
= 0,

ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η
(
±π
2
, t
)
= ηxx

(
±π
2
, t
)
= 0,

η(x, t + π) = ηxx(x, t) = η(−x, t),

(5.4)

where i = 0, 1, 2 and w0 = 0. When i = 0, from the above equation, we get the trivial solution
(ξ, η) = (0, 0). When i = 1, 2, from the above equation, we get the nontrivial solutions (ξ1, η1),
(ξ2, η2).Therefore, system(5.1) has at least three solutions (ξ, η), two of which are nontrivial
solutions.

Theorem 5.2. Let −3 < b1, 3b2 < 1, and −3 < b1 + 3b2 < 1. Then system (5.1) has only the trivial
solution (ξ, η) = (0, 0).

Proof. From problem (5.1), we get the equation

L
(
ξ + 3η

)
= g

(
ξ + 3η + 2

)
in

(
−π
2
,
π

2

)
× R,

ξ
(
±π
2
, t
)
= ξxx

(
±π
2
, t
)
= 0,

ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η
(
±π
2
, t
)
= ηxx

(
±π
2
, t
)
= 0,

η(x, t + π) = ηxx(x, t) = η(−x, t),

(5.5)

where the nonlinearity g(u) = b1[(u + 2)+ − 2] + 3b2[(u + 3)+ − 3].
Let w = ξ + 3η. Then the above equation is equivalent to

Lw = b1
[
(w + 2)+ − 2

]
+ 3b2

[
(w + 3)+ − 3

]
in

(
−π
2
,
π

2

)
× R,

w
(
±π
2
, t
)
= wxx

(
±π
2
, t
)
= 0,

w(x, t + π) = w(x, t) = w(−x, t).

(5.6)
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Since −3 < b1, 3b2 < 1, and −3 < b1 + 3b2 < 1, by Theorem 2.2, the above equation has
the trivial solution. Hence we have the trivial solution (ξ, η = (0, 0) of problem (5.1) from the
following system:

Lξ = b1
[
0 + 2)+ − 2

]
in

(
−π
2
,
π

2

)
× R,

Lη = b2
[
(0 + 3)+ − 3

]
in

(
−π
2
,
π

2

)
× R,

ξ
(
±π
2
, t
)
= ξxx

(
±π
2
, t
)
= 0,

ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η
(
±π
2
, t
)
= ηxx

(
±π
2
, t
)
= 0,

η(x, t + π) = ηxx(x, t) = η(−x, t).

(5.7)

From (5.9), we get the trivial solution (ξ, η) = (0, 0).
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