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Though boundary value problems for fractional differential equations have been extensively
studied, most of the studies focus on scalar equations and the fractional order between 1 and
2. On the other hand, delay is natural in practical systems. However, not much has been done
for fractional differential equations with delays. Therefore, in this paper, we consider a boundary
value problem of a general delayed nonlinear fractional system. With the help of some fixed point
theorems and the properties of the Green function, we establish several sets of sufficient conditions
on the existence of positive solutions. The obtained results extend and include some existing ones
and are illustrated with some examples for their feasibility.

1. Introduction

In the past decades, fractional differential equations have been intensively studied. This is
due to the rapid development of the theory of fractional differential equations itself and the
applications of such construction in various sciences such as physics, mechanics, chemistry,
and engineering [1, 2]. For the basic theory of fractional differential equations, we refer the
readers to [3–7].

Recently, many researchers have devoted their attention to studying the existence of
(positive) solutions of boundary value problems for differential equations with fractional
order [8–23]. We mention that the fractional order α involved is generally in (1, 2] with the
exception that α ∈ (2, 3] in [12, 23] and α ∈ (3, 4] in [8, 17]. Though there have been extensive
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study on systems of fractional differential equations, not much has been done for boundary
value problems for systems of fractional differential equations [18–20].

On the other hand, we know that delay arises naturally in practical systems due to the
transmission of signal or the mechanical transmission. Though theory of ordinary differential
equations with delays is mature, not much has been done for fractional differential equations
with delays [24–31].

As a result, in this paper, we consider the following nonlinear system of fractional
order differential equations with delays,

Dαiui(t) + fi(t, u1(τi1(t)), . . . , uN(τiN(t))) = 0, t ∈ (0, 1),

u
(j)
i (0) = 0, j = 0, 1, . . . , ni − 2, i = 1, 2, . . . ,N,

u
(ni−1)
i (1) = ηi, i = 1, 2, . . . ,N,

(1.1)

where Dαi is the standard Riemann-Liouville fractional derivative of order αi ∈ (ni − 1, ni]
for some integer ni > 1, ηi ≥ 0 for i = 1, . . . ,N, 0 ≤ τij(t) ≤ t for i, j = 1, 2, . . . ,N, and fi is
a nonlinear function from [0, 1] × �N

+ to �+ = [0,∞). The purpose is to establish sufficient
conditions on the existence of positive solutions to (1.1) by using some fixed point theorems
and some properties of the Green function. By a positive solution to (1.1)wemean amapping
with positive components on (0, 1) such that (1.1) is satisfied. Obviously, (1.1) includes the
usual system of fractional differential equations when τij(t) ≡ t for all i and j. Therefore, the
obtained results generalize and include some existing ones.

The remaining part of this paper is organized as follows. In Section 2, we introduce
some basics of fractional derivative and the fixed point theorems which will be used in
Section 3 to establish the existence of positive solutions. To conclude the paper, the feasibility
of some of the results is illustrated with concrete examples in Section 4.

2. Preliminaries

We first introduce some basic definitions of fractional derivative for the readers’ convenience.

Definition 2.1 (see [3, 32]). The fractional integral of order α(> 0) of a function f : (0,∞) → �

is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t − s)1−α
ds (2.1)

provided that the integral exists on (0,∞), where Γ(α) =
∫∞
0 e−ttα−1dt is the Gamma function.

Note that Iα has the semigroup property, that is,

IαIβ = Iα+β = IβIα for α > 0, β > 0. (2.2)



Boundary Value Problems 3

Definition 2.2 (see [3, 32]). The Riemann-Liouville derivative of order α(> 0) of a function
f : (0,∞) → � is given by

Dαf(t) =
1

Γ(n − α)
dn

dtn

∫ t

0

f(s)

(t − s)α+1−n
ds (2.3)

provided that the right-hand side is pointwise defined on (0,∞), where n = �α	 + 1.
It is well known that if n − 1 < α ≤ n then Dαtα−k = 0, k = 1, 2, . . . , n. Furthermore, if

y(t) ∈ L1[0, T] and α > 0 then DαIαy(t) = y(t) for t ∈ (0, T].
The following results on fractional integral and fractional derivative will be needed in

establishing our main results.

Lemma 2.3 (see [10]). Let α > 0. Then solutions to the fractional equation Dαh(t) = 0 can be
written as

h(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, (2.4)

where ci ∈ �, i = 1, 2, . . . , n = �α	 + 1.

Lemma 2.4 (see [10]). Let α > 0. Then

IαDαh(t) = h(t) + c1t
α−1 + c2t

α−2 + · · · + cnt
α−n (2.5)

for some ci ∈ �, i = 1, 2, . . . , n = �α	 + 1.
Now, we cite the fixed point theorems to be used in Section 3.

Lemma 2.5 (the Banach contraction mapping theorem [33]). Let M be a complete metric space
and let T : M → M be a contraction mapping. Then T has a unique fixed point.

Lemma 2.6 (see [16, 34]). Let C be a closed and convex subset of a Banach space X. Assume thatU
is a relatively open subset of C with 0 ∈ U and T : U → C is completely continuous. Then at least
one of the following two properties holds:

(i) T has a fixed point in U;

(ii) there exists u ∈ ∂U and λ ∈ (0, 1) with u = λTu.

Lemma 2.7 (the Krasnosel’skii fixed point theorem [33, 35]). Let P be a cone in a Banach space
X. Assume that Ω1 and Ω2 are open subsets of X with 0 ∈ Ω1 and Ω1 ⊆ Ω2. Suppose that T :
P
⋂
(Ω2 \Ω1) → P is a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖ for u ∈ P
⋂
∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ P

⋂
∂Ω2

or

(ii) ‖Tu‖ ≥ ‖u‖ for u ∈ P
⋂
∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ P

⋂
∂Ω2.

Then T has a fixed point in Ω2 \Ω1.



4 Boundary Value Problems

3. Existence of Positive Solutions

Throughout this paper, we let E = C([0, 1],�N ). Then (E, ‖ · ‖E) is a Banach space, where

‖u‖E = max
1≤i≤N

max
0≤t≤1

|ui(t)| for u = (u1, . . . , uN)T ∈ E. (3.1)

In this section, we always assume that f = (f1, . . . , fN)T ∈ C([0, 1] × �N
+ ,�N

+ ).

Lemma 3.1. System (1.1) is equivalent to the following system of integral equations:

ui(t) =
∫1

0
Gi(t, s)fi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds

+
ηitαi−1

(αi − 1) · · · (αi − ni + 1)
, i = 1, 2, . . . ,N,

(3.2)

where

Gi(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

tαi−1(1 − s)αi−ni − (t − s)αi−1

Γ(αi)
, 0 ≤ s ≤ t ≤ 1,

tαi−1(1 − s)αi−ni

Γ(αi)
, 0 ≤ t ≤ s ≤ 1.

(3.3)

Proof. It is easy to see that if (u1, u2, . . . , uN)T satisfies (3.2) then it also satisfies (3.2). So,
assume that (u1, u2, . . . , uN)T is a solution to (1.1). Integrating both sides of the first equation
of (1.1) of order αi with respect to t gives us

ui(t) = − 1
Γ(αi)

∫ t

0
(t − s)αi−1fi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds

+ c1it
αi−1 + c2it

αi−2 + · · · + cn,it
αi−ni

(3.4)

for 0 ≤ t ≤ 1, i = 1, 2, . . . ,N. It follows that

u′
i(t) = −αi − 1

Γ(αi)

∫ t

0
(t − s)αi−2fi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds

+ (αi − 1)c1itαi−2 + (αi − 2)c2itαi−3 + · · · + (αi − ni + 1)cn−1,itαi−ni

(3.5)

for 0 ≤ t ≤ 1, i = 1, 2, . . . ,N. This, combined with the boundary conditions in (1.1), yields

cni−1,i = 0, i = 1, 2, . . . ,N. (3.6)
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Similarly, one can obtain

cni−2,i = cni−3,i = · · · = c2,i = 0, (3.7)

u
(ni−1)
i (t) = −(αi − 1) · · · (αi − ni + 1)

Γ(αi)

∫ t

0
(t − s)αi−nifi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds

+ (αi − 1) · · · (αi − ni + 1)c1itαi−ni ,

(3.8)

i = 1, 2, . . . ,N. Then it follows from (3.8) and the boundary condition u
(ni−1)
i (1) = ηi that

c1,i =
ηi

(αi − 1) · · · (αi − ni + 1)
+

1
Γ(αi)

∫1

0
(1 − s)αi−nifi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds. (3.9)

Therefore, for i = 1, 2, . . . ,N,

ui(t) = − 1
Γ(αi)

∫ t

0
(t − s)αi−1fi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds +

ηitαi−1

(αi − 1) · · · (αi − ni + 1)

+
tαi−1

Γ(αi)

∫1

0
(1 − s)αi−nifi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds

=
1

Γ(αi)

∫ t

0

(
tαi−1(1 − s)αi−ni − (t − s)αi−1

)
fi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds

+
1

Γ(αi)

∫1

t

tαi−1(1 − s)αi−nifi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds +
ηit

αi−1

(αi − 1) · · · (αi − ni + 1)

=
∫1

0
Gi(t, s)fi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds +

ηitαi−1

(αi − 1) · · · (αi − ni + 1)
.

(3.10)

This completes the proof.

The following two results give some properties of the Green functions Gi(t, s).

Lemma 3.2. For i = 1, 2, . . . ,N,Gi(t, s) is continuous on [0, 1] × [0, 1] and Gi(t, s) > 0 for (t, s) ∈
(0, 1) × (0, 1).

Proof. Obviously, Gi(t, s) is continuous on [0, 1]×[0, 1]. It remains to show thatGi(t, s) > 0 for
(t, s) ∈ (0, 1) × (0, 1). It is easy to see that Gi(t, s) > 0 for 0 < t ≤ s < 1. We only need to show
that Gi(t, s) > 0 for 0 < s ≤ t < 1. For 0 < s ≤ t ≤ 1, let

gi(t, s) = tαi−1(1 − s)αi−ni − (t − s)αi−1, (3.11)

hi(t, s) = (1 − s)αi−ni −
(
1 − s

t

)αi−1
. (3.12)
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Then

gi(t, s) = tαi−1hi(t, s), 0 < s ≤ t < 1. (3.13)

Note that hi(s, s) > 0 and (∂hi/∂t)(t, s) = −(αi − 1)(1 − s/t)αi−2st−2 < 0 for 0 < s ≤ t < 1. It
follows that hi(t, s) > 0 and hence gi(t, s) > 0 for 0 < s ≤ t < 1.

Therefore,Gi(t, s) > 0 for 0 < s ≤ t < 1 and the proof is complete.

Lemma 3.3. (i) If ni = 2, then Gi(t, s) ≤ Gi(s, s) for (t, s) ∈ (0, 1) × (0, 1).
(ii) If ni > 2, then Gi(t, s) < Gi(1, s) for (t, s) ∈ (0, 1) × (0, 1).

Proof.
(i) Obviously, Gi(t, s) ≤ Gi(s, s) for 0 < t ≤ s < 1. Now, for 0 < s ≤ t < 1, we have

∂gi(t, s)
∂t

= (αi − 1)tαi−2
[
(1 − s)αi−2 −

(
1 − s

t

)αi−2] ≤ 0, (3.14)

where gi is the function defined by (3.11). It follows that Gi(t, s) ≤ Gi(s, s) for 0 < s ≤ t < 1. In
summary, we have proved (i).

(ii)Again, one can easily see thatGi(t, s) < Gi(1, s) for 0 < t ≤ s < 1.When 0 < s ≤ t ≤ 1,
we have in this case that

∂gi(t, s)
∂t

= (αi − 1)tαi−2
[
(1 − s)αi−ni −

(
1 − s

t

)αi−2]

≥ (αi − 1)tαi−2
[
(1 − s)αi−ni − (1 − s)αi−2

]

> 0,

(3.15)

which implies that Gi(t, s) ≤ Gi(1, s) for 0 < s ≤ t < 1. To summarize, we have proved (ii) and
this completes the proof.

Now, we are ready to present the main results.

Theorem 3.4. Suppose that there exist functions λij(t) ∈ C([0, 1],�+), i, j = 1, 2, . . . ,N, such that

∣∣fi(t, u1, . . . , uN) − fi(t, v1, . . . , vN)
∣∣ ≤ N∑

j=1

λij(t)
∣∣uj − vj

∣∣ (3.16)

for t ∈ [0, 1], i = 1,2, . . . ,N. If

max
1≤i≤N, ni>2

∫1

0
Gi(1, s)

⎛
⎝ N∑

j=1

λij(s)

⎞
⎠ds < 1, (3.17)
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max
1≤i≤N, ni=2

∫1

0
Gi(s, s)

⎛
⎝ N∑

j=1

λij(s)

⎞
⎠ds < 1, (3.18)

then (1.1) has a unique positive solution.

Proof. Let

Ω = {u ∈ E | ui(t) ≥ 0 for t ∈ [0, 1], i = 1, 2, . . . ,N}. (3.19)

It is easy to see that Ω is a complete metric space. Define an operator T on Ω by

Tu(t) =
∫1

0
G(t, s)g(s)ds + diag

(
. . . ,

ηitαi−1

(αi − 1) · · · (αi − ni + 1)
, . . . ,

)
, (3.20)

where G(t, s) = diag(G1(t, s), G2(t, s), . . . , GN(t, s)) and

g(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

f1(t, u1(τ11(t)), u2(τ12(t)), . . . , uN(τ1N(t)))

f2(t, u1(τ21(t)), u2(τ22(t)), . . . , uN(τ2N(t)))

...

fN(t, u1(τN1(t)), u2(τ(N2(t)), . . . , uN(τNN(t)))

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.21)

Because of the continuity of G and f , it follows easily from Lemma 3.2 that T maps Ω into
itself. To finish the proof, we only need to show that T is a contraction. Indeed, for u, v ∈ Ω,
by (3.16) we have

|(Tu(t))i − (Tv(t))i|

=

∣∣∣∣∣
∫1

0
Gi(t, s)

(
fi(s, u1(τi1(s)), . . . , uN(τiN(s))) − fi(s, v1(τi1(s)), . . . , vN(τiN(s)))

)
ds

∣∣∣∣∣

≤
∫1

0
Gi(t, s)

∣∣fi(s, u1(τi1(s)), . . . , uN(τiN(s))) − fi(s, v1(τi1(s)), . . . , vN(τiN(s)))
∣∣ds

≤
∫1

0
Gi(t, s)

⎛
⎝ N∑

j=1

λij(s)
∣∣uj

(
τij(s)

) − vj

(
τij(s)

)∣∣
⎞
⎠ds.

(3.22)

This, combined with Lemma 3.3 and (3.17) and (3.18), immediately implies that T : Ω → Ω
is a contraction. Therefore, the proof is complete with the help of Lemmas 3.1 and 2.5.

The following result can be proved in the same spirit as that for Theorem 3.4.
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Theorem 3.5. For i = 1, 2, . . . ,N, suppose that there exist nonnegative function λi(t) and
nonnegative constants qi1, qi2, . . . , qiN such that

∑N
j=1 qij = 1 and

∣∣fi(t, u1, . . . , uN) − fi(t, v1, . . . , vN)
∣∣ ≤ λi(t)

N∏
j=1

∣∣uj − vj

∣∣qij (3.23)

for t ∈ [0, 1], (u1, u2, . . . , uN)T , (v1, v2, . . . , vN)T ∈ �N
+ . If

max
1≤i≤N, ni>2

∫1

0
Gi(1, s)λi(s)ds < 1, max

1≤i≤N, ni=2

∫1

0
Gi(s, s)λi(s)ds < 1, (3.24)

then (1.1) has a unique positive solution.

Theorem 3.6. For i = 1, 2, . . . ,N, suppose that there exist nonnegative real-valued functions
mi, ni1, . . . , niN ∈ L[0, 1] such that

fi(t, u1, . . . , uN) ≤ mi(t) +
N∑
j=1

nij(t)uj (3.25)

for almost every t ∈ [0, 1] and all (u1, u2, . . . , uN)T ∈ �N
+ . If

max
1≤i≤N, ni>2

⎧⎨
⎩
∫1

0
Gi(1, s)

⎛
⎝ N∑

j=1

nij(s)

⎞
⎠ds

⎫⎬
⎭ < 1,

max
1≤i≤N, ni=2

⎧⎨
⎩
∫1

0
Gi(s, s)

⎛
⎝ N∑

j=1

nij(s)

⎞
⎠ds

⎫⎬
⎭ < 1,

(3.26)

then (1.1) has at least one positive solution.

Proof. Let Ω and T : Ω → Ω be defined by (3.19) and (3.20), respectively. We first show that
T is completely continuous through the following three steps.

Step 1. Show that T : Ω → Ω is continuous. Let {uk(t)} be a sequence inΩ such that uk(t) →
u(t) ∈ Ω. Then Ω0 = [0, 1] × {u(t) | uk(t), u(t) ∈ Ω, t ∈ [0, 1], k ≥ 1} is bounded in [0, 1] × �N

+ .
Since f is continuous, it is uniformly continuous on any compact set. In particular, for any
ε > 0, there exists a positive integer K0 such that

∣∣∣fi
(
t, uk

1(τi1(t)), . . . , u
k
N(τiN(t))

)
− fi(t, u1(τi1(t)), . . . , uN(τiN(t)))

∣∣∣
<

ε

max1≤i≤N maxt∈[0,1]
∫1
0 Gi(t, s)ds

(3.27)
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for t ∈ [0, 1] and k ≥ K0, i = 1, 2, . . . ,N. Then, for k ≥ K0, we have

∣∣∣(Tuk(t)
)
i
− (Tu(t))i

∣∣∣

=

∣∣∣∣∣
∫1

0
Gi(t, s)fi

(
s, uk

1(τi1(s)), . . . , u
k
N(τiN(s))

)

−fi(s, u1(τi1(s)), . . . , uN(τiN(s)))

∣∣∣∣∣ds

≤
∫1

0
Gi(t, s)

∣∣∣fi
(
s, uk

1(τi1(s)), . . . , u
k
N(τiN(s))

)

−fi(s, u1(τi1(s)), . . . , uN(τiN(s)))
∣∣∣ds

<
ε

max1≤i≤N maxt∈[0,1]
∫1
0 Gi(t, s)ds

∫1

0
Gi(t, s)ds ≤ ε

(3.28)

for k ≥ K0 and t ∈ [0, 1], i = 1, 2, . . . ,N. Therefore,

∥∥∥Tuk(t) − Tu(t)
∥∥∥ < ε for k ≥ K0, (3.29)

which implies that T is continuous.

Step 2. Show that T maps bounded sets ofΩ into bounded sets. LetA be a bounded subset of
Ω. Then [0, 1] × {u(t) | t ∈ [0, 1], u ∈ A} ⊆ [0, 1] × �N

+ is bounded. Since f is continuous, there
exists an M > 0 such that

fi(t, u1(τi1(t)), . . . , uN(τiN(t))) ≤ M for u ∈ A, t ∈ [0, 1], 1 ≤ i ≤ N. (3.30)

It follows that, for u ∈ A, t ∈ [0, 1] and 1 ≤ i ≤ N,

(Tu(t))i =
∫1

0
Gi(t, s)fi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds +

ηi

(αi − 1) · · · (αi − ni + 1)

≤ M

∫1

0
Gi(t, s)ds +

ηi

(αi − 1) · · · (αi − ni + 1)

≤ max
1≤i≤N

[
Mmax

t∈[0,1]

∫1

0
Gi(t, s)ds +

ηi

(αi − 1) · · · (αi − ni + 1)

]
.

(3.31)

Immediately, we can easily see that TA is a bounded subset of Ω.
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Step 3. Show that T maps bounded sets of Ω into equicontinuous sets. Let B be a bounded
subset of Ω. Similarly as in Step 2, there exists L > 0 such that

fi(t, u1(τi1(t)), . . . , uN(τiN(t))) ≤ L for u ∈ B, t ∈ [0, 1], 1 ≤ i ≤ N. (3.32)

Then, for any u ∈ B and t1, t2 ∈ [0, 1] and 1 ≤ i ≤ N,

|(Tu(t2))i − (Tu(t1))i| =

∣∣∣∣∣∣∣
ηi

(
tαi−1
2 − tαi−1

1

)
(αi − 1) · · · (αi − ni + 1)

+
∫1

0
(Gi(t2, s) −Gi(t1, s))fi(s, u1(τi1(s)), . . . , uN(τiN(s)))ds

∣∣∣∣∣∣∣

≤
ηi

∣∣∣tαi−1
2 − tαi−1

1

∣∣∣
(αi − 1) · · · (αi − ni + 1)

+
∫1

0
|Gi(t2, s) −Gi(t1, s)|Lds

≤
ηi

∣∣∣tαi−1
2 − tαi−1

1

∣∣∣
(αi − 1) · · · (αi − ni + 1)

+max
0≤s≤1

|Gi(t2, s) −Gi(t1, s)L.

(3.33)

Now the equicontituity of T on B follows easily from the fact thatGi is continuous and hence
uniformly continuous on [0, 1] × [0, 1].

Now we have shown that T is completely continuous. To apply Lemma 2.6, let

μ =
max1≤i≤N,ni>2

{∫1
0 Gi(1, s)mi(s)ds + ηi/(αi − 1) · · · (αi − ni + 1)

}

1 −max1≤i≤N,ni>2

{∫1
0 Gi(1, s)

(∑N
j=1 nij(s)

)
ds
} ,

ν =
max1≤i≤N,ni=2

{∫1
0 Gi(s, s)mi(s)ds + ηi/(αi − 1) · · · (αi − ni + 1)

}

1 −max1≤i≤N,ni=2

{∫1
0 Gi(s, s)

(∑N
j=1 nij(s)

)
ds
} .

(3.34)

Fix r > max{μ, ν} and define

U = {u ∈ Ω‖u‖E < r}. (3.35)
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We claim that there is no u ∈ ∂U such that u = λTu for some λ ∈ (0, 1). Otherwise, assume
that there exist λ ∈ (0, 1) and u ∈ ∂U such that u = λTu. Then

|ui(t)| = |λ(Tu(t))i| ≤ |(Tu(t))i|

≤
∫1

0
Gi(t, s)fi(s, u1(τi1(t)), u2(τi2(t)), . . . , uN(τiN(t)))ds +

ηit
αi−1

(αi − 1) · · · (αi − ni + 1)

≤
∫1

0
Gi(t, s)

⎛
⎝mi(s) +

N∑
j=1

nij(s)uj

(
τij(s)

)
⎞
⎠ds +

ηi

(αi − 1) · · · (αi − ni + 1)

≤
∫1

0
Gi(t, s)mi(s)ds + r

∫1

0
Gi(t, s)

N∑
j=1

nij(s)ds +
ηi

(αi − 1) · · · (αi − ni + 1)
.

(3.36)

If ni = 2, then

|ui(t)| <
∫1

0
Gi(s, s)mi(s)ds +

ηi

(αi − 1) · · · (αi − ni + 1)
+ r

∫1

0
Gi(s, s)

N∑
j=1

nij(s)ds

≤ ν

⎛
⎝1 − max

1≤i≤N, ni=2

⎧⎨
⎩
∫1

0
Gi(s, s)

⎛
⎝ N∑

j=1

nij(s)

⎞
⎠ds

⎫⎬
⎭
⎞
⎠ + r

∫1

0
Gi(s, s)

N∑
j=1

nij(s)ds

< r

⎛
⎝1 − max

1≤i≤N,ni=2

⎧⎨
⎩
∫1

0
Gi(s, s)

⎛
⎝ N∑

j=1

nij(s)

⎞
⎠ds

⎫⎬
⎭
⎞
⎠ + r

∫1

0
Gi(s, s)

N∑
j=1

nij(s)ds ≤ r.

(3.37)

Similarly, we can have |ui(t)| < r if ni > 2. To summarize, ‖u‖ < r, a contradiction to u ∈ ∂U.
This proves the claim. Applying Lemma 2.6, we know that T has a fixed point in U, which is
a positive solution to (1.1) by Lemma 3.1. Therefore, the proof is complete.

As a consequence of Theorem 3.6, we have the following.

Corollary 3.7. If all fi, i = 1, 2, . . . ,N, are bounded, then (1.1) has at least one positive solution.
To state the last result of this section, we introduce

M1 =
1

max1≤i≤N
∫1
0 Gi(1, s)ds

,

N = max
{

max
1≤i≤N, ni>2

∫1
0 Gi(1, s)ds, max

1≤i≤N, ni=2

∫1
0 Gi(s, s)ds

}
.

(3.38)

Theorem 3.8. Suppose that there exist M2 ∈ (0, 1/N) and positive constants 0 < r1 < r2 with
r2 ≥ max1≤i≤N{ηi/(αi − 1) · · · (αi − ni + 1)}/(1 −M2N) such that
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(i) fi(t, u1, . . . , uN) ≤ M2r2 for (t, u1, . . . , uN) ∈ [0, 1] × Br2 , i = 1, 2, . . . ,N

and

(ii) fi(t, u1, . . . , uN) ≥ M1r1, for (t, u1, . . . , uN) ∈ [0, 1] × Br1 , i = 1, 2, . . . ,N,

where Bri = {u = (u1, . . . , uN)T ∈ �N
+ | max1≤i≤Nui ≤ ri}, i = 1, 2. Then (1.1) has at least a positive

solution.

Proof. Let Ω be defined by (3.19) and Ωi = {u ∈ E | ‖u‖ < ri}, i = 1, 2. Obviously, Ω is a
cone in E. From the proof of Theorem 3.6, we know that the operator T defined by (3.20) is
completely continuous on Ω. For any u ∈ Ω ∩ ∂Ω1, it follows from Lemma 3.3 and condition
(ii) that

‖Tu‖E = max
1≤i≤N

max
0≤t≤1

(Tu(t))i ≥ max
1≤i≤N

(Tu(1))i

= max
1≤i≤N

{∫1

0
Gi(1, s)fi(s, u1(τi1(s)), u2(τi2(s)), . . . , uN(τiN(s)))ds

+
ηi

(αi − 1) · · · (αi − ni + 1)

}

≥ max
1≤i≤N

{∫1

0
Gi(1, s)M1r1 +

ηi

(αi − 1) · · · (αi − ni + 1)

}
≥ r1 = ‖u‖E,

(3.39)

that is,

‖Tu‖E ≥ ‖u‖E for u ∈ Ω ∩ ∂Ω1. (3.40)

On the other hand, for any u ∈ Ω ∩ ∂Ω2, it follows from Lemma 3.3 and condition (i) that, for
t ∈ [0, 1],

(Tu(t))i ≤
∫1

0
Gi(1, s)M2r2ds +

ηi

(αi − 1) · · · (αi − ni + 1)

≤ M2r2 max
1≤i≤N, ni>2

∫1

0
Gi(1, s)ds + max

1≤i≤N
ηi

(αi − 1) · · · (αi − ni + 1)

≤ M2r2 max
1≤i≤N, ni>2

∫1

0
Gi(1, s)ds + (1 −M2N)r2 ≤ r2 = ‖u‖E

(3.41)

if ni > 2, whereas

(Tu(t))i ≤
∫1

0
Gi(s, s)M2r2ds +

ηi

(αi − 1) · · · (αi − ni + 1)

≤ M2r2 max
1≤i≤N, ni=2

∫1

0
Gi(s, s)ds + max

1≤i≤N
ηi

(αi − 1) · · · (αi − ni + 1)
≤ r2 = ‖u‖E

(3.42)
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if ni = 2. In summary,

‖Tu‖ ≤ ‖u‖E for u ∈ Ω ∩ ∂Ω2. (3.43)

Therefore, we have verified condition (ii) of Lemma 2.7. It follows that T has a fixed point in
Ω ∩ (Ω2 \Ω1), which is a positive solution to (1.1). This completes the proof.

4. Examples

In this section, we demonstrate the feasibility of some of the results obtained in Section 3.

Example 4.1. Consider

D5/2x1(t) +
e−t(x1(t/2) + x2(sin t))

(9 + et)(1 + x1(t/2) + x2(sin t))
= 0, t ∈ (0, 1),

D5/2x2(t) +
t2
(
x1
(
t2
)
+ x2(sin t)

)
10(1 + (x1(t2) + x2(sin t))

= 0, t ∈ (0, 1),

x1(0) = x2(0) = x′
1(0) = x′

2(0) = 0, x′′
1(1) = x′′

2(1) =
1
2
.

(4.1)

Here

n1 = n2 = 3, α1 = α2 =
5
2
, η1 = η2 =

1
2
,

τ11(t) =
t

2
, τ12(t) = τ22(t) = sin t, τ21(t) = t2,

f1(t, x1, x2) =
e−t(x1 + x2)

(9 + et)(1 + x1 + x2)
, f2(t, x1, x2) =

t2(x1 + x2)
10(1 + x1 + x2)

.

(4.2)

One can easily see that (3.16) is satisfied with

λ11(t) = λ12(t) =
e−t

9 + et
, λ21(t) = λ22(t) =

t2

10
. (4.3)

Moreover,

G1(1, s) = G2(1, s)
(1 − s)−1/2 − (1 − s)3/2

Γ(5/2)
, 0 ≤ s ≤ 1 (4.4)
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and hence

max
1≤i≤2

∫1

0
Gi(1, s)

⎛
⎝ 2∑

j=1

λij(s)

⎞
⎠ds ≤

∫1

0

(1 − s)−1/2 − (1 − s)3/2

Γ(5/2)
max
0≤s≤1

{
2s2

10
,

2
es(9 + es)

}
ds

≤ 1
5

∫1

0

(1 − s)−1/2 − (1 − s)3/2

Γ(5/2)
ds

=
2 − (2/5)

5 · (3/4)√π
=

32
75

√
π

< 1.

(4.5)

It follows from Theorem 3.4 that (4.1) has a unique positive solution on [0, 1].

Example 4.2. Consider

D5/2x1(t) +
tx1(t)
20

+
x2(t)
20

+
t

10
+

1
10

= 0, t ∈ (0, 1),

D3/2x2(t) +
x1(1)
20

+
tx2(t)
20

+
t2

10
+

1
10

= 0, t ∈ (0, 1),

x1(0) = x2(0) = x′
1(0) = 0, x′′

1, (1) = x′′
2(1) =

1
2
.

(4.6)

Here

n1 = 3, n2 = 2, α1 =
5
2
, α2 =

3
2
, η1 = η2 =

1
2
,

fi(t, x1, x2) = mi(t) +
2∑

j=1

nij(t)xj, i = 1, 2,
(4.7)

where

m1(t) =
t

10
+

1
10

, m2(t) =
t2

10
+

1
10

,

n11(t) = n22(t) =
t

20
, n12(t) = n21(t) =

1
20

.

(4.8)

Hence, f1 and f2 satisfy (3.25). Moreover, simple calculations give us

∫1

0
G1(1, s)ds =

32
15

√
π
,

∫1

0
G2(1, s)ds =

8
3
√
π
,

∫1

0
G1(s, s)ds =

√
π

2
,

∫1

0
G2(s, s)ds =

√
π.

(4.9)
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Then M1 = 3
√
π/8 and

N = max

{∫1

0
G1(1, s)ds,

∫1

0
G2(s, s)ds

}
=
√
π. (4.10)

Choose M2 =
√
π/10 ∈ (0, 1/N) = (0, 1/

√
π), r1 =

√
π/12 and

r2 = max
{

1/2
(5/2 − 1)(5/2 − 3 + 1)

,
1/2

(3/2 − 2 + 1)

}
/

(
1 −

√
π

10
√
π

)
=

10
10 − π

. (4.11)

Then, for ‖(x1, x2)T‖ ≤ r2 and t ∈ [0, 1], we have

f1(t, x1, x2) =
tx1

20
+
x2

20
+

t

10
+

1
10

≤ r2
10

+
1
10

=
1

10 − π
+

1
10

≤ 0.24581 < 0.2584 < M2r2

f2(t, x1, x2) =
x1

20
+
tx2

20
+

t2

10
+

1
10

< M2r2;

(4.12)

for ‖(x1, x2)
T‖ ≤ r1 and t ∈ [0, 1], we have

f1(t, x1, x2), f2(t, x1, x2) ≥ 1
10

>
π

32
= M1r1. (4.13)

By now we have verified all the assumptions of Theorem 3.8. Therefore, (4.6) has at least one
positive solution x = (x1, x2)T satisfying

√
π/12 ≤ ‖x‖ ≤ 10/(10 − π).
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