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By means of the two-scale convergence method, we investigate the asymptotic behavior of
eigenvalues and eigenfunctions of Stekloff eigenvalue problems in perforated domains. We prove
a concise and precise homogenization result including convergence of gradients of eigenfunctions
which improves the understanding of the asymptotic behavior of eigenfunctions. It is also justified
that the natural local problem is not an eigenvalue problem.

1. Introduction

We are interested in the spectral asymptotics (as ε → 0) of the linear elliptic eigenvalue
problem
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(1.1)

where Ω is a bounded open set in �N
x (the numerical space of variables x = (x1, . . . , xN),

with integer N ≥ 2) with Lipschitz boundary ∂Ω, aij ∈ C(Ω;L∞(�N
y )) (1 ≤ i, j ≤ N), with



2 Boundary Value Problems

the symmetry condition aji = aij , the periodicity hypothesis: for each x ∈ Ω and for every
k ∈ �N one has aij(x, y+k) = aij(x, y) almost everywhere in y ∈ �N

y , and finally the ellipticity

condition: there exists α > 0 such that for any x ∈ Ω

Re
N∑

i,j=1

aij

(
x, y

)
ξj ξi ≥ α|ξ|2 (1.2)

for all ξ ∈ �N and for almost all y ∈ �N
y , where |ξ|2 = |ξ1|2 + · · · + |ξN |2.

The set Ωε (ε > 0) is a domain perforated as follows. Let T ⊂ Y = (0, 1)N be a compact
subset in �N

y with smooth boundary ∂T(≡ S) and nonempty interior. For ε > 0, we define

tε =
{
k ∈ �

N : ε(k + T) ⊂ Ω
}
,

Tε =
⋃

k∈tε
ε(k + T),

Ωε = Ω \ Tε.

(1.3)

In this setup, T is the reference hole, whereas ε(k+T) is a hole of size ε and Tε is the collection
of the holes of the perforated domain Ωε. The family Tε is made up with a finite number of
holes since Ω is bounded. Finally, ν = (νi) denotes the outer unit normal vector to ∂Tε(≡ Sε)
with respect to Ωε.

The asymptotics of eigenvalue problems has been widely explored. Homogenization
of eigenvalue problems in a fixed domain goes back to Kesavan [1, 2]. In perforated domains
it was first considered by Rauch [3] and Rauch and Taylor [4], but the first homogenization
results on this topic pertains to Vanninathan [5], where he considered eigenvalue problems
for the laplace operator (aij = δij (Kronecker symbol)) in perforated domains, and
combined asymptotic expansion with Tartar’s energy method to prove homogenization
results. Concerning homogenization of eigenvalue problems in perforated domains, we
also mention the work of Conca et al. [6], Douanla and Svanstedt [7], Kaizu [8], Ozawa
and Roppongi [9], Roppongi [10], and Pastukhova [11] and the references therein. In
this paper, we deal with the spectral asymptotics of Stekloff eigenvalue problems for an
elliptic linear differential operator of order two in divergence form with variable coefficients
depending on the macroscopic variable and one microscopic variable. We obtain a very
accurate, precise, and concise homogenization result (Theorem 3.7) by using the two-scale
convergence method [12–16] introduced by Nguetseng [15] and further developed by Allaire
[12]. A convergence result for gradients of eigenfunctions is provided, which improves the
understanding of the asymptotic behavior of eigenfunctions. We also justify that the natural
local problem is not an eigenvalue problem.

Unless otherwise specified, vector spaces throughout are considered over the complex
field, � , and scalar functions are assumed to take complex values. Let us recall some basic
notations. Let Y = (0, 1)N , and let F(�N ) be a given function space. We denote by Fper(Y) the
space of functions in Floc(�N ) that are Y -periodic and by F#(Y) the space of those functions
u ∈ Fper(Y) with

∫
Y u(y)dy = 0. Finally, the letter E denotes throughout a family of strictly

positive real numbers (0 < ε ≤ 1) admitting 0 as accumulation point. The numerical space �N

and its open sets are provided with the Lebesgue measure denoted by dx = dx1 · · ·dxN .
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The rest of the paper is organized as follows. In Section 2, we recall some results about
the two-scale convergence method, and the homogenization process is consider in Section 3.

2. Two-Scale Convergence on Periodic Surfaces

We first recall the definition and themain compactness theorems of the two-scale convergence
method. LetΩ be an open bounded set in �N

x (integer N ≥ 2) and Y = (0, 1)N , the unit cube.

Definition 2.1. A sequence (uε)ε∈E ⊂ L2(Ω) is said to two-scale converge in L2(Ω) to
someu0 ∈ L2(Ω × Y) if, as E 	 ε → 0,

∫

Ω
uε(x)φ

(
x,

x

ε

)
dx −→

∫∫

Ω×Y
u0
(
x, y

)
φ
(
x, y

)
dxdy (2.1)

for all φ ∈ L2(Ω;Cper(Y)).

Notation 1. We express this by writing uε
2s−−→ u0 in L2(Ω).

The following theorem is the backbone of the two-scale convergence method.

Theorem 2.2. Let (uε)ε∈E be a bounded sequence in L2(Ω). Then, a subsequence E′ can be extracted
from E such that, as E′ 	 ε → 0, the sequence (uε)ε∈E′ two-scale converges in L2(Ω) to some u0 ∈
L2(Ω × Y).

Here follows the cornerstone of two-scale convergence.

Theorem 2.3. Let (uε)ε∈E be a bounded sequence inH1(Ω). Then, a subsequence E′ can be extracted
from E such that, as E′ 	 ε → 0,

uε −→ u0, in H1(Ω)-weak,

uε −→ u0, in L2(Ω),

∂uε

∂xj

2s−−→ ∂u0

∂xj
+
∂u1

∂yj
, in L2(Ω)

(
1 ≤ j ≤ N

)
,

(2.2)

where u0 ∈ H1(Ω) and u1 ∈ L2(Ω;H1
#(Y)).

In the sequel, we denote by dσ(y) (y ∈ Y), dσε(x) (x ∈ Ω, ε ∈ E), the surface measures
on S and Sε, respectively. The surface measure of S is denoted by |S|. The space of squared
integrable functions, with respect to the previous measures on S and Sε are denoted by L2(S)
and L2(Sε), respectively. Since the volume of Sε grows proportionally to 1/ε as ε → 0, we
endow L2(Sε) with the scaled scalar product [17]

(u, v)L2(Sε) = ε

∫

Sε

u(x)v(x)dσε(x)
(
u, v ∈ L2(Sε)

)
. (2.3)

Definition 2.1 then generalizes as.
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Definition 2.4. A sequence (uε)ε∈E ⊂ L2(Sε) is said to two-scale converge to some u0 ∈ L2(Ω ×
S) if as follows. E 	 ε → 0,

ε

∫

Sε

uε(x)φ
(
x,

x

ε

)
dσε(x) −→

∫∫

Ω×S
u0
(
x, y

)
φ
(
x, y

)
dxdσ

(
y
)

(2.4)

for all φ ∈ C(Ω;Cper(Y)).

The following result paves the way of the general version of Theorem 2.2.

Lemma 2.5. Let φ ∈ C(Ω;Cper(Y)). Then, we have

ε

∫

Sε

∣∣∣∣φ
(
x,

x

ε

)∣∣∣∣
2

dσε(x) ≤ C‖φ‖2∞ (2.5)

for some constant C independent of ε and, as E 	 ε → 0,

ε

∫

Sε

∣∣∣∣φ
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x,

x

ε

)∣∣∣∣
2

dσε(x) −→
∫∫

Ω×S

∣∣φ
(
x, y

)∣∣2dxdσ
(
y
)
. (2.6)

Proof. The first part is left to the reader. Let ϕ ∈ C(Ω) and ψ ∈ Cper(Y). We have

ε

∫

Sε

∣∣∣∣ϕ(x)ψ
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x

ε
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2

dσε(x) = ε
∑

k∈tε

∫
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ε
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2

dσε(x). (2.7)

Using the second mean value theorem, for any k ∈ tε, we have

∫
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2
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2
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for some xk ∈ ε(k + S) ⊂ ε(k + Y). Hence,
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∣∣ψ
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(
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εN
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)∣∣∣
2
.

(2.9)
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But, as E 	 ε → 0,

∑

k∈tε
εN

∣∣∣ϕ
(
xk

)∣∣∣
2
−→

∫

Ω

∣∣ϕ(x)
∣∣2dx, (2.10)

and the proof is completed due to the density of C(Ω) ⊗ Cper(Y) in C(Ω;Cper(Y)).

Remark 2.6. Even if often used (see, e.g., [13, 17]), this is the first time Lemma 2.5 is rigorously
proved. It is worth noticing that because of a trace issue one cannot replace therein the
space C(Ω;Cper(Y)) by L2(Ω;Cper(Y)).

Theorem 2.2 generalizes as follows.

Theorem 2.7. Let (uε)ε∈E be a sequence in L2(Sε) such that

ε

∫

Sε

|uε(x)|2dσε(x) ≤ C, (2.11)

where C is a positive constant independent of ε. There exists a subsequence E′ of E such that (uε)ε∈E′

two-scale converges to some u0 ∈ L2(Ω;L2(S)) in the sense of Definition 2.4.

Proof. Put Fε(φ) = ε
∫
Sε uε(x)φ(x, (x/ε))dσε(x) for φ ∈ C(Ω;Cper(Y)). We have

∣∣Fε

(
φ
)∣∣ ≤ C

(
ε

∫

Sε

∣∣∣∣φ
(
x,

x

ε

)∣∣∣∣
2

dσε(x)

)1/2

≤ C‖φ‖∞, (2.12)

which allows us to view Fε as a continuous linear form on C(Ω;Cper(Y)). Hence, there exists
a bounded sequence of measures (με)ε∈E such that Fε(φ) = 〈με, φ〉. Due to the separability of
C(Ω;Cper(Y)) there exists a subsequence E′ of E such that in the weak ∗ topology of the dual
of C(Ω;Cper(Y)) we have με → μ0 as E′ 	 ε → 0. A limit passage (E′ 	 ε → 0) in (2.12)
yields

∣∣〈μ0, φ
〉∣∣ ≤ C

(∫∫

Ω×S

∣∣φ
(
x, y

)∣∣2dx dσ
(
y
))1/2

. (2.13)

But μ0 is a continuous form on L2(Ω;L2(S)) by density of C(Ω;Cper(Y)) in the later space, and
there exists u0 ∈ L2(Ω;L2(S)) such that

〈
μ0, φ

〉
=
∫∫

Ω×S
u0
(
x, y

)
φ
(
x, y

)
dx dσ

(
y
)

(2.14)

for all φ ∈ C(Ω;Cper(Y)), which completes the proof.

In the case when (uε)ε∈E is the sequence of traces on Sε of functions in H1(Ω), a link
can be established between its usual and surface two-scale limits. The following proposition
whose proof’s outlines can be found in [13] clarifies this.
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Proposition 2.8. Let (uε)ε∈E ⊂ H1(Ω) be such that

‖uε‖L2(Ω) + ε‖Duε‖L2(Ω)N ≤ C, (2.15)

where C is a positive constant independent of ε and D denotes the usual gradient. The sequence of
traces of (uε)ε∈E on Sε satisfies

ε

∫

Sε

|uε(x)|2dσε(x) ≤ C (ε ∈ E), (2.16)

and up to a subsequence E′ of E, it two-scale converges in the sense of Definition 2.4 to some
u0 ∈ L2(Ω;L2(S)) which is nothing but the trace on S of the usual two-scale limit, a function in
L2(Ω;H1

#(Y)). More precisely, as E′ 	 ε → 0,

ε

∫

Sε

uε(x)φ
(
x,

x

ε

)
dσε(x) −→

∫∫

Ω×S
u0
(
x, y

)
φ
(
x, y

)
dx dσ

(
y
)
,

∫

Ω
uε(x)φ

(
x,

x

ε

)
dxdy −→

∫∫

Ω×Y
u0
(
x, y

)
φ
(
x, y

)
dxdy

(2.17)

for all φ ∈ C(Ω;Cper(Y)).

3. Homogenization Procedure

We make use of the notations introduced earlier in Section 1. Before we proceed we need
a few details.

3.1. Preliminaries

We introduce the characteristic function χG of

G = �
N
y \Θ (3.1)

with

Θ =
⋃

k∈�N

(k + T). (3.2)

It follows from the closeness of T that Θ is closed in �
N
y so that G is an open subset of �N

y .
Next, let ε ∈ E be arbitrarily fixed, and define

Vε =
{
u ∈ H1(Ωε) : u = 0 on ∂Ω

}
. (3.3)

We equip Vε with the H1(Ωε)-norm which makes it a Hilbert space. We recall the following
classical result [18].
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Proposition 3.1. For each ε ∈ E there exists an operator Pε of Vε into H1
0(Ω) with the following

properties:

(i) Pε sends continuously and linearly Vε into H1
0(Ω);

(ii) (Pεv)|Ωε = v for all v ∈ Vε;

(iii) ‖D(Pεv)‖L2(Ω)N ≤ c‖Dv‖L2(Ωε)N for all v ∈ Vε, where c is a constant independent of ε and
D denotes the usual gradient operator.

It is also a well-known fact that, under the hypotheses mentioned earlier in the
introduction, the spectral problem (1.1) has an increasing sequence of eigenvalues {λk

ε}∞k=1,

0 < λ1
ε ≤ λ2

ε ≤ λ3
ε ≤ · · · ≤ λn

ε ,

λn
ε −→ +∞, as n −→ +∞.

(3.4)

It is to be noted that if the coefficients aε
ij are real valued then the first eigenvalue λε

1 is
isolated. Moreover, to each eigenvalue, λk

ε is attached to an eigenvector uk
ε ∈ Vε and {uk

ε}∞k=1
is an orthonormal basis in L2(Sε). In the sequel, the couple (λk

ε , u
k
ε ) will be referred to as

eigencouple without further ado.
We finally recall the Courant-Fisher minimax principle which gives a useful (as will

be seen later) characterization of the eigenvalues to problem (1.1). To this end, we introduce
the Rayleigh quotient defined, for each v ∈ Vε \ {0}, by

Rε(v) =

∫
Ωε(AεDv,Dv)dx
∫
Sε |v|2dσε(x)

, (3.5)

where Aε is the N2-square matrix (aε
ij)1≤i,j≤N and D denotes the usual gradient. Denoting by

Ek (k ≥ 0) the collection of all subspaces of dimension k of Vε, the minimax principle is stated
as follows: for any k ≥ 1, the k′th eigenvalue to (1.1) is given by

λk
ε = min

W∈Ek

(
max

v∈W\{0}
Rε(v)

)
= max

W∈Ek−1

(
min

v∈W⊥\{0}
Rε(v)

)
. (3.6)

In particular, the first eigenvalue satisfies

λ1
ε = min

v∈Vε\{0}
Rε(v), (3.7)

and every minimum in (3.6) is an eigenvector associated with λ1
ε .

Now, let Qε = Ω \ (εΘ). This is an open set in �N , and Ωε \ Qε is the intersection of
Ω with the collection of the holes crossing the boundary ∂Ω. We have the following result
which implies, as will be seen later, that the holes crossing the boundary ∂Ω are of no effects
as regards the homogenization process since they are in arbitrary narrow stripe along the
boundary.

Lemma 3.2 (see [19]). Let K ⊂ Ω be a compact set independent of ε. There is some ε0 > 0 such that
Ωε \Qε ⊂ Ω \K for any 0 < ε ≤ ε0.
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Next, we introduce the space

�
1
0 = H1

0(Ω) × L2
(
Ω;H1

#(Y)
)
. (3.8)

Endowed with the following norm

‖v‖
�
1
0
=
∥∥Dxv0 +Dyv1

∥∥
L2(Ω×Y)

(
v = (v0, v1) ∈ �

1
0

)
, (3.9)

�
1
0 is a Hilbert space admitting F∞

0 = D(Ω)× [D(Ω)⊗C∞
# (Y)] as a dense subspace. This being so, for

u, v ∈ �
1
0 × �10 , let

aΩ(u, v) =
N∑

i,j=1

∫∫

Ω×Y ∗
aij

(
x, y

)
(

∂u0

∂xj
+
∂u1

∂yj

)(
∂v0

∂xj
+
∂v1

∂yj

)
dxdy. (3.10)

This defines a hermitian, continuous sesquilinear form on �10 × �10 . We will need the following results.

Lemma 3.3. Fix Φ = (ψ0, ψ1) ∈ F∞
0 , and define Φε : Ω → � (ε > 0) by

Φε(x) = ψ0(x) + εψ1

(
x,

x

ε

)
(x ∈ Ω). (3.11)

If (uε)ε∈E ⊂ H1
0(Ω) is such that

∂uε

∂xi

2s−−→ ∂u0

∂xi
+
∂u1

∂yi
, in L2(Ω) (1 ≤ i ≤ N) (3.12)

as E 	 ε → 0, where u = (u0, u1) ∈ �
1
0 , then

aε(uε,Φε) −→ aΩ(u,Φ) (3.13)

as E 	 ε → 0, where

aε(uε,Φε) =
N∑

i,j=1

∫

Ωε

aε
ij

∂uε

∂xj

∂Φε

∂xi
dx. (3.14)

Proof. For ε > 0,Φε ∈ D(Ω) and all the functions Φε(ε > 0) have their supports contained in a
fixed compact set K ⊂ Ω. Thanks to Lemma 3.3, there is some ε0 > 0 such that

Φε = 0, in Ωε \Qε (E 	 ε ≤ ε0). (3.15)
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Using the decomposition Ωε = Qε ∪ (Ωε \ Qε) and the equality Qε = Ω ∩ εG, we get for
E 	 ε ≤ ε0

aε(uε,Φε) =
N∑

i,j=1

∫

Ωε

aij

(
x,

x

ε

)
∂uε

∂xj

∂Φε

∂xi
dx

=
N∑

i,j=1

∫

Qε

aij

(
x,

x

ε

)
∂uε

∂xj

∂Φε

∂xi
dx

=
N∑

i,j=1

∫

Ω∩εG
aij

(
x,

x

ε

)
∂uε

∂xj

∂Φε

∂xi
dx

=
N∑

i,j=1

∫

Ω
aij

(
x,

x

ε

)
χεG(x)

∂uε

∂xj

∂Φε

∂xi
dx

=
N∑

i,j=1

∫

Ω
aij

(
x,

x

ε

)
χG

(
x

ε

)
∂uε

∂xj

∂Φε

∂xi
dx.

(3.16)

Bear in mind that, as E 	 ε → 0, we have (see, e.g., [19, Lemma 2.4])

N∑

i,j=1

∂uε

∂xj

∂Φε

∂xi

2s−−→
N∑

i,j=1

(
∂u0

∂xj
+
∂u1

∂yj

)(
∂ψ0

∂xj
+
∂ψ1

∂yj

)
, in L2(Ω). (3.17)

We also recall that aij(x, y)χG(y) ∈ C(Ω;L2
per(Y))(1 ≤ i, j ≤ N) and that Property (2.1) in

Definition 2.1 still holds for f in C(Ω;L2
per(Y)) instead of L2(Ω;Cper(Y)) whenever the two-

scale convergence therein is ensured (see, e.g., [14, Theorem 15]). Thus, as E 	 ε → 0,

aε(uε,Φε) =
N∑

i,j=1

∫

Ω
aij

(
x,

x

ε

)
χG

(
x

ε

)
∂uε

∂xj

∂Φε

∂xi
dx

−→
N∑

i,j=1

∫∫

Ω×Y
aij

(
x, y

)
χG

(
y
)
(

∂u0

∂xj
+
∂u1

∂yj

)(
∂ψ0

∂xj
+
∂ψ1

∂yj

)
dxdy

=
N∑

i,j=1

∫∫

Ω×Y ∗
aij

(
x, y

)
(

∂u0

∂xj
+
∂u1

∂yj

)(
∂ψ0

∂xj
+
∂ψ1

∂yj

)
dx dy

= aΩ(u,Φ),

(3.18)

which completes the proof.
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We now construct and point out the main properties of the so-called homogenized
coefficients. Let 1 ≤ j ≤ N, and fix x ∈ Ω. Put

a(x;u, v) =
N∑

i,j=1

∫

Y ∗
aij

(
x, y

) ∂u

∂yj

∂v

∂yi
dy,

lj(x, v) =
N∑

k=1

∫

Y ∗
akj

(
x, y

) ∂v

∂yk
dy

(3.19)

for u, v ∈ H1
#(Y). Equipped with the seminorm

N(u) = ‖Dyu‖L2(Y ∗)N

(
u ∈ H1

#(Y)
)
, (3.20)

H1
#(Y) is a pre-Hilbert space that is nonseparate and noncomplete. Let H1

#(Y
∗) be its

separated completion with respect to the seminorm N(·) and i the canonical mapping of
H1

#(Y) intoH1
#(Y

∗). We recall that

(i) H1
#(Y

∗) is a Hilbert space;

(ii) i is linear;

(iii) i(H1
#(Y)) is dense in H1

#(Y
∗);

(iv) ‖i(u)‖H1
# (Y

∗) = N(u) for every u inH1
#(Y);

(v) if F is a Banach space and l a continuous linear mapping ofH1
#(Y) into F, then there

exists a unique continuous linear mapping L : H1
#(Y

∗) → F such that l = L ◦ i.

Proposition 3.4. Let j = 1, . . . ,N, and fix x in Ω. The noncoercive local variational problem

u ∈ H1
#(Y), a(x;u, v) = lj(x, v), ∀v ∈ H1

#(Y) (3.21)

admits at least one solution. Moreover, if χj(x) and θj(x) are two solutions,

Dyχ
j(x) = Dyθ

j(x) a.e. in Y ∗. (3.22)

Proof. Proceeding as in the proof of [19, Lemma 2.5], we can prove that there exists a unique
hermitian, coercive, continuous sesquilinear form A(x; ·, ·) on H1

#(Y
∗) × H1

#(Y
∗) such that

A(x; i(u), i(v)) = a(x;u, v) for all u, v ∈ H1
#(Y). Based on (v) above, we consider the antilinear

form lj(x, ·) onH1
#(Y

∗) such that lj(x, i(u)) = lj(x, u) for any u ∈ H1
#(Y). Then, χ

j(x) ∈ H1
#(Y)

satisfies (3.21) if and only if i(χj(x)) satisfies

i
(
χj(x)

)
∈ H1

#(Y
∗), A

(
x; i

(
χj(x)

)
, V

)
= lj(x, V ), ∀V ∈ H1

#(Y
∗). (3.23)

But i(χj(x)) is uniquely determined by (3.23) (see, e.g., [20, page 216]). We deduce that (3.21)
admits at least one solution, and if χj(x) and θj(x) are two solutions, then i(χj(x)) = i(θj(x)),
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which means that χj(x) and θj(x) have the same neighborhoods in H1
#(Y) or equivalently

N(χj(x) − θj(x)) = 0. Hence, (3.22).

Corollary 3.5. Let 1 ≤ i, j ≤ N, and x fixed in Ω. Let χj(x) ∈ H1
#(Y) be a solution to (3.21). The

following homogenized coefficients

qij(x) =
∫

Y ∗
aij

(
x, y

)
dy −

N∑

l=1

∫

Y ∗
ail

(
x, y

)∂χj

∂yl

(
x, y

)
dy (3.24)

are well defined in the sense that they do not depend on the solution to (3.21).

Lemma 3.6. The following assertions are true:

(i) qij ∈ C(Ω),

(ii) qji = qij ,

(iii) there exists a constant α0 > 0 such that

Re
N∑

i,j=1

qij(x)ξjξi ≥ α0|ξ|2 (3.25)

for all x ∈ Ω and all ξ ∈ �N .

Proof. See for example, [21].

We are now in a position to state the main result of this paper.

3.2. Homogenization Result

Theorem 3.7. For each k ≥ 1 and each ε ∈ E, let (λk
ε , u

k
ε ) be the k’th eigencouple to (1.1). Then, there

exists a subsequence E′ of E such that

1
ε
λk
ε −→ λk

0 , in � as E 	 ε −→ 0, (3.26)

Pεu
k
ε −→ uk

0 , in H1
0(Ω)-weak as E′ 	 ε −→ 0, (3.27)

Pεu
k
ε −→ uk

0 , in L2(Ω) as E′ 	 ε −→ 0, (3.28)

∂Pεuk
ε

∂xj

2s−−→ ∂uk
0

∂xj
+
∂uk

1

∂yj
, in L2(Ω), as E′ 	 ε −→ 0

(
1 ≤ j ≤ N

)
, (3.29)

where (λk
0 , u

k
0) ∈ � ×H1

0(Ω) is the k’th eigencouple to the spectral problem



12 Boundary Value Problems

−
N∑

i,j=1

∂

∂xi

(
1
|S|qij(x)

∂u0

∂xj

)
= λ0u0, in Ω,

u0 = 0, on ∂Ω,

∫

Ω
|u0|2dx =

1
|S| ,

(3.30)

where uk
1 ∈ L2(Ω;H1

#(Y)). Moreover, for almost every x ∈ Ω, the following hold true:

(i) uk
1(x) is a solution to the noncoercive variational problem

uk
1(x) ∈ H1

#(Y),

a
(
x;uk

1(x), v
)
= −

N∑

i,j=1

∂uk
0

∂xj

∫

Y ∗
aij

(
x, y

) ∂v
∂yi

dy,

∀v ∈ H1
#(Y).

(3.31)

(ii) We have

i
(
uk
1(x)

)
=

N∑

j=1

∂uk
0

∂xj
(x)i

(
χj(x)

)
, (3.32)

where χj is any function in H1
#(Y) defined by the cell problem (3.21).

Proof. Let us first recall that, according to the properties of the coefficients qij (Lemma 3.6), the
spectral problem (3.30) admits a sequence of eigencouples with similar properties to those of
problem (1.1). However, this is also proved by our homogenization process.

Now, fix k ≥ 1. There exists a constant 0 < c1 < ∞ independent of ε such that

0 < λk
ε ≤ c1μ

k
ε , (3.33)

where

μk
ε = min

W∈Ek

(
max

v∈W\{0}

∫
Ωε |Dv|2dx

∫
Sε |uε|2dσε(x)

)
, (3.34)

Ek still being the collection of subspaces of dimension k of Vε. But it is proved in
[5, Proposition 12.1] that 0 < μk

ε < c2ε, c2 being a constant independent of ε. Hence the
sequence ((1/ε)λk

ε )ε∈E is bounded in � .
Clearly, for fixed E 	 ε > 0, uk

ε lies in Vε and

N∑

i,j=1

∫

Ωε

aε
ij

∂uk
ε

∂xj

∂v

∂xi
dx =

(
1
ε
λk
ε

)
ε

∫

Sε

uk
εv dσε(x) (3.35)
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for any v ∈ Vε. Bear in mind that ε
∫
Sε |uk

ε |2dσε(x) = 1, and chose v = uk
ε in (3.35). The

boundedness of the sequence ((1/ε)λk
ε )ε∈E and the ellipticity assumption (1.2) implies at once

by means of Proposition 3.1 that the sequence (Pεuk
ε )ε∈E is bounded in H1

0(Ω). Theorem 2.3
and Proposition 2.8 apply simultaneously and give us uk = (uk

0 , u
k
1) ∈ �

1
0 such that for

some λk
0 ∈ � and some subsequence E′ ⊂ E we have (3.26)–(3.29), where (3.28) is a direct

consequence of (3.27) by the Rellich-Kondrachov theorem. For fixed ε ∈ E′, let Φε be as in
Lemma 3.3. Multiplying both sides of the first equality in (1.1) by Φε and integrating over Ω
leads us to the variational ε-problem

N∑

i,j=1

∫

Ωε

aε
ij

∂Pεu
k
ε

∂xj

∂Φε

∂xi
dx =

(
1
ε
λk
ε

)
ε

∫

Sε

(
Pεu

k
ε

)
Φεdσε(x). (3.36)

Sending ε ∈ E′ to 0, keeping (3.26)–(3.29) and Lemma 3.3 in mind, we obtain

N∑

i,j=1

∫∫

Ω×Y ∗
aij

(
∂u0

∂xj
+
∂u1

∂yj

)(
∂ψ0

∂xj
+
∂ψ1

∂yj

)
dxdy = λk

0

∫∫

Ω×S
uk
0ψ0dx dσ

(
y
)
. (3.37)

The right-hand side follows by means of Proposition 2.8 as explained:

ε

∫

Sε

(
Pεu

k
ε

)
Φεdσε(x) = ε

∫

Sε

(
Pεu

k
ε

)
ψ0dσε(x) + ε

(
ε

∫

Sε

(
Pεu

k
ε

)
ψ1

(
x,

x

ε

)
dσε(x)

)

−→
∫∫

Ω×S
uk
0ψ0dx dσ

(
y
)
+ 0, as E′ 	 ε −→ 0.

(3.38)

Therefore, (λk
0 ,u

k) ∈ � × �10 solves the following global homogenized spectral problem:

find (λ,u) ∈ � × �10 such that

N∑

i,j=1

∫∫

Ω×Y ∗
aij

(
∂u0

∂xj
+
∂u1

∂yj

)(
∂ψ0

∂xi
+
∂ψ1

∂yi

)
dxdy = λ|S|

∫

Ω
u0ψ0dx, ∀Φ ∈ �10 .

(3.39)

To prove (i), choose Φ = (ψ0, ψ1) in (3.39) such that ψ0 = 0 and ψ1 = ϕ ⊗ v1, where ϕ ∈ D(Ω)
and v1 ∈ H1

#(Y) to get

∫

Ω
ϕ(x)

⎡

⎣
N∑

i,j=1

∫

Y ∗
aij

(
∂uk

0

∂xj
+
∂uk

1

∂yj

)
∂v1

∂yi
dy

⎤

⎦dx = 0. (3.40)

Hence, by the arbitrariness of ϕ, we have a.e. in Ω

N∑

i,j=1

∫

Y ∗
aij

(
∂uk

0

∂xj
+
∂uk

1

∂yj

)
∂v1

∂yi
dy = 0 (3.41)

for any v1 inH1
#(Y), which is nothing but (3.31).
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Regarding (ii), pick any χj(x) solution to the cell problem (3.21), and put z(x) =∑N
j=1(∂u

k
0/∂xj)(x)χj(x).

By multiplying both sides of (3.21) by −(∂uk
0/∂xj )(x) and then summing over 1 ≤ j ≤

N, we see that z(x) satisfies (3.31). Hence, i(z(x)) = i(uk(x)) by uniqueness of the solution
to the coercive variational problem in H1

#(Y
∗) corresponding to the noncoercive variational

problem (3.31) (see the proof of Proposition 3.4). Thus, (3.32) follows since i is linear.
Now, by considering Φ = (ψ0, ψ1) in (3.39) such that ψ1 = 0 and ψ0 ∈ D(Ω), we get

N∑

i,j=1

∫∫

Ω×Y ∗
aij

(
∂uk

0

∂xj
+
∂uk

1

∂yj

)
∂ψ0

∂xi
dx dy = |S|λk

0

∫

Ω
uk
0ψ0dx. (3.42)

As (3.32) is equivalent (see the proof of Proposition 3.4) to

Dyu
k
1(x) =

N∑

j=1

∂uk
0

∂xj
(x)Dyχ

j(x), a.e. in Y ∗, (3.43)

we arrive at

N∑

i,j=1

∫

Ω

[∫

Y ∗
aijdy −

N∑

l=1

∫

Y ∗
ail

∂χj

∂yl
dy

]
∂uk

0

∂xj

∂ψ0

∂xi
dx = |S|λk

0

∫

Ω
uk
0ψ0dx, (3.44)

that is, (see (3.24))

N∑

i,j=1

∫

Ω

1
|S|qij(x)

∂uk
0

∂xj

∂ψ0

∂xi
dx = λk

0

∫

Ω
uk
0ψ0dx. (3.45)

Thanks to the arbitrariness of ψ0 and the weak derivative formula, we conclude that (λk
0 , u

k
0)

is the k′th eigencouple to (3.30) and the whole sequence ((1/ε)λk
ε )ε∈E converges.

Finally, by using (3.28) and a similar line of reasoning as in the proof of Lemma 2.5,
we arrive at

lim
E′	ε→ 0

ε

∫

Sε

∣∣∣Pεuk
ε

∣∣∣
∣∣∣Pεul

ε

∣∣∣dσε(x) = |S|
∫

Ω

∣∣∣uk
0

∣∣∣
∣∣∣ul

0

∣∣∣dx. (3.46)

The normalization condition in (3.30) follows thereby, andmoreover {uk
0}∞k=1 is an orthogonal

basis in L2(Ω).
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