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We study periodic solutions for nonlinear second-order ordinary differential problem x′′ +
f(t, x, x′) = 0. By constructing upper and lower boundaries and using Leray-Schauder degree
theory, we present a result about the existence and uniqueness of a periodic solution for second-
order ordinary differential equations with some assumption.

1. Introduction

The study on periodic solutions for ordinary differential equations is a very important branch
in the differential equation theory. Many results about the existence of periodic solutions for
second-order differential equations have been obtained by combining the classical method of
lower and upper solutions and the method of alternative problems (The Lyapunov-Schmidt
method) as discussed by many authors [1–10]. In [11], the author gives a simple method to
discuss the existence and uniqueness of nonlinear two-point boundary value problems. In
this paper, we will extend this method to the periodic problem.

We consider the second-order ordinary differential equation

x′′ + f(t, x, x′) = 0. (1.1)

Throughout this paper, we will study the existence of periodic solutions of (1.1) with the
following assumptions:

(H1) f, fx, and fx′ are continuous in R × R × R, and

f
(
t, x x′) = f

(
t + 2π, x, x′), (1.2)
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(H2)

N2 < α − γ2

4
≤ β < (N + 1)2,

sin
π
√
4α − γ2

4N
<

√

1 − γ2

4α
if N > 0,

γ <
4(N + 1)

π

[

1 − β

(N + 1)2

]

,

(1.3)

where N is some positive integer,

α = inf
R3

(
fx
)
, β = sup

R3

(
fx
)
, γ = sup

R3

∣
∣fx′

∣
∣. (1.4)

The following is our main result.

Theorem 1.1. Assume that (H1) and (H2) hold, then (1.1) has a unique 2π-periodic solution.

2. Basic Lemmas

The following results will be used later.

Lemma 2.1 (see [12]). Let x ∈ C1([0, h],R) (h > 0) with

x(0) = x(h) = 0, x(t) > 0 for t ∈ (0, h), (2.1)

then

∫h

0

∣∣x(t)x′(t)
∣∣dt ≤ h

4

∫h

0
x′2(t)dt, (2.2)

and the constant h/4 is optimal.

Lemma 2.2 (see [12]). Let x ∈ C1([a, b],R) (a, b ∈ R, a < b) with the boundary value conditions
x(a) = x(b) = 0, then

∫b

a

x2(t)dt ≤ (b − a)2

π2

∫b

a

x′2(t)dt. (2.3)

Consider the periodic boundary value problem

x′′ + p(t)x′ + q(t)x = 0,

x(0) = x(2π), x′(0) = x′(2π).
(2.4)
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Lemma 2.3. Suppose that p, q are L2-integrable 2π-periodic function, where p, q satisfy the
condition (H2), with

α = inf
[0,2π]

q(t), β = sup
[0,2π]

q(t), γ = sup
[0,2π]

∣
∣p(t)

∣
∣, (2.5)

then (2.4) has only the trivial 2π-periodic solution x(t) ≡ 0.

Proof. If on the contrary, (2.4) has a nonzero 2π-periodic solution x(t), then using (2.4), we
have

(
e
∫ t
t0
p(s)ds

x′
)′

+ e
∫ t
t0
p(s)ds

q(t)x = 0, (2.6)

where t0 ∈ [0, 2π] is undetermined.
Firstly, we prove that x(t) has at least one zero in (0, 2π). If x(t)/= 0, we may assume

x(t) > 0. Since x(t) is a 2π-periodic solution, there exists a t0 ∈ [0, 2π] with x′(t0) = 0 =
x′(t0 + 2π). Then,

0 =
∫ t0+2π

t0

(
e
∫ t
t0
p(s)ds

x′
)′
dt = −

∫ t0+2π

t0

e
∫ t
t0
p(s)ds

q(t)xdt < 0, (2.7)

we could get a contradiction.
Without loss of generality, we may assume that x(0) = x(2π) = 0, x′(0) = x′(2π) =

A > 0; then there exists a sufficiently small δ > 0 such that x(δ/2) > 0, x(2π −δ/2) < 0. Since
x(t) is a continuous function, there must exist a t′ ∈ [δ/2, 2π − δ/2] with x(t′) = 0.

Secondly, we prove that x(t) has at least 2N+2 zeros on [0, 2π]. Considering the initial
value problem

ϕ′′ − γϕ′ + αϕ = 0, ϕ(0) = 0, ϕ′(0) = A. (2.8)

Obviously,

ϕ(t) =
2A

√
4α − γ2

eγt/2 sin

√
4α − γ2

2
t (2.9)

is the solution of (2.8) and

ϕ′(t) = 2A

√
α

4α − γ2
eγt/2 sin

⎛

⎜
⎝

√
4α − γ2

2
t + θ

⎞

⎟
⎠, (2.10)
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where θ ∈ (0, π/2] with sin θ =
√
(4α − γ2)/4α. Since

N <

√
4α − γ2

2
< N + 1 (2.11)

holds under the assumptions of (H2), there is a t0 ∈ (0, π), such that

√
4α − γ2

2
t0 + θ = π, i.e.,

π

2
≤

√
4α − γ2

2
t0 < π. (2.12)

Now, let N > 0. By the conditions (H2), (2.11), and (2.12), we have

sin

√
4α − γ2

2
t0 = sin θ =

√
4α − γ2

4α
> sin

π
√
4α − γ2

4N
, (2.13)

π

2
<

π
√
4α − γ2

4N
< π. (2.14)

Since sin t is decreasing in [π/2, π) , we have 0 < t0 < π/2N. Therefore,

ϕ′(t) > 0, ϕ(t) > 0, for t ∈ (0, t0), ϕ′(t0) = 0. (2.15)

We also consider the initial value problem

ψ ′′ + γψ ′ + αψ = 0, ψ(t0) = ϕ(t0), ψ ′(t0) = 0. (2.16)

Clearly,

ψ(t) = 2

√
α

4α − γ2
ϕ(t0)e−γ(t−t0)/2 sin

⎛

⎜
⎝

√
4α − γ2

2
(t − t0) + θ

⎞

⎟
⎠ (2.17)

is the solution of (2.16), where θ is the same as the previous one, and

ψ ′(t) = − 2α
√
4α − γ2

ϕ(t0)e−γ(t−t0)/2 sin

√
4α − γ2

2
(t − t0). (2.18)

Hence, there exists a t1 ∈ (0, 2π) with t1 − t0 ∈ (0, π), such that

√
4α − γ2

2
(t1 − t0) + θ = π. (2.19)
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Then,

ψ(t1) = 0. (2.20)

From (2.12) and (2.19), it follows that

√
4α − γ2

4
t1 = π − θ, i.e.,

π

2
≤

√
4α − γ2

4
t1 < π. (2.21)

By (H2) and (2.21), we have

sin

√
4α − γ2

4
t1 = sin θ =

√
4α − γ2

4α
> sin

π
√
4α − γ2

4N
. (2.22)

Since sin t is decreasing on [π/2, π), we have 0 < t1 < π/N, and

ψ ′(t) < 0, ψ(t) > 0, for t ∈ (t0, t1). (2.23)

We now prove that x(t) has a zero point in (0, t1]. If on the contrary x(t) > 0 for t ∈
(0, t1], then we would have the following inequalities:

x(t) ≤ ϕ(t), for t ∈ [0, t0], (2.24)

x(t) ≤ ψ(t), for t ∈ [t0, t1]. (2.25)

In fact, from(2.4), (2.8), and (2.15), we have

(
ϕ′(t)x(t) − ϕ(t)x′(t)

)′

= ϕ′′(t)x(t) + ϕ′(t)x′(t) − ϕ′(t)x′(t) − ϕ(t)x′′(t)

=
(
γϕ′(t) − αϕ(t)

)
x(t) − ϕ(t)

(−p(t)x′(t) − q(t)x(t)
)

=
(
γ + p(t)

)
ϕ′(t)x(t) +

(−p(t))(ϕ′(t)x(t) − ϕ(t)x′(t)
)
+
(
q(t) − α

)
ϕ(t)x(t)

≥ (−p(t))(ϕ′(t)x(t) − ϕ(t)x′(t)
)
,

(2.26)

with t ∈ [0, t0]. Setting y = ϕ′(t)x(t) − ϕ(t)x′(t), and since

y′ ≥ −p(t)y, (2.27)

we obtain

(
ye

∫ t
0 p(s)ds

)′
≥ 0, t ∈ [0, t0]. (2.28)
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Notice that ϕ(0) = x(0) = 0, which implies

y(0) = 0, ye
∫ t
0 p(s)ds ≥ 0, t ∈ [0, t0]. (2.29)

So, we have

ϕ′(t)x(t) − ϕ(t)x′(t) ≥ 0, t ∈ [0, t0], i.e.,
(
ϕ(t)
x(t)

)′
≥ 0, t ∈ (0, t0]. (2.30)

Integrating from 0 to t ∈ (0, t0], we obtain

0 ≤
∫ t

0

(
ϕ(s)
x(s)

)′
ds =

ϕ(t)
x(t)

− lim
t→ 0+

ϕ(t)
x(t)

=
ϕ(t)
x(t)

− ϕ′(0)
x′(0)

. (2.31)

Therefore,

ϕ(t)
x(t)

≥ 1, t ∈ (0, t0], (2.32)

which implies (2.24). By a similar argument, we have (2.25). Therefore, 0 < x(t1) ≤ ψ(t1) = 0,
a contradiction, which shows that x(t) has at least one zero in (0, t1], with t1 < π/N.

We let x(t1) = 0, t1 ∈ (0, t1]. If t1 + t1 < 2π , then from a similar argument, there is a
t2 ∈ (t1, t1 + t1), such that x(t2) = 0 and so on. So, we obtain that x(t) has at least 2N + 2 zeros
on [0, 2π].

Thirdly, we prove that x(t) has at least 2N + 3 zeros on [0, 2π]. If, on the contrary, we
assume that x(t) only has 2N + 2 zeros on [0, 2π], we write them as

0 = t0 < t1 < · · · < t2N+1 = 2π. (2.33)

Obviously,

x′
(
ti
)
/= 0, i = 0, 1, . . . , 2N + 1. (2.34)

Without loss of generality, we may assume that x′(t0) > 0. Since

x′
(
ti
)
x′
(
ti+1

)
< 0, i = 0, 1, . . . , 2N, (2.35)

we obtain x′(t2N+1) < 0, which contradicts x′(t2N+1) = x′(t0) > 0. Therefore, x(t) has at least
2N + 3 zeros on [0, 2π].
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Finally, we prove Lemma 2.3. Since x(t) has at least 2N + 3 zeros on [0, 2π], there are
two zeros ξ1 and ξ2 with 0 < ξ2 − ξ1 ≤ π/(N + 1). By Lemmas 2.1 and 2.2, we have

∫ ξ2

ξ1

x′2(t)dt = −
∫ ξ2

ξ1

x(t)x′′(t)dt =
∫ ξ2

ξ1

p(t)x(t)x′(t)dt +
∫ ξ2

ξ1

q(t)x2(t)dt

≤
[
γ

4
(ξ2 − ξ1) +

β

π2 (ξ2 − ξ1)
2
] ∫ ξ2

ξ1

x′2(t)dt.

(2.36)

From (H2), it follows that

γ

4
(ξ2 − ξ1) +

β

π2 (ξ2 − ξ1)
2 ≤ πγ

4(N + 1)
+

β

(N + 1)2
< 1. (2.37)

Hence,

∫ ξ2

ξ1

x′2(t)dt = 0, (2.38)

which implies x′(t) = 0 for t ∈ [ξ1, ξ2]. Also x(ξ1) = 0. Therefore, x(t) ≡ 0 for t ∈ [0, 2π], a
contradiction. The proof is complete.

3. Proof of Theorem 1.1

Firstly, we prove the existence of the solution. Consider the homotopy equation

x′′ + αx = λ
(−f(t, x, x′) + αx

) ≡ λF
(
t, x, x′), (3.1)

where λ ∈ [0, 1] and α = infR3(fx). When λ = 1, it holds (1.1). We assume that Φ(t) is the
fundamental solution matrix of x′′ + αx = 0 with Φ(0) = I. Equation (3.1) can be transformed
into the integral equation

(
x

x′

)

(t) = Φ(t)

((
x(0)

x′(0)

)

+
∫ t

0
Φ−1(s)

(
0

λF(s, x(s), x′(s))

)

ds

)

. (3.2)

From (H1), x(t) is a 2π-periodic solution of (3.2), then

(I −Φ(2π))

(
x(0)

x′(0)

)

= Φ(2π)
∫2π

0
Φ−1(s)

(
0

λF(s, x(s), x′(s))

)

ds. (3.3)

For (I −Φ(2π)) is invertible,

(
x(0)

x′(0)

)

= (I −Φ(2π))−1Φ(2π)
∫2π

0
Φ−1(s)

(
0

λF(s, x(s), x′(s))

)

ds. (3.4)
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We substitute (3.4) into (3.2),

(
x

x′

)

(t) = Φ(t)(I −Φ(2π))−1Φ(2π)
∫2π

0
Φ−1(s)

(
0

λF(s, x(s), x′(s))

)

ds

+ Φ(t)
∫ t

0
Φ−1(s)

(
0

λF(s, x(s), x′(s))

)

ds.

(3.5)

Define an operator

Pλ : C1[0, 2π] −→ C1[0, 2π], (3.6)

such that

Pλ

[(
x

x′

)]

(t) ≡ Φ(t)(I −Φ(2π))−1Φ(2π)
∫2π

0
Φ−1(s)

(
0

λF(s, x(s), x′(s))

)

ds

+ Φ(t)
∫ t

0
Φ−1(s)

(
0

λF(s, x(s), x′(s))

)

ds.

(3.7)

Clearly, Pλ is a completely continuous operator in C1[0, 2π].
There exists B > 0, such that every possible periodic solution x(t) satisfies ‖x‖ ≤ B (‖ ·‖

denote the usual normal in C1[0, 2π]). If not, there exists λk → λ0 and the solution xk(t)with
‖xk‖ → ∞ (k → ∞).

We can rewrite (3.1) in the following form:

x′′
k + αxk = −λk

∫1

0
fx′

(
t, xk, θx

′
k

)
dθx′

k − λk

∫1

0
fx(t, θxk, 0)dθxk − λkf(t, 0, 0) + λkαxk. (3.8)

Let yk = xk/‖xk‖ (t ∈ R), obviously ‖yk‖ = 1 (k = 1, 2, . . .). It satisfies the following
problem:

y′′
k
+ αyk = −λk

∫1
0 fx′

(
t, xk, θx

′
k

)
dθy′

k
− λk

∫1
0 fx(t, θxk, 0)dθyk − λkf(t, 0, 0)/‖xk‖ + λkαyk,

(3.9)

in which we have

f(t, 0, 0)
‖xk‖ −→ 0 (k −→ ∞). (3.10)

Since {yk}, {y′
k
} are uniformly bounded and equicontinuous, there exists continuous function

u(t), v(t) and a subsequence of {k}∞1 (denote it again by {k}∞1 ), such that limk→∞yk(t) =
u(t), limk→∞y′

k(t) = v(t) uniformly in R. Using (H1) and (H2), {
∫1
0 fx(t, θxk, 0)dθ}

∞
1 and
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{∫10 fx′(t, xk, θx
′
k)dθ}

∞
1 are uniformly bounded. By the Hahn-Banach theorem, there exists

L2-integrable function p(t), q(t), and a subsequence of {k}∞1 (denote it again by {k}∞1 ), such
that

∫1

0
fx(t, θxk, 0)dθ

ω−→ q(t),
∫1

0
fx′

(
t, xk, θx

′
k

)
dθ

ω−→ p(t), (3.11)

where ω−→ denotes “weakly converges to” in L2[0, 2π]. As a consequence, we have

u′′(t) + αu(t) = −λ0p(t)u′(t) − λ0q(t)u(t) + λ0αu(t), (3.12)

that is,

u′′(t) + λ0p(t)u′(t) +
(
λ0q(t) + (1 − λ0)α

)
u(t) = 0. (3.13)

Denote that p̃(t) = λ0p(t), q̃(t) = λ0q(t) + (1 − λ0)α, then we get

∣∣p̃(t)
∣∣ = λ0

∣∣p(t)
∣∣ ≤ γ, λ0α + (1 − λ0)α ≤ q̃(t) ≤ λ0β + (1 − λ0)α, (3.14)

which also satisfy the condition (H2). Notice that p̃(t) and q̃(t) are L2-integrable on [0, 2π], so
u(t) satisfies Lemma 2.3. Hence, we have u(t) ≡ 0 for t ∈ [0, 2π), which contradicts ‖u‖ = 1.
Therefore, PC1[0, 2π] is bounded.

Denote

Ω =
{
x ∈ C1[0, 2π], ‖x‖ < B + 1

}
,

hλ(x) = x − Pλx.

(3.15)

Because 0 /∈ hλ(∂Ω) for λ ∈ [0, 1], by Leray-Schauder degree theory, we have

deg(x − Px,Ω, 0) = deg(h1(x),Ω, 0) = deg(h0(x),Ω, 0)/= 0. (3.16)

So, we conclude that P has at least one fixed point inΩ, that is, (1.1) has at least one solution.
Finally, we prove the uniqueness of the equation when the condition (H1) and (H2)

holds. Let x1(t) and x2(t) be two 2π-periodic solutions of the problem. Denote x0(t) = x1(t) −
x2(t), t ∈ [0, 2π], then x0(t) is a solution of the following problem:

x′′ +
∫1

0
fx′

(
t, x2 + x0, x

′
2 + θx′

0
)
dθx′ +

∫1

0
fx
(
t, x2 + θx0, x

′
2
)
dθx = 0,

x(0) = x(2π), x′(0) = x′(2π).

(3.17)

By Lemma 2.3, we have x0(t) ≡ 0 for t ∈ [0, 2π].



10 Boundary Value Problems

Let x̃(t + 2kπ) = x(t), t ∈ [0, 2π], k ∈ Z. We have

x̃′′(t + 2kπ) = x′′(t) = −f(t, x, x′) = −f(t, x̃, x̃′) = −f(t + 2kπ, x̃, x̃′), (3.18)

with t ∈ [0, 2π], k ∈ Z. Denote x̃(t + 2kπ) (t ∈ [0, 2π]) by x(t) (t ∈ R). So, x(t) is the solution
of the problem (1.1). The proof is complete.

4. An Example

Consider the system

x′′ +
2
3
sin tx′ + 6x + cosx = p(t), (4.1)

where p(t) = p(t + 2π) is a continuous function. Obviously,

α = inf
R3

(
fx
)
= inf

R3
(6 − sinx) = 5,

β = sup
R3

(
fx
)
= sup

R3

(6 − sinx) = 7,

γ = sup
R3

∣∣fx′
∣∣ = sup

R3

∣∣∣∣
2
3
sin t

∣∣∣∣ =
2
3

(4.2)

satisfy Theorem 1.1, then there is a unique 2π-periodic solution in this system.
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