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We consider the initial-boundary value problem for a nonlinear partial differential equation with
module-fractional derivative on a half-line. We study the local and global in time existence of
solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large
time.

1. Introduction

We study the local and global existence and asymptotic behavior for solutions to the initial-
boundary value problem:

ut +N(u) + |∂x|αu = 0, t > 0, x > 0,

u(x, 0) = u0(x), x > 0,
(1.1)

where N(u) = |u|σu, σ > 1, and |∂x|α is the module-fractional derivative operator defined by

|∂x|αu(x, t) = θ(x)
1

2πi

∫ i∞

−i∞
epx

∣∣p∣∣αû(p, t)dp, α ∈
(
1
2
, 1
)
, (1.2)
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where û(p, t) is the Laplace transform for u(x, t) with respect to x and θ(x) is the Heaviside
function:

θ(x) =

⎧⎨
⎩
1, x ≥ 0,

0, x < 0.
(1.3)

The Cauchy problem for a wide class of nonlinear nonlocal dissipative equations has been
studied extensively. In particular, the general approach for the study of the large time
asymptotics to the Cauchy problem for different nonlinear equations was investigated in the
book [1] and the references therein.

The boundary value problems are more natural for applications and play an important
role in the contemporary mathematical physics. However, their mathematical investigations
are more complicated even in the case of the differential equations, with more reason to the
case of nonlocal equations. We need to answer such basic question as how many boundary
values should be given in the problem for its solvability and the uniqueness of the solution?
Also it is interesting to study the influence of the boundary data on the qualitative properties
of the solution. For examples and details see [2–12] and references therein.

The general theory of nonlinear nonlocal equations on a half-line was developed in
book [13], where the pseudodifferential operatorK on a half-line was introduced by virtue of
the inverse Laplace transformation. In this definition it was important that the symbol K(p)
must be analytic in the complex right half-plane. We emphasize that the pseudodifferential
operator |∂x|αu in (1.1) has a nonanalytic nonhomogeneous symbol K(p) = |p|α and the
general theory from book [13] cannot be applied to the problem (1.1) directly. As far as we
know there are few results on the initial-boundary value problems with pseudodifferential
equations having a nonanalytic symbol. The case of rational symbol K(p) which has some
poles in the complex right half-plane was studied in [14, 15], where it was proposed a new
method for constructing the Green operator based on the introduction of some necessary
condition at the singular points of the symbol K(p). In [16] there was considered the initial-
boundary value problem for a pseudodifferential equation with a nonanalytic homogeneous
symbolK(p) = |p|1/2, where the theory of sectionally analytic functions was implemented for
proving that the initial-boundary value problem is well posed. Since the symbolK(p) = |p|1/2
does not grow fast at infinity, so there were no boundary data in the corresponding problem.

In the present paper we consider the same problem as in [16] but with symbolK(p) =
|p|α, where α ∈ (1/2, 1). The approach used in this paper is more general and simple than the
one used in [16]; however to get the same result are necessary more accurate estimates than
the ones obtained here for the Green operator.

To construct Green operator we proposed a new method based on the integral
representation for a sectionally analytic function and the theory of singular integro-
differential equations with Hilbert kernel (see [16, 17]). We arrive to a boundary condition of
type Ω+(p) = W(p)Ω−(p) + g(p), where −i∞ < p < +i∞. The aim is to find two analytic
functions, Ω+ and Ω− (a sectionally analytic function Ω), in the left and right complex
semi-planes, respectively, such that the boundary condition is satisfied. Two conditions are
necessary to solve the problem: first, the functionW must satisfy the Hölder condition both in
the finite points and in the vicinity of the infinite point of the contour and, second, the index
of functionW must be zero. In our case both conditions do fail. To overcome this difficulty, we
introduce an auxiliary function such that the Hölder and zero-index conditions are fulfilled.
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To state precisely the results of the present paper we give some notations. We denote
〈t〉 = 1+ t, {t} = t/〈t〉. Here and below pα is the main branch of the complex analytic function
in the complex half-plane Re p ≥ 0, so that 1α = 1 (we make a cut along the negative real axis
(−∞, 0)). Note that due to the analyticity of pα for all Re p > 0 the inverse Laplace transform
gives us the function which is equal to 0 for all x < 0. Direct Laplace transformation Lx→ p is

û
(
p
) ≡ Lx→ p{u} =

∫+∞

0
e−pxu(x)dx, (1.4)

and the inverse Laplace transformation L−1
p→x is defined by

u(x) ≡ L−1
p→x{û} =

1
2πi

∫ i∞

−i∞
epxu(ξ)dξ. (1.5)

Weighted Lebesgue space is Ls,μ(R+) = {ϕ ∈ S′; ‖ϕ‖ Ls,μ < ∞},where

∥∥ϕ∥∥Ls,μ =
(∫+∞

0
xμs

∣∣ϕ(x)∣∣sdx
)1/s

(1.6)

for μ > 0, 1 < s < ∞ and

∥∥ϕ∥∥L∞ = ess supx∈R+

∣∣ϕ(x)∣∣. (1.7)

Now, we define the metric spaces

Z = L1(R+) ∩ L1,μ(R+) ∩ L∞(R+), (1.8)

where μ ∈ (0, 1), with the norm

∥∥φ∥∥Z =
∥∥φ∥∥L1 +

∥∥φ∥∥L1,μ +
∥∥φ∥∥L∞ ,

X = C
(
[0,∞);L2(R+)

)⋂
C((0,∞);Ls(R+) ∩ Ls,μ(R+) ∩ L∞(R+)),

(1.9)

where s > 1 and μ ∈ (0, 1), with the norm

∥∥φ∥∥X = sup
t≥0

∥∥φ∥∥L2 + sup
t>0

{t}γ/α
(
〈t〉γ/α∥∥φ∥∥Ls + 〈t〉(1/α)(γ−μ)∥∥φ∥∥Ls,μ + 〈t〉1/α∥∥φ∥∥L∞

)
, (1.10)

|γ − μ| < α, γ = 1 − 1/s.
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Now we state the main results. We introduce Λ(s) ∈ L∞(R+) by formula

Λ(s) =
1

2πi

∫ i∞

−i∞
eps−|p|

α

dp

− ei(π/4)α

(2πi)2

∫ i∞

−i∞
dξeξ

∫ i∞

−i∞
eps

eΓ
+
0 (p,ξ)

(
p/

(
p − 1

))α/2 − e−i(π/4)α∣∣p∣∣α + ξ
dp,

(1.11)

where

Γ+0
(
p, ξ

)
= lim

z→ p
Re z<0

1
2πi

∫ i∞

−i∞

1
q − z

ln

{∣∣q∣∣α + ξ

qα + ξ

(
q − 1
q + 1

)α/2
}
dq. (1.12)

We define the linear functional f :

f
(
φ
)
=
∫+∞

0
φ
(
y
)
dy. (1.13)

Theorem 1.1. Suppose that for small μ > 0 the initial data u0 ∈ Z are such that the norm ‖u0‖Z ≤ ε
is sufficiently small. Then, there exists a unique global solution u ∈ X to the initial-boundary value
problem (1.1). Moreover the following asymptotic is valid:

u(x, t) = At−1/αΛ
(
xt−1/α

)
+O

(
t−(1/α)(1+κ)

)
, (1.14)

for t → ∞ in L∞(R+), where κ ∈ (0, μ) and

A = f(u0) −
∫+∞

0
f(N(u))dτ. (1.15)

2. Preliminaries

In subsequent consideration we shall have frequently to use certain theorems of the theory
of functions of complex variable, the statements of which we now quote. The proofs may be
found in all text-book of the theory. Let L be smooth contour and φ(q) a function of position
on it.

Definition 2.1. The function φ(q) is said to satisfy on the curve L the Hölder condition, if for
two arbitrary points of this curve

∣∣φ(q1) − φ
(
q2
)∣∣ ≤ C

∣∣q1 − q2
∣∣λ, (2.1)

where C and λ are positive numbers.
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Theorem 2.2. Let φ(q) be a complex function, which obeys the Hölder condition for all finite q and
tends to a definite limit φ(∞) as q → ∞, such that for large q the following inequality holds:

∣∣φ(q) − φ(∞)
∣∣ ≤ C

∣∣q∣∣−μ, μ > 0. (2.2)

Then Cauchy type integral

F(z) =
1

2πi

∫ i∞

−i∞

φ
(
q
)

q − z
dq (2.3)

constitutes a function analytic in the left and right semiplanes. Here and below these functions will be
denoted by F+(z) and F−(z), respectively. These functions have the limiting values F+(p) and F−(p)
at all points of imaginary axis Re p = 0, on approaching the contour from the left and from the right,
respectively. These limiting values are expressed by Sokhotzki-Plemelj formulae:

F±(p) = lim
z→ p

±Re z<0
1

2πi

∫ i∞

−i∞

φ
(
q
)

q − z
=

1
2πi

−
∫ i∞

−i∞

φ
(
q
)

q − p
dq ± 1

2
φ
(
p
)
. (2.4)

Subtracting and adding the formula (2.4) we obtain the following two equivalent
formulae:

F+(p) − F−(p) = φ
(
p
)
, F+(p) + F−(p) =

1
πi

−
∫ i∞

−i∞

φ
(
q
)

q − p
dq, (2.5)

which will be frequently employed hereafter.
We consider the following linear initial-boundary value problem on half-line:

ut + |∂x|αu = 0, t > 0, x > 0,

u(x, 0) = u0(x), x > 0.
(2.6)

Setting K(q) = |q|α, K1(q) = qα, we define

G(t)φ =
∫+∞

0
G
(
x, y, t

)
φ
(
y
)
dy, (2.7)

where the function G(x, y, t) is given by

G
(
x, y, t

)
= − 1

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ)
K
(
p
)
+ ξ

Z−(p, ξ, y)dp, (2.8)

Z−(p, ξ, y) = lim
z→ p
Re z>0

1
2πi

∫ i∞

−i∞

1
q − z

1
Y+

(
q, ξ

)e−qydq, (2.9)
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for x > 0, y > 0, t > 0. Here and below Y± = eΓ
±
w±, where Γ+(p, ξ) and Γ−(p, ξ) are a left and

right limiting values of sectionally analytic function Γ(z, ξ) given by

Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln

{(
K
(
q
)
+ ξ

K1
(
q
)
+ ξ

)
w−(q)
w+

(
q
)
}
dq, (2.10)

where for some fixed real point z0 > 0,

w−(z) =
zα/2

(z + z0)α/2
, w+(z) =

zα/2

(z − z0)α/2
. (2.11)

All the integrals are understood in the sense of the principal values.

Proposition 2.3. Let u0(x) ∈ Z. Then there exists a unique solution u(x, t) for the initial-boundary
value problem (2.6), which has an integral representation:

u = G(t)u0, x > 0, t > 0. (2.12)

Proof. In order to obtain an integral representation for solutions of the problem (2.6) we
suppose that there exist a solution u(x, t), which is continued by zero outside of x > 0:

u(x, t) = 0, ∀x < 0. (2.13)

Let φ(q) be a function of the complex variable q, which obeys the Hölder condition for all q,
such that Re q = 0. We define the operator P by

Pq→ z

{
φ
(
q
)}

= − 1
2πi

∫ i∞

−i∞

1
q − z

φ
(
q
)
dq, Re z/= 0. (2.14)

Using the Laplace transform we get

Pp→ q

{
K
(
p
)
û
(
p, t

)}
= Lx→ q

{|∂x|αu(x, t)}. (2.15)

Since û(q, t) is analytic for all Re q > 0, we have

Pp→ q

{
û
(
p, t

)}
= û

(
q, t

)
. (2.16)

Therefore, applying the Laplace transform with respect to x to problem (2.6) and using (2.15)
and (2.16), we obtain for t > 0

Pp→ q

{
ût

(
p, t

)
+K

(
p
)
û
(
p, t

)}
= 0,

û
(
p, 0

)
= û0

(
p
)
.

(2.17)
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We rewrite (2.17) in the form

ût

(
p, t

)
+K

(
p
)
û
(
p, t

)
= Φ

(
p, t

)
,

û
(
p, 0

)
= û0

(
p
)
,

(2.18)

with some function Φ(p, t) such that

Pp→ q

{
Φ
(
p, t

)}
= 0, Re p > 0, (2.19)

∣∣Φ(
p, t

)∣∣ ≤ C
∣∣p∣∣α−1, ∣∣p∣∣ > 1. (2.20)

Applying the Laplace transform with respect to time variable to (2.18), we find

̂̂u(p, ξ) =
1

K
(
p
)
+ ξ

(
û0
(
p
)
+ Φ̂

(
p, ξ

))
, (2.21)

where Re p = 0 and Re ξ > 0. Here, the functions ̂̂u(p, ξ) and Φ̂(p, ξ) are the Laplace transforms
for û(p, t) andΦ(p, t)with respect to time, respectively. In order to obtain an integral formula
for solutions to the problem (2.6) it is necessary to know the function Φ(p, t). We will find
the function Φ̂(p, ξ) using the analytic properties of the function ̂̂u in the right-half complex
planes Re p > 0 and Re ξ > 0. Equation (2.16) and the Sokhotzki-Plemelj formulae imply for
Re p = 0

̂̂u(p, ξ) = − 1
πi

−
∫ i∞

−i∞

1
q − p

̂̂u(q, ξ)dq. (2.22)

In view of Sokhotzki-Plemelj formulae via (2.21) the condition (2.22) can be written as

Θ+(p, ξ) = −Λ+(p, ξ), (2.23)

where the sectionally analytic functions Θ(p, ξ) and Λ(p, ξ) are given by Cauchy type
integrals:

Θ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

1
K
(
q
)
+ ξ

Φ̂
(
q, ξ

)
dq, (2.24)

Λ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

1
K
(
q
)
+ ξ

û0
(
q
)
dq. (2.25)

To perform the condition (2.23) in the form of a nonhomogeneous Riemann-Hilbert problem
we introduce the sectionally analytic function:

Ω(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

Ψ
(
q, ξ

)
dq, (2.26)
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where

Ψ
(
q, ξ

)
=

K
(
p
)

K
(
p
)
+ ξ

Φ̂
(
p, ξ

)
. (2.27)

Taking into account the assumed condition (2.19), we get

Θ−(p, ξ) = −1
ξ
Ω−(p, ξ). (2.28)

Also observe that from (2.24) and (2.26) by Sokhotzki-Plemelj formulae,

K
(
p
)(
Θ+(p, ξ) −Θ−(p, ξ)) = Ψ

(
p, ξ

)
= Ω+(p, ξ) −Ω−(p, ξ). (2.29)

Substituting (2.23) and (2.28) into this equation we obtain for Re p = 0

Ω+(p, ξ) = W
(
p, ξ

)
Ω−(p, ξ) + g

(
p, ξ

)
, (2.30)

where

W
(
p, ξ

)
=

K
(
p
)
+ ξ

ξ
, g

(
p, ξ

)
= −K(

p
)
Λ+(p, ξ). (2.31)

Equation (2.30) is the boundary condition for a nonhomogeneous Riemann-Hilbert problem.
It is required to find two functions for some fixed point ξ, Re ξ > 0: Ω+(z, ξ), analytic in
the left-half complex plane Re z < 0 and Ω−(z, ξ), analytic in the right-half complex plane
Re z > 0, which satisfy on the contour Re p = 0 the relation (2.30).

Note that bearing in mind formula (2.27) we can find the unknown function Φ̂(p, ξ),
which involved in the formula (2.21), by the relation

Φ̂
(
p, ξ

)
=

K
(
p
)
+ ξ

K
(
p
) (

Ω+(p, ξ) −Ω−(p, ξ)). (2.32)

The method for solving the Riemann problem F+(p) = φ(p)F−(p) + ϕ(p) is based on
the following results. The proofs may be found in [17].

Lemma 2.4. An arbitrary function ϕ(p) given on the contour Re p = 0, satisfying the Hölder
condition, can be uniquely represented in the form

ϕ
(
p
)
= U+(p) −U−(p), (2.33)

where U±(p) are the boundary values of the analytic functions U±(z) and the condition U±(∞) = 0
holds. These functions are determined by

U(z) =
1

2πi

∫ i∞

−i∞

1
q − z

ϕ
(
q
)
dq. (2.34)
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Lemma 2.5. An arbitrary function φ(p) given on the contour Re p = 0, satisfying the Hölder
condition, and having zero index,

indφ
(
p
)
:=

1
2πi

∫ i∞

−i∞
d lnφ

(
p
)
= 0, (2.35)

is uniquely representable as the ratio of the functions X+(p) and X−(p), constituting the boundary
values of functions, X+(z) and X−(z), analytic in the left and right complex semiplane and having
in these domains no zero. These functions are determined to within an arbitrary constant factor and
given by

X±(z) = eΓ
±(z), Γ(z) =

1
2πi

∫ i∞

−i∞

1
q − z

lnφ
(
q
)
dq. (2.36)

In the formulations of Lemmas 2.4 and 2.5 the coefficient φ(p) and the free term ϕ(p)
of the Riemann problem are required to satisfy the Hölder condition on the contour Re p =
0. This restriction is essential. On the other hand, it is easy to observe that both functions
W(p, ξ) and g(p, ξ) do not have limiting value as p → ±i∞. So we cannot find the solution
using lnW(p, ξ). The principal task now is to get an expression equivalent to the boundary
value problem (2.30), such that the conditions of lemmas are satisfied. First, we introduce the
function

φ
(
p, ξ

)
=

(
K
(
p
)
+ ξ

K1
(
p
)
+ ξ

)
w−(p)
w+

(
p
) , w±(p) =

pα/2(
p ∓ z0

)α/2 , (2.37)

whereK(p) = |p|α,K1(p) = pα, and z0 > 0. We make a cut in the plane z from point z0 to point
−∞ through 0. Owing to the manner of performing the cut the functionsw−(z) andK1(z) are
analytic for Re z > 0 and the function w+(z) is analytic for Re z < 0.

We observe that the function φ(p, ξ), given on the contour Re p = 0, satisfies the Hölder
condition and K1(p) + ξ does not vanish for any Re ξ > 0. Also we have

indφ
(
p, ξ

)
=

1
2πi

∫ i∞

−i∞
d ln φ

(
p, ξ

)
= 0. (2.38)

Therefore in accordance with Lemma 2.5 the function φ(p, ξ) can be represented in the form
of the ratio

φ
(
p, ξ

)
=

X+(p, ξ)
X−(p, ξ) , X±(p, ξ) = lim

z→ p
±Re z<0

eΓ(z,ξ), (2.39)

where

Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
{
φ
(
q, ξ

)}
dq. (2.40)
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From (2.37) and (2.39) we get

Y+(p, ξ)
Y−(p, ξ) =

K
(
p
)
+ ξ

K1
(
p
)
+ ξ

, (2.41)

where Y± = eΓ
±
w±. We note that (2.41) is equivalent to

K
(
p
)
+ ξ

ξ
=

Y+(p, ξ)
Y−(p, ξ)

(
K1

(
p
)
+ ξ

ξ

)
. (2.42)

Now, we return to the nonhomogeneous Riemann-Hilbert problem defined by the boundary
condition (2.30). We substitute the above equation in (2.30) and add −(ξ/Y+)Λ+ in both sides
to get

Ω+ − ξΛ+

Y+ =

(
K1

(
p
)
+ ξ

ξ

)
Ω−

Y− −
(

K
(
p
)
+ ξ

Y+

)
Λ+. (2.43)

On the other hand, by Sokhotzki-Plemelj formulae and (2.25), Λ+ −Λ− = (1/(K(p) + ξ))û0(p).
Now, we substitute Λ+ from this equation in formula (2.43); then by (2.41) we arrive to

Ω+ − ξΛ+

Y+ =

(
K1

(
p
)
+ ξ

ξ

)(
Ω− − ξΛ−

Y−

)
− 1
Y+ û0

(
p
)
. (2.44)

In subsequent consideration we shall have to use the following property of the limiting
values of a Cauchy type integral, the statement of which we now quote. The proofs may be
found in [17].

Lemma 2.6. If L is a smooth closed contour and φ(q) a function that satisfies the Hölder condition
on L, then the limiting values of the Cauchy type integral

Φ(z) =
1

2πi

∫
L

1
q − z

φ
(
q
)
dq (2.45)

also satisfy this condition.

Since û0(p) satisfies on Re p = 0 the Hölder condition, on basis of Lemma 2.6 the
function (1/Y+)û0(p) also satisfies this condition. Therefore, in accordance with Lemma 2.4
it can be uniquely represented in the form of the difference of the functions U+(p, ξ) and
U−(p, ξ), constituting the boundary values of the analytic function U(z, ξ), given by

U(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

1
Y+

(
q, ξ

) û0
(
q
)
dq. (2.46)
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Therefore, (2.44) takes the form

Ω+ − ξΛ+

Y+ +U+ =

(
K1

(
p
)
+ ξ

ξ

)(
Ω− − ξΛ−

Y−

)
+U−. (2.47)

The last relation indicates that the function (Ω+ − ξΛ+)/Y+ +U+, analytic in Re z < 0, and the
function ((K1(p) + ξ)/ξ)((Ω− − ξΛ−)/Y−) + U−, analytic in Re z > 0, constitute the analytic
continuation of each other through the contour Re z = 0. Consequently, they are branches of
a unique analytic function in the entire plane. According to Liouville theorem this function
is some arbitrary constant A. Thus, we obtain the solution of the Riemann-Hilbert problem
defined by the boundary condition (2.30):

Ω+(p, ξ) = Y+(p, ξ)(A −U+(p, ξ)) + ξΛ+(p, ξ),
Ω−(p, ξ) =

ξ

K1
(
p
)
+ ξ

Y−(p, ξ)(A −U−(p, ξ)) + ξΛ−(p, ξ). (2.48)

Since Ω is defined by a Cauchy type integral, with density Ψ, we have Ω±(z, ξ) →
±(1/2)Ψ(∞, ξ) = 0, as z → ∞ for ∓Re z > 0. Using this property in (2.48) we get A = 0
and the limiting values for Ω are given by

Ω+(p, ξ) = −Y+(p, ξ)U+(p, ξ) + ξΛ+(p, ξ),
Ω−(p, ξ) = − ξ

K1
(
p
)
+ ξ

Y−(p, ξ)U−(p, ξ) + ξΛ−(p, ξ). (2.49)

Now, we proceed to find the unknown function Φ̂(p, ξ) involved in the formula (2.21) for
the solution ̂̂u(p, ξ) of the problem (2.6). First, we represent Ω−(p, ξ) as the limiting value
of analytic functions on the left-hand side complex semiplane. From (2.41) and Sokhotzki-
Plemelj formulae we obtain

Ω−(p, ξ) = − ξ

K
(
p
)
+ ξ

Y+(p, ξ)U+(p, ξ) + ξΛ+(p, ξ). (2.50)

Now, making use of (2.49) and the above equation, we get

Ω+(p, ξ) −Ω−(p, ξ) = − K
(
p
)

K
(
p
)
+ ξ

Y+(p, ξ)U+(p, ξ). (2.51)

Thus, by formula (2.32),

Φ̂
(
p, ξ

)
= −Y+(p, ξ)U+(p, ξ). (2.52)
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We observe that Φ̂(p, ξ) is boundary value of a function analytic in the left-hand side
complex semi-plane and therefore satisfies our basic assumption (2.19). Having determined
the function Φ̂, bearing in mind formula (2.21) we determine the required function ̂̂u:

̂̂u(p, ξ) =
1

K
(
p
)
+ ξ

(
û0
(
p
) − Y+(p, ξ)U+(p, ξ)). (2.53)

Now we prove that, in accordance with last relation, the function ̂̂u(p, ξ) constitutes the
limiting value of an analytic function in Re z > 0. In fact, making use of Sokhotzki-Plemelj
formulae and using (2.41), we obtain

̂̂u(p, ξ) = − 1
K1

(
p
)
+ ξ

Y−(p, ξ)U−(p, ξ). (2.54)

Thus, the function ̂̂u(p, ξ) is the limiting value of an analytic function in Re z > 0. We note
the fundamental importance of the proven fact, the solution ̂̂u(p, ξ) constitutes an analytic
function in Re z > 0, and, as a consequence, its inverse Laplace transform vanishes for all x <
0. We now return to solution u(x, t) of the problem (2.6). Taking inverse Laplace transform
with respect to time and space variables, we obtain u(x, t) = G(t)u0 =

∫∞
0 G(x, y, t)u0(y)dy,

where the function G(x, y, t) is defined by formula (2.8). Thus, Proposition 2.3 has been
proved.

Now we collect some preliminary estimates of the Green operator G(t).

Lemma 2.7. The following estimates are true, provided that the right-hand sides are finite:

∥∥∥G(t)φ − t−1/αΛ
(
(·)t−1/α

)
f
(
φ
)∥∥∥

L∞
≤ Ct−(1/α)(1+μ)

∥∥φ∥∥L1,μ ,

∥∥G(t)φ∥∥L∞ ≤ C{t}−γ/α〈t〉−1/α(∥∥φ∥∥L1 +
∥∥φ∥∥L∞

)
,

∥∥G(t)φ∥∥L2 ≤ C
(∥∥φ∥∥L1 +

∥∥φ∥∥L∞
)
,

∥∥G(t)φ∥∥Ls,μ ≤ Ct−1/α(1/r−1/s−μ)
∥∥φ∥∥Lr + Ct−(1/α)(1/r−1/s)

∥∥φ∥∥Lr,μ ,

(2.55)

where 0 < γ < α, |1/r − 1/s − μ| < α, 0 ≤ μ < 2α − 1, 1 ≤ r < s ≤ ∞, and f(φ) and Λ(s) are given
by (1.13) and (1.11), respectively.

Proof. First, we estimate the function

Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
{
φ
(
q, ξ

)}
dq, φ

(
q, ξ

)
=

K
(
q
)
+ ξ

K1
(
q
)
+ ξ

(
q − z0
q + z0

)α/2

. (2.56)

We note that arg{φ(q, ξ)} → −(π/2)α, as q → ±i∞, and write Γ in the form

Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

(
ln
{
ei(π/2)αφ

(
q, ξ

)}
+ ln

{
e−i(π/2)α

})
dq. (2.57)
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For first integral in (2.57), we obtain the estimate

∣∣∣∣∣
1

2πi

∫ i∞

−i∞

1
q − z

ln
{
ei(π/2)αφ

(
q, ξ

)}
dq

∣∣∣∣∣ ≤ C

(
|ξ|
|z|α +

z1−ε0

|z|1−ε
)
, (2.58)

where 0 < ε < 1, and for second integral we have

1
2πi

∫ i∞

−i∞

1
q − z

ln
{
e−i(π/2)α

}
dq = i

π

4
α sgn(Re z). (2.59)

Therefore, substituting (2.58) and (2.59) in (2.57), we get for Γ

∣∣∣Γ(z, ξ) − i
π

4
α sgn(Re z)

∣∣∣ ≤ C

(
|ξ|
|z|α +

z1−ε0

|z|1−ε
)
. (2.60)

Now, we estimate function Z defined by

Z
(
z, ξ, y

)
=

1
2πi

∫ i∞

−i∞

1
q − z

1
Y+

(
q, ξ

)e−qydq. (2.61)

Using (2.60), we get for Y± = eΓ
±
w± the estimate

∣∣∣Y (z, ξ)±1 − e±i(π/4)α sgn(Re z)
∣∣∣ ≤ C

(
|ξ|
|z|α +

z1−ε0

|z|1−ε
)
, (2.62)

where Re z/= 0. Then, by (2.62) and Cauchy Theorem,

1
2πi

∫ i∞

−i∞

1
q − z

(
1

Y+
(
q, ξ

) − ei(π/4)α
)
dq = 0, Re z > 0,

1
2πi

∫ i∞
−i∞

1
q − z

e−qydq = −e−zy, Re z > 0.

(2.63)

Equations (2.63) imply that we can write Z in the form

Z
(
z, ξ, y

)
= ei(π/4)αe−zy + Z0

(
z, ξ, y

)
, Re z > 0, (2.64)

where

Z0
(
z, ξ, y

)
=

1
2πi

∫ i∞

−i∞

1
q − z

(
1

Y+
(
q, ξ

) − ei(π/4)α
)(

e−qy − e−zy
)
dq. (2.65)



14 Boundary Value Problems

Thus, for Re p = 0,

Z−(p, ξ, y) = ei(π/4)αe−py + Z−
0

(
p, ξ, y

)
, (2.66)

where Z−
0 satisfies

∣∣Z−
0

(
p, ξ, y

)∣∣ ≤ Cyμ

(
|ξ|∣∣p∣∣α−μ +

z1−ε0∣∣p∣∣1−ε−μ
)
, 0 ≤ μ < α. (2.67)

In fact, we use (2.62) and inequality |e−qy − e−py| ≤ C|q − p|μyμ, where Re q = Re p = 0 and
0 ≤ μ ≤ 1, to obtain

∣∣Z−
0

(
p, ξ, y

)∣∣ ≤ Cyμ

∫ i∞

−i∞

1∣∣q − p
∣∣1−μ

(
|ξ|∣∣q∣∣α +

z1−ε0∣∣q∣∣1−ε
)∣∣dq∣∣. (2.68)

Making the change of variable q = pz, (2.67) follows. Now, substituting (2.66) in (2.8), for
Green function G, we obtain

G
(
x, y, t

)
= − 1

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ)
K
(
p
)
+ ξ

ei(π/4)αe−pydp + R0, (2.69)

where

R0
(
x, y, t

)
= − 1

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ)
K
(
p
)
+ ξ

Z−
0

(
p, ξ, y

)
dp. (2.70)

The function R0 defined in (2.70) satisfies the estimate

∣∣R0
(
x, y, t

)∣∣ ≤ Ct−(1/α)(μ+1)yμ, 0 ≤ μ < 2α − 1. (2.71)

In fact, using (2.67) we get

|R0| ≤ Cyμ

∫
C1

|dξ|e−λ|ξ|t
∫ i∞

−i∞

1∣∣K(
p
)
+ ξ

∣∣
(

|ξ|∣∣p∣∣α−μ +
z1−ε0∣∣p∣∣1−ε−μ

)∣∣dp∣∣. (2.72)

Here,

C1 =
{
ξ ∈

(
∞e−i(π/2+ε1), 0

)⋃(
∞ei(π/2+ε1), 0

)}
, ε1 > 0. (2.73)
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We have used inequality |eξt| ≤ e−λ|ξ|t, where ξ ∈ C1 and λ > 0 is some positive constant.
Taking z0 = t−1/α and making the change of variables: p = qt−1/α and ξ = q1t

−1, we obtain
(2.71). Now, let us split (2.69):

G
(
x, y, t

)
= − 1

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

1
K
(
p
)
+ ξ

dp

− ei(π/4)α

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ) − e−i(π/4)α

K
(
p
)
+ ξ

dp

− ei(π/4)α

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ) − e−i(π/4)α

K
(
p
)
+ ξ

(
e−py − 1

)
dp

− 1

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

1
K
(
p
)
+ ξ

(
e−py − 1

)
dp + R0

(
x, y, t

)
.

(2.74)

By Fubini’s theorem and Cauchy’s theorem, from the first and fourth summands we obtain

G
(
x, y, t

)
=

1
2πi

∫ i∞

−i∞
epx−K(p)tdp

− ei(π/4)α

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ) − e−i(π/4)α

K
(
p
)
+ ξ

dp

− ei(π/4)α

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ) − e−i(π/4)α

K
(
p
)
+ ξ

(
e−py − 1

)
dp

+
1

2πi

∫ i∞

−i∞
epx−K(p)t(e−py − 1

)
dp + R0

(
x, y, t

)
.

(2.75)

Then,

G
(
x, y, t

)
= G0(x, t) + R0

(
x, y, t

)
+ R1

(
x, y, t

)
+ R2

(
x, y, t

)
, (2.76)

where

G0 =
1

2πi

∫ i∞

−i∞
epx−K(p)tdp − ei(π/4)α

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ) − e−i(π/4)α

K
(
p
)
+ ξ

dp, (2.77)

R0 = − 1

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ)
K
(
p
)
+ ξ

Z−
0

(
p, ξ, y

)
dp,

R1 = −e
i(π/4)α

(2πi)2

∫ i∞

−i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ) − e−i(π/4)α

K
(
p
)
+ ξ

(
e−py − 1

)
dp,

R2 =
1

2πi

∫ i∞

−i∞
epx−K(p)t(e−py − 1

)
dp.

(2.78)
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Now, we show that function R1 defined by (2.78) satisfies

∣∣R1
(
x, y, t

)∣∣ ≤ Ct−(1/α)(μ+1)yμ, 0 ≤ μ < 2α − 1. (2.79)

In fact, using (2.62) and the inequality |e−py − 1| ≤ C|p|μyμ, where Re p = 0 and 0 ≤ μ ≤ 1, we
get

|R1| ≤ Cyμ

∫
C1

|dξ|e−λ|ξ|t
∫ i∞

−i∞

∣∣dp∣∣∣∣K(
p
)
+ ξ

∣∣
(

|ξ|∣∣p∣∣α−μ +
|z0|1−ε∣∣p∣∣1−ε−μ

)∣∣dp∣∣. (2.80)

Then, taking z0 = t−1/α, ε < 1 − α and making the change of variable p = qt−1/α and ξ = q1t
−1,

we obtain (2.79). In the same way, we show that function R2 defined in (2.78) satisfies the
inequality:

∣∣R2
(
x, y, t

)∣∣ ≤ Ct−(1/α)(μ+1)yμ, 0 ≤ μ < 2α − 1. (2.81)

In fact, using the inequality |e−py − 1| ≤ C|p|μyμ, where Re p = 0 and 0 ≤ μ ≤ 1, we get

∣∣R2
(
x, y, t

)∣∣ ≤ C

∫ i∞

−i∞
e−K(p)t∣∣e−py − 1

∣∣∣∣dp∣∣ ≤ Cyμ

∫ i∞

−i∞
e−K(p)t∣∣p∣∣μ∣∣dp∣∣. (2.82)

Making the change of variable p = qt−1/α, we arrive to

∣∣R2
(
x, y, t

)∣∣ ≤ Ct−(1/α)(μ+1)yμ

∫ i∞

−i∞
e−K(q)∣∣q∣∣μ∣∣dq∣∣. (2.83)

Thus, (2.81) follows. Finally, we show that

G0(x, t) = t−1/αΛ
(
xt−1/α

)
, (2.84)

where Λ is given by (1.11). Making the change of variable p = t−1/αq0, ξ = t−1q1, and choosing
z0 = t−1/α, we get

Y+(p, ξ) = eΓ
+
0 (q0,q1)

(
q0

q0 − 1

)α/2

, (2.85)

where

Γ+0
(
q0, q1

)
=

1
2πi

∫ i∞

−i∞

1
q − q0

ln

{(
K
(
q
)
+ q1

K1
(
q
)
+ q1

)(
q − 1
q + 1

)α/2
}
dq. (2.86)
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Now, making the change of variable p = t−1/αq0 and ξ = t−1q1 in equation for G0 we obtain

G0 = t−1/α
1

2πi

∫ i∞

−i∞
eq0xt

−(1/α)−K(q0)dq0

− t−1/α
ei(π/4)α

(2πi)2

∫ i∞

−i∞
dq1e

q1

∫ i∞

−i∞
eq0xt

−1/α eΓ
+
0 (q0,q1)

(
q0/q0 − 1

)α/2 − e−i(π/4)α

K
(
q0
)
+ q1

dq0.

(2.87)

Therefore, (2.84) follows. Finally, using estimates (2.71), (2.79), (2.81), and (2.84), we get the
asymptotic for the Green function G:

∣∣∣G(
x, y, t

) − t−1/αΛ
(
xt−1/α

)∣∣∣ ≤ Ct−(1/α)(μ+1)yμ, (2.88)

where Λ is given by (1.11) and 0 ≤ μ < 2α − 1. By last inequality

∣∣∣∣
∫+∞

0

(
G
(
x, y, t

) − t−1/αΛ
(
xt−1/α

))
φ
(
y
)
dy

∣∣∣∣ ≤ Ct−(1/α)(μ+1)
∥∥φ∥∥L1,μ . (2.89)

Therefore,

∥∥∥G(t)φ − t−1/αΛ
(
(·)t−1/α

)
f(φ)

∥∥∥
L∞

≤ Ct−(1/α)(μ+1)
∥∥φ∥∥L1,μ , (2.90)

where f and Λ are given by (1.13) and (1.11), respectively, and 0 ≤ μ < 2α − 1. Thus, the first
estimate in Lemma 2.7 has been proved.

Now, we are going to prove the second estimate in Lemma 2.7. First, for large t, using
Sokhotzki-Plemelj formulae, we have for function Z, defined in (2.61),

Z+(p, ξ, y) − Z−(p, ξ, y) =
1

Y+
(
p, ξ

)e−py. (2.91)

Substituting last equation in (2.8), we get

G
(
x, y, t

)
= J1

(
x − y, t

)
+ J2

(
x, y, t

)
, (2.92)

where

J1
(
x − y, t

)
=

1
2πi

∫ i∞

−i∞
ep(x−y)−K(p)tdp,

J2
(
x, y, t

)
= − 1

(2πi)2

∫ i∞

i∞
dξeξt

∫ i∞

−i∞
epx

Y+(p, ξ)
K
(
p
)
+ ξ

Z+(p, ξ, y)dp.
(2.93)

Making the change of variable p = zt−1/α we get for J1

∣∣J1(x − y, t
)∣∣ ≤ Ct−1/α. (2.94)
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To estimate J2, we consider an extension to the function K(p):

K
(
p
)
=

⎧⎨
⎩
(−ip)α, Im p > 0,
(
ip
)α
, Im p ≤ 0,

(2.95)

and we use the contours

C1 =
{
ξ ∈ (∞e−i(π/2+ε1), 0

)⋃(
0,∞ei(π/2+ε1)

)}
, ε1 > 0,

C2 =
{
p ∈ (∞e−i(π/2+ε2), 0

)⋃(
0,∞ei(π/2+ε2)

)}
, ε2 > 0,

(2.96)

to obtain for J2

J2
(
x, y, t

)
= − 1

(2πi)2

∫
C1

dξeξt
∫
C2

epx
Y+(p, ξ)
K
(
p
)
+ ξ

Z+(p, ξ, y)dp. (2.97)

Let us write the function Z, defined in (2.61), in the form

Z =
1

2πi

∫ i∞

−i∞

1
q − z

(
1

Y+
(
q, ξ

) − ei(π/4)α
)
e−qydq +

ei(π/4)α

2πi

∫ i∞

−i∞

1
q − z

e−qydq, (2.98)

where Re z/= 0. Then, by Cauchy Theorem, for z < 0 the second summand in last equation is
zero. Thus, using (2.62) we obtain for Re p = 0

∣∣Z+(p, ξ, y)∣∣ ≤ C

(
|ξ|∣∣p∣∣α +

z1−ε0∣∣p∣∣1−ε
)
. (2.99)

From the last inequality and (2.97) we get

|J2| ≤ C

∫
C1

|dξ|e−C|ξ|t
∫
C2

1∣∣K(
p
)
+ ξ

∣∣
(

|ξ|∣∣p∣∣α +
z1−ε0∣∣p∣∣1−ε

)∣∣dp∣∣. (2.100)

Taking z0 = t−1/α and making the change of variables p = zt−1/α and ξ = ξ1t
−1, in the last

inequality, we obtain

∣∣J2(x, y, t)∣∣ ≤ Ct−1/α. (2.101)

From (2.92) and the estimates (2.94) and (2.101) we get the estimate |G(x, y, t)| ≤ Ct−1/α.
Thus,

∥∥G(t)φ∥∥L∞ = sup
x∈R+

∣∣∣∣
∫+∞

0
G
(
x, y, t

)
φ
(
y
)
dy

∣∣∣∣ ≤ t−1/α
∥∥φ∥∥L1 . (2.102)
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Now, for small t, we are going to prove the estimate

∥∥G(t)φ∥∥L∞ ≤ Ct−(1/α)(1−γ)
(∥∥φ∥∥L1 +

∥∥φ∥∥L∞
)
, (2.103)

where 1 − α < γ < 1. First, we rewrite the Green function G in the form

G
(
x, y, t

)
= J1

(
x − y, t

)
+ J2

(
x, y, t

)
, (2.104)

where

J1(r, t) =
1

2πi

∫
C±

epr−K(p)tdp, ±r > 0,

J2 = − 1

(2πi)3

∫
C1

dξeξt
∫
C2

dpepx
Y+(p, ξ)
K
(
p
)
+ ξ

∫
C3

1
q − p

1
Y−(q, ξ)

(
K1

(
q
)
+ ξ

K
(
q
)
+ ξ

)
e−qydq.

(2.105)

The contours C1 and C2 are defined in (2.96) and

C± =
{
p ∈ (∞e−i(π/2±ε), 0

)⋃(
0,∞ei(π/2±ε)

)}
, ε > 0,

C3 =
{
q ∈ (∞e−i(π/2−ε3), 0

)⋃(
0,∞ei(π/2−ε3)

)}
, ε3 > 0.

(2.106)

Moreover, we have extended the function K(p) as in (2.95). Making the change of variable
p = zt−1/α and using the inequality |ez| ≤ |z|−γ , γ > 0, we obtain the estimate |J1(r, t)| ≤
Ct−(1/α)(1−γ)|r|−γ or

∣∣J1(x − y, t
)∣∣ ≤ Ct−(1/α)(1−γ)

∣∣x − y
∣∣−γ , (2.107)

for x, y > 0. Now, we estimate J2. Using |e−qy| ≤ |q|−γy−γ , for Re q > 0, y > 0, and γ > 0, we get

∣∣J2(x, y, t)∣∣ ≤ Cy−γ
∫
C1

|dξ|e−C|ξ|t
∫
C2

∣∣dp∣∣∣∣K(
p
)
+ ξ

∣∣
∫
C3

1∣∣q − p
∣∣
∣∣dq∣∣∣∣q∣∣γ . (2.108)

Making the change o variables p = zt−1/α q = z1t
−1/α and ξ = ξ1t

−1, into the last inequality, we
obtain

∣∣J2(x, y, t)∣∣ ≤ Ct−(1/α)(1−γ)y−γ , 1 − α < γ < 1. (2.109)

By (2.104) and the estimates (2.107) and (2.109) we get

∣∣G(
x, y, t

)∣∣ ≤ Ct−(1/α)(1−γ)
(∣∣x − y

∣∣−γ + y−γ
)
, 1 − α < γ < 1. (2.110)
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Thus,

∥∥G(t)φ∥∥L∞ ≤ sup
x∈R+

∫+∞

0

∣∣G(
x, y, t

)∣∣∣∣φ(y)∣∣dy

≤ Ct−(1/α)(1−γ)
∫+∞

0

(∣∣x − y
∣∣−γ + y−γ

)∣∣φ(y)∣∣dy
≤ Ct−(1/α)(1−γ)

(∥∥φ∥∥L1 +
∥∥φ∥∥L∞

)
.

(2.111)

Thus, we get (2.103) and the second estimate in Lemma 2.7 has been proved.
Let us introduce the operators

J1(t)φ = θ(x)
∫+∞

0
J1
(
x − y, t

)
φ
(
y
)
dy, (2.112)

J2(t)φ = θ(x)
∫+∞

0
J2
(
x, y, t

)
φ
(
y
)
dy, (2.113)

where J1 and J2 are defined in (2.104). Then, the operator G(t) can be written in the form

G(t) = J1(t) + J2(t). (2.114)

Now, we are going to prove the third estimate in Lemma 2.7,

∥∥G(t)φ∥∥L2 ≤ C
(∥∥φ∥∥L1 +

∥∥φ∥∥L∞
)
. (2.115)

First, we estimate the operator J1. Making the change of variable p = qt−1/α, we get for the
function J1

|J(r, t)| ≤ Ct−1/α. (2.116)

Now, we make the change of variable z = t−1/αr:

J1(r, t) =
t−1/α

2πi

∫ i∞

−i∞
eqz−K(q)dq. (2.117)

Integrating by parts the last equation we obtain

J1(r, t) =
t−1/α

2πi

(
1
z

)∫ i∞

−i∞
e−K(q)deqz =

t−1/α

2πi

(α
z

)∫ i∞

−i∞

K
(
q
)

q
eqz−K(q)dq. (2.118)

Then,

|J1(r, t)| ≤ Ct−1/α
1

|z|1+γ
∫
C±

∣∣q∣∣α−1−γe−C|q|α∣∣dq∣∣, (2.119)
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for ±r > 0, where C± are defined as above. Thus, for γ < α,

|J1(r, t)| ≤ Ct−1/α
1

|z|1+γ
. (2.120)

Therefore, from the inequalities (2.116) and (2.120) we have

|J1(r, t)| ≤ C
t−1/α

1 +
(
t−1/α|r|)1+γ , γ < α. (2.121)

We remember some well-known inequalities.

(i) Young’s Inequality. Let f ∈ Lp(R) and g ∈ Lq(R), where 1 ≤ p, q ≤ ∞, 1/p + 1/q ≥ 1.
Then, the convolution h(x) ≡ ∫

R
f(x − y)g(y)dy belongs to Lr(R), where 1/r =

1/p + 1/q − 1 and Young’s inequality

‖h‖Lr≤
∥∥f∥∥Lp

∥∥g∥∥Lq (2.122)

holds.

(ii) Minkowski’s Inequality. Let f, g ∈ Lp and 1 ≤ p ≤ ∞; then

∥∥f + g
∥∥
Lp ≤

∥∥f∥∥Lp +
∥∥g∥∥Lp . (2.123)

(iii) Interpolation Inequality. Let f ∈ Lp(R) ∩ Lq(R) with 1 ≤ p ≤ q ≤ ∞; then f ∈ Lr(R)
for any p ≤ r ≤ q, and the interpolation inequality holds:

∥∥f∥∥Lr ≤
∥∥f∥∥α

Lp

∥∥f∥∥1−α
Lp , (2.124)

where 1/r = α/p + (1 − α)/q and 0 ≤ α ≤ 1.

(iv) Arithmetic-Geometric Mean Inequality. If a and b are nonnegative, then

√
ab ≤ a + b

2
. (2.125)

Then, by (2.121) and Young’s inequality (2.122), we obtain

∥∥J1(t)φ
∥∥
L2 ≤ ‖J1(·, t)‖L1

∥∥φ∥∥L2 ≤ C
∥∥φ∥∥L2 , (2.126)

since

‖J1(·, t)‖L1 ≤ C

∫+∞

−∞

t−1/α

1 +
(
t−1/α|r|)1+γ dr = C

∫+∞

−∞

1

1 + |r|1+γ
dr ≤ C. (2.127)
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Finally, using the Interpolation Inequality (2.124) and the arithmetic-geometric mean
inequality (2.125), we obtain

∥∥φ∥∥L2 ≤
∥∥φ∥∥1/2

L1

∥∥φ∥∥1/2
L∞ ≤ 1

2
(∥∥φ∥∥L1 +

∥∥φ∥∥L∞
)
. (2.128)

Therefore,

∥∥J1(t)φ
∥∥
L2 ≤ C

(∥∥φ∥∥L1 +
∥∥φ∥∥L∞

)
. (2.129)

Now, we estimate the operator J2. First, by Cauchy Theorem we get for Re z < 0

Z
(
z, ξ, y

)
=

1
2πi

∫ i∞

−i∞

e−qy

q − z

(
1

Y+
(
q, ξ

) − 1
Y−(q, ξ)

)
dq. (2.130)

By (2.41) we get

1
Y+ − 1

Y− =
1
Y−

(
K1

(
p
)
+ ξ

K
(
p
)
+ ξ

− 1

)
=

1
Y−

(
K1

(
p
) −K

(
p
)

K
(
p
)
+ ξ

)
. (2.131)

Then, using (2.131) and the inequalities e−C|q|y ≤ Cy−γ |q|−γ , where Re q > 0 and γ > 0, and

1∣∣K(
q
)
+ ξ

∣∣ ≤ C
1∣∣q∣∣α(1−γ1)|ξ|γ1 , 0 < γ1 < 1, (2.132)

we obtain

∣∣Z(
z, ξ, y

)∣∣ ≤ C
y−γ

|ξ|γ1
∫
C3

1∣∣q − z
∣∣

1∣∣q∣∣γ−αγ1
∣∣dq∣∣ ≤ C

y−γ

|ξ|γ1 |z|γ−αγ1 . (2.133)

Then, using the inequalities (2.132) and ‖e−C|p|x‖L2 ≤ C|p|−1/2, we obtain for J2

∥∥J2(·, y, t)∥∥L2 ≤ Cy−γ
∫ i∞

−i∞

|dξ|
|ξ|2γ1

∫
C2

∣∣dp∣∣∣∣p∣∣1/2+γ+α(1−2γ1) ≤ Cy−γ . (2.134)

Therefore,

∥∥J2(t)φ
∥∥
L2 ≤

∫+∞

0

∥∥J2(·, y, t)∥∥L2

∣∣φ(y)∣∣dy ≤ C
(∥∥φ∥∥L1 +

∥∥φ∥∥L∞
)
. (2.135)

Thus, the last estimate and (2.129) imply the third estimate in Lemma 2.7.
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Now, we are going to prove the fourth estimate in Lemma 2.7. We use (2.114). First,
we estimate the operator J1, defined in (2.112). Using the inequality xμ ≤ |x − y|μ +yμ, where
0 ≤ μ ≤ 1, and Minkowski’s inequality (2.123), we obtain

∥∥J1(t)φ
∥∥
Ls,μ ≤

(∫+∞

0

(∫+∞

0

∣∣x − y
∣∣μ∣∣J1(x − y, t)

∣∣∣∣φ(y)∣∣dy
)s

dx

)1/s

+

(∫+∞

0

(∫+∞

0
yμ

∣∣J1(x − y, t)
∣∣∣∣φ(y)∣∣dy

)s

dx

)1/s

.

(2.136)

Then, Young’s inequality (2.122) implies

∥∥J1(t)φ
∥∥
Ls,μ ≤ ‖J1(·, t)‖Lp,μ

∥∥φ∥∥Lr + ‖J1(·, t)‖Lp

∥∥φ∥∥Lr,μ , (2.137)

where 1/s = 1/p + 1/r − 1, 1 ≤ p, r ≤ ∞, 1 ≤ 1/p + 1/r ≤ 2, and 0 ≤ μ ≤ 1. Then, by the
inequality (2.121) and the change of variables x = t−1/α|r|, we get

‖J1(·, t)‖Lp,μ ≤ Ct−(1/α)(1−1/p−μ)
(∫+∞

−∞

(
|x|μ

(1 + |x|)1+γ
)p

dx

)1/p

. (2.138)

Thus, ‖J1(·, t)‖Lp,μ ≤ Ct−(1/α)(1−1/p−μ), provided 1 + γ − μ > 1/p. Using 1/s = 1/p + 1/r − 1, it
follows that

‖J1(·, t)‖Lp,μ ≤ Ct−(1/α)(1/r−1/s−μ), (2.139)

where 1/r−1/s−μ+γ > 0. We note that −(1/α)((1/r)−(1/s)−μ) < 1, since γ < α. Substituting
(2.139) in (2.137), we get

∥∥J1(t)φ
∥∥
Ls,μ ≤ Ct−(1/α)(1/r−1/s−μ)

∥∥φ∥∥Lr + Ct−(1/α)(1/r−1/s)
∥∥φ∥∥Lr,μ , (2.140)

where −(1/α)((1/r)−(1/s)−μ) < 1, 1 ≤ s, r ≤ ∞, and 0 ≤ μ ≤ 1. Now,we estimate the operator
J2, defined in (2.113). First, we use that function J2 satisfies the following inequality:

∣∣J2(x, y, t)∣∣ ≤ C

∫
C1

|dξ|e−C|ξ|t
∫
C2

∣∣dp∣∣e−C|p|x 1∣∣K(
p
)
+ ξ

∣∣
∫
C3

1∣∣q − p
∣∣e−C|q|y

∣∣dq∣∣. (2.141)

Then, by the inequality |J2(t)φ| ≤
∫+∞
0 |J2(x, y, t)‖φ(y)|dy, we obtain

∣∣J2(t)φ
∣∣ ≤ C

∫
C1

|dξ|e−C|ξ|t
∫
C2

∣∣dp∣∣ e−C|p|x∣∣K(
p
)
+ ξ

∣∣
∫
C3

∣∣dq∣∣∣∣q − p
∣∣
∫+∞

0
e−C|q|y

∣∣φ(y)∣∣dy. (2.142)
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Substituting in the last inequality the estimate

∫+∞

0
e−C|q|y

∣∣φ(y)∣∣dy ≤
∥∥∥e−C|q|y

∥∥∥
Ll

∥∥φ∥∥Lr = C
∣∣q∣∣−1/l∥∥φ∥∥Lr , (2.143)

where 1/l + 1/r = 1, we obtain

∣∣J2(t)φ
∣∣ ≤ C

∥∥φ∥∥Lr

∫
C1

|dξ|e−C|ξ|t
∫
C2

e−C|p|x
1∣∣K(
p
)
+ ξ

∣∣
1∣∣p∣∣1/l

∣∣dp∣∣. (2.144)

Then, using ‖e−C|p|x‖Ls,μ = C|p|−1/s−μ and 1/l + 1/r = 1, we get

∥∥J2(t)φ
∥∥
Ls,μ ≤ C

∥∥φ∥∥Lr

∫
C1

|dξ|e−C|ξ|t
∫
C2

1∣∣K(
p
)
+ ξ

∣∣
1∣∣p∣∣1−1/r+1/s+μ

∣∣dp∣∣. (2.145)

Therefore,

∥∥J2(t)φ
∥∥
Ls,μ ≤ Ct−(1/α)(1/r−1/s−μ)

∥∥φ∥∥Lr , (2.146)

where 0 < 1/r − 1/s − μ < α, 1 ≤ r < s ≤ ∞, and 0 ≤ μ < 1. Finally, from estimates (2.140) and
(2.146) we obtain the fourth estimate in Lemma 2.7. Then, we have proved Lemma 2.7.

Theorem 2.8. Let the initial data be u0 ∈ Z, with μ ∈ (0, 1). Then, for some T > 0 there exists a
unique solution

u ∈ C
(
[0, T];L2(R+)

)⋂
C((0, T];Ls(R+) ∩ Ls,μ(R+) ∩ L∞(R+)), s > 1, (2.147)

to the initial boundary-value problem (1.1). Moreover, the existence time T can be chosen as follows:
T = C‖u0‖−σ/κZ , where κ ∈ (0, 1).

3. Proof of Theorem 1.1

By the Local Existence Theorem 2.8, it follows that the global solution (if it exist) is unique.
Indeed, on the contrary, we suppose that there exist two global solutions with the same initial
data. And these solutions are different at some time t > 0. By virtue of the continuity of
solutions with respect to time, we can find amaximal time segment [0, T], where the solutions
are equal, but for t > T they are different. Now, we apply the local existence theorem taking
the initial time T and obtain that these solutions coincide on some interval [T, T1], which
give us a contradiction with the fact that T is the maximal time of coincidence. So our main
purpose in the proof of Theorem 1.1 is to show the global in time existence of solutions.
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First, we note that Lemma 2.7 implies for the Green operator G : Z → X the inequality
‖G(t)u0‖X ≤ C‖u0‖Z. Now, we show the estimate

∥∥∥∥∥
∫ t

0
G(t − τ)(N(u(τ)) −N(v(τ)))dτ

∥∥∥∥∥
X

≤ C‖u − v‖X(‖u‖X + ‖v‖X)σ, (3.1)

for all u, v ∈ X, where N(u) = |u|σu, σ > 1. In fact, using the inequality

∣∣|u|σu − |v|σv∣∣ ≤ C|u − v|(|u|σ + |v|σ), (3.2)

we get

1‖N(u) −N(v)‖L1,μ ≤ C‖u − v‖L∞
(‖u‖σLσ,μ/σ + ‖v‖σLσ,μ/σ

)

≤ C{τ}−(γ/α)(σ+1)〈τ〉−(1/α)(γσ+1−μ)‖u − v‖X(‖u‖X + ‖v‖X)σ,
(3.3)

where 0 ≤ μ < 1, and

‖N(u) −N(v)‖L∞ ≤ C‖u − v‖L∞
(‖u‖σL∞ + ‖v‖σL∞

)

≤ C{τ}−(γ/α)(σ+1)〈τ〉−(1/α)(σ+1)‖u − v‖X(‖u‖X + ‖v‖X)σ
(3.4)

Then, the estimates (3.3), (3.4), and Lemma 2.7 imply

‖G(t − τ)(N(u(τ)) −N(v(τ)))‖L2

≤ C
(
{τ}−(γ/α)(σ+1)〈τ〉−(1/α)(γσ+1) + {τ}−(γ/α)(σ+1)〈τ〉−(1/α)(σ+1)

)
× ‖u − v‖X(‖u‖X + ‖v‖X)σ,

‖G(t − τ)(N(u(τ)) −N(v(τ)))‖Ls,μ

≤ C
(
(t − τ)−(1/α)(γ−μ){τ}−(γ/α)(σ+1)〈τ〉−(1/α)(γσ+1)

+ (t − τ)−γ/α{τ}−(γ/α)(σ+1)〈τ〉−(1/α)(γσ+1−μ)
)
‖u − v‖X(‖u‖X + ‖v‖X)σ,

(3.5)

where 0 ≤ μ < 1, and

‖G(t − τ)(N(u)(τ) −N(v)(τ))‖L∞

≤ C
(
{t−τ}−γ/α〈t−τ〉−1/α{τ}−γ/α(σ+1)〈τ〉−1/α(γσ+1)

+{t − τ}−γ/α〈t−τ〉−1/α{τ}−γ/α(σ+1)〈τ〉−1/α(σ+1)
)

× ‖u − v‖X(‖u‖X + ‖v‖X)σ.

(3.6)
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Now, we integrate with respect to τ , on the interval [0, t], the inequalities (3.5) and (3.6).
Then, we get for γ < α/(σ + 1),

∫ t

0
‖G(t − τ)(N(u)(τ) −N(v)(τ))‖L2

≤ C
(
{t}1−(γ/α)(σ+1)〈t〉1−1/α−(γ/α)(2σ+1) + {t}1−(γ/α)(σ+1)〈t〉1−(1/α)(σ+1)(γ+1)

)

× ‖u − v‖X(‖u‖X + ‖v‖X)σ ≤ C‖u − v‖X(‖u‖X + ‖v‖X)σ,

(3.7)

∫ t

0
‖G(t − τ)(N(u)(τ) −N(v)(τ))‖Ls,μ

≤ C{t}−γ/α〈t〉−(1/α)(γ−μ)
(
{t}1−(γ/α)(σ+1)〈t〉1−(1/α)(2γσ+1)

+ {t}1−(γ/α)(σ+1)+μ/α〈t〉1−(1/α)(2γσ+1)−μ/α
)
‖u − v‖X(‖u‖X + ‖v‖X)σ

≤ C{t}−γ/α〈t〉−(1/α)(γ−μ)‖u − v‖X(‖u‖X + ‖v‖X)σ,

(3.8)

where 0 ≤ μ < 1, and

∫ t

0
‖G(t − τ)(N(u)(τ) −N(v)(τ))‖L∞

≤ C{t}−γ/α〈t〉−1/α
(
{t}1−γ/α(σ+1)〈t〉1−1/α(γσ+1)+{t}1−γ/α(σ+1)〈t〉1−1/α(σ+1)

)

× ‖u−v‖X(‖u‖X+‖v‖X)σ

≤ C{t}−γ/α〈t〉−1/α‖u − v‖X(‖u‖X + ‖v‖X)σ.

(3.9)

Then, the definition of the norm on the space X and the estimates (3.7), (3.8), and (3.9) imply
(3.1). Now, we apply the Contraction Mapping Principle on a ball with ratio ρ > 0 in the
space X, Xρ = {φ ∈ X : ‖φ‖X ≤ ρ}, where ρ = 2C‖u0‖Z. Here, the constant C coincides with the
one that appears in estimate (3.1). First, we show that

‖M(u)‖X ≤ ρ, (3.10)

where u ∈ Xρ. Indeed, from the integral formula

M(u) = G(t)u0 −
∫ t

0
G(t − τ)N(u(τ))dτ (3.11)
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and the estimate (3.1) (with v ≡ 0), we obtain

‖M(u)‖X ≤ ‖G(t)u0‖X +

∥∥∥∥∥
∫ t

0
G(t − τ)N(u)(τ)dτ

∥∥∥∥∥
X

≤ C‖u0‖Z + C‖u‖σ+1X ≤ ρ

2
+ Cρσ+1 ≤ ρ,

(3.12)

since ρ > 0 is sufficient small. Therefore, the operator M transforms a ball of ratio ρ > 0 into
itself, in the space X. In the same way we estimate the difference of two functions u, v ∈ Xρ:

‖M(u) −M(v)‖X ≤
∥∥∥∥∥
∫ t

0
G(t − τ)(N(u)(τ) −N(v)(τ))dτ

∥∥∥∥∥
X

≤ C‖u − v‖X(‖u‖X + ‖v‖X)σ ≤ C
(
2ρ

)σ ≤ 1
2
‖u − v‖X,

(3.13)

since ρ > 0 is sufficient small. Thus,M is a contraction mapping in Xρ. Therefore, there exists
a unique solution u ∈ X to the Cauchy problem (1.1). Nowwe can prove asymptotic formula:

u(x, t) = At−1/αΛ
(
xt−1/α

)
+O

(
t−(1/α)(1+κ)

)
, κ ∈ (

0, μ
)
, (3.14)

whereA = f(u0)−
∫+∞
0 f(N(u(τ)))dτ . We denote G0(t) = t−1/αΛ(xt−1/α). From Lemma 2.7 we

have

∥∥G(t)φ −G0(t)f
(
φ
)∥∥

L∞ ≤ C〈t〉−(1/α)(1+μ)∥∥φ∥∥Z (3.15)

for all t > 1. Also in view of the definition of the norm Xwe have

∣∣f(N(u(τ)))
∣∣ ≤ ‖N(u(τ))‖L1 ≤ ‖u(τ)‖σ−1L∞ ‖u(τ)‖2L2

≤ C{τ}−(γ/α)(σ−1)〈τ〉−(1/α)(σ−1)‖u‖σ+1X .
(3.16)

By a direct calculation we have for t > 1

∥∥∥∥∥
∫ t/2

0
(G0(t − τ) −G0(t))f(N(u(τ)))dτ

∥∥∥∥∥
L∞

≤ C‖u‖σ+1X

∫ t/2

0
‖G0(t − τ) +G0(t)‖L∞{τ}−(γ/α)(σ−1)〈τ〉−(1/α)(σ−1)dτ

≤ C〈t〉−1/α‖u‖σ+1X

∫ t/2

0
{τ}−(γ/α)(σ−1)〈τ〉−(1/α)(σ−1)dτ ≤ C〈t〉−(1/α)(1+κ)‖u‖σ+1X ,

(3.17)
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where κ = σ − 1 − α, provided that σ < 1 + α/γ , and in the same way

∥∥∥∥G0(t)
∫∞

t/2
f(N(u(τ)))dτ

∥∥∥∥
L∞

≤ C〈t〉−(1/α)(1+κ)‖u‖σ+1X , (3.18)

provided that σ > 1 + α. Also we have

∥∥∥∥∥
∫ t/2

0

(G(t − τ)N(u(τ)) −G0(t − τ)f(N(u(τ)))
)
dτ

∥∥∥∥∥
L∞

+

∥∥∥∥∥
∫ t

t/2
G(t − τ)N(u(τ))dτ

∥∥∥∥∥
L∞

≤ C

∫ t/2

0
(t − τ)−1/α‖N(u(τ))‖L1dτ

+ C

∫ t

t/2
{t − τ}−γ/α〈t − τ〉−1/α(‖N(u(τ))‖L1 + ‖N(u(τ))‖L∞)dτ

≤ C〈t〉−(1/α)(1+κ)‖u‖σ+1X

(3.19)

for all t > 1. By virtue of the integral equation (3.11) we get

〈t〉(1/α)(1+κ)‖u(t) −AG0(t)‖L∞

≤ 〈t〉(1/α)(1+κ)∥∥G(t)u0 −G0(t)f(u0)
∥∥
L∞

+ 〈t〉(1/α)(1+κ)
∥∥∥∥∥
∫ t/2

0

(G(t − τ)N(u(τ)) −G0(t − τ)f(N(u(τ)))
)
dτ

∥∥∥∥∥
L∞

+ 〈t〉(1/α)(1+κ)
∥∥∥∥∥
∫ t

t/2
G(t − τ)N(u(τ))dτ

∥∥∥∥∥
L∞

+ 〈t〉(1/α)(1+κ)
∥∥∥∥G0(t)

∫∞

t/2
f(N(u(τ)))dτ

∥∥∥∥
L∞

+ 〈t〉(1/α)(1+κ)
∥∥∥∥∥
∫ t/2

0
(G0(t − τ) −G0(t))f(N(u(τ)))dτ

∥∥∥∥∥
L∞
.

(3.20)

All summands in the right-hand side of (3.20) are estimated byC‖u0‖Z+C‖u‖σ+1X via estimates
(3.17)–(3.19). Thus by (3.20) the asymptotic (3.14) is valid. Theorem 1.1 is proved.
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