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A singular boundary value problem (BVP) for a second-order nonlinear differential equa-
tion is studied. This BVP is a model in hydrodynamics as well as in nonlinear field theory
and especially in the study of the symmetric bubble-type solutions (shell-like theory).
The obtained solutions (ground states) can describe the relationship between surface ten-
sion, the surface mass density, and the radius of the spherical interfaces between the fluid
phases of the same substance. An interval of the parameter, in which there is a strictly
increasing and positive solution defined on the half-line, with certain asymptotic behav-
ior is derived. Some numerical results are given to illustrate and verify our results. Fur-
thermore, a full investigation for all other types of solutions is exhibited. The approach
is based on the continuum property (connectedness and compactness) of the solutions
funnel (Knesser’s theorem), combined with the corresponding vector field’s ones.
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1. Introduction

In order to study the behavior of nonhomogeneous fluids, Dell’Isola et al. [6] added an
additional term to the volume-free energy E0(ρ) and hence the total energy of the fluid
becomes

E
(
ρ,|∇ρ|2)= E0(ρ) +

γ

2
|∇ρ|2, γ > 0. (1.1)

Then, under isothermal process, the D’Alembert-Lagrange principle can be applied
(taking into account the conservation of mass) on the functional

J(ρ,υ)=
∫ t1

t1

∫

Ω

(
ρ
|υ|2
2
−E

(
ρ,|∇ρ|2)

)
dωdt (1.2)

Hindawi Publishing Corporation
Boundary Value Problems
Volume 2006, Article ID 28719, Pages 1–28
DOI 10.1155/BVP/2006/28719



2 A terminal BVP

to get the differential system

ρt +div(ρυ)= 0,
d υ

dt
+∇(μ(ρ)− γΔρ

)= 0, (1.3)

where μ(ρ) = dE0(ρ)/dρ is the so called chemical potential of the fluid. When there is no
motion of the fluid, this system is reduced to the equation

γΔρ = μ(ρ)−μ0, (1.4)

where μ0 is a constant.
The differential equation (1.4) can be regarded as a model for microscopical spherical

bubbles in a nonhomogeneous fluid. Because of the symmetry, we are interested in a
solution depending only on the radial variable ρ. In that case [6] (see also [12]), (1.4) can
be written as

(
rn−1ρ′(r)

)′ = rn−1

γ
μ(ρ)−μ0, (1.5)

where n= 2,3, . . . , and it is known as the density profile equation. We must add boundary
conditions on (1.5):

(i) because of the spherical symmetry, the derivative of ρmust vanish at the origin

ρ′(0)= 0; (1.6)

(ii) since the bubble is surrounded by a liquid with density ρl, we must also have

lim
r→+∞ρ(r)= ρl > 0. (1.7)

We are interested in a strictly increasing solution ρ= ρ(r) of the boundary value problem
(1.5)–(1.7) with 0 < ρ(r) < ρl, a function describing an increasing mass density profile.

In the simple case under consideration, the chemical potential μ(ρ) is a third-degree
polynomial on ρ with three distinct positive roots ρ1 < ρ2 < ρ3 = ρl, that is, μ = μ(ρ) =
4α(ρ− ρ1)(ρ− ρ2)(ρ− ρ3). For λ=

√
α/γ(ρ2− ρ1) and ξ = (ρ3− ρ2)/(ρ2− ρ1), the bound-

ary value problem (1.5)–(1.7) can be written (without loss of generality) as

1
rn−1

(
rn−1ρ′(r)

)′ = 4λ2(ρ+1)ρ(ρ− ξ) := f (ρ), 0 < r < +∞,

lim
r→0+

rn−1ρ′(r)= 0, lim
r→+∞ρ(r)= ξ.

(1.8)

The solutions of this ordinary differential equation determine the mass density profile.
Furthermore, BVPs of type (1.8) have also been used as models in the nonlinear field
theory (see [2, 7] and the references therein). However the study of BVP (1.8) is not an
easy subject (see [6, page 546]), but we endeavour to formulate a rigorous mathematical
approach. Berestycki et al. [3] studied a generalized Emden equation and explained the
physical significance of its solutions. In a recent paper [4], Bonheure et al. obtained some
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results on existence and multiplicity of the singular BVP

u′′ + k
u′

t
= c(t)g(u),

u′(0)= 0, u(M)= 0,
(1.9)

where c(t) is bounded on (0,+∞) andM ≤∞, combining shooting argument with vari-
ational methods.

For strongly singular higher-order linear differential equations together with two-
point conjugate and right-focal boundary conditions, Agarwal and Kiguradze [1] pro-
vided easily verifiable best possible conditions which guarantee the existence of a unique
solution.

Using in this paper a quite different approach, we are going to prove, the existence of
an increasing solution of (1.8) with a unique zero, at least for every ξ ∈ (0,ξM), where the
exact value of ξM remains an open problem. Our estimation indicates that ξM � 0.83428.
As many previous studies pointed out, the existence of such a solution is a very important
and meaningful case, in the above theories (bubble density, radius, surface tension, etc.,
are depending on it).

2. Preliminaries: general theory

Let us consider the following boundary value problem:

1
p(r)

(
p(r)ρ′(r)

)′ = f
(
r,ρ(r), p(r)ρ′(r)

)
,

ρ(0)= ρ0 ∈ (−1,0),
lim
r→+∞ρ(r)= ξ,

(2.1)

where f :Ω := [0,+∞)×R2 → R is continuous with three distinct zeros −1, 0, and ξ ∈
(0,1), that is,

f (t,−1,v)= f (t,0,v)= f (t,ξ,v)= 0 ∀t ∈ (0,+∞), v ∈R, (2.2)

and further for all t ∈ (0,+∞) and v ∈R,

f (t,u,v)≥ 0, u∈ (−1,0)∪ (ξ,+∞), f (t,u,v)≤ 0, u∈ (−∞,−1]∪ (0,ξ).
(2.3)

Let us notice from the beginning that the constant functions

ρ(r)=−1, ρ(r)= 0, ρ(r)= ξ, r ≥ 0, (2.4)

are solutions of the equation in (2.1) (with initial values ρ(0)=−1, ρ(0)= 0, and ρ(0)=
ξ, resp.) and we will assume throughout of this section that they are unique.

Let us also suppose that p ∈ C1((0,+∞),(0,+∞)) with limt→0+ p(t)= 0 and

∫ t

0
p(r)dr <∞,

∫ t

0

1
p(s)

{∫ s

0
p(x)dx

}
ds <∞ for any t > 0. (2.5)
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Consider now the corresponding initial value problem

1
p(r)

(
p(r)ρ′(r)

)′ − f
(
r,ρ(r), p(r)ρ′(r)

)= 0,

ρ(0)= ρ0 ∈ (−1,0), lim
r→0+

p(r)ρ′(r)= 0,
(2.6)

and prove the next existence results.

Proposition 2.1. Assume that the assumption (2.5) and the sign property on f are fulfilled
and further that there is a constantM > 0 such that

∣
∣ f (t,u,v)

∣
∣≤M, t ≥ 0, u,v ∈R. (2.7)

Then the IVP (2.6) admits a global solution.

Proof. Let ρ be a solution of (2.6). Then ρ ∈�(P), the family of all solutions emanating
from P = (ρ0,0), implies

ρ(t)= (Sρ)(t), (2.8)

where

(Sρ)(t) := ρ0 +
∫ t

0

1
p(s)

∫ s

0
p(r) f

(
r,ρ(r), p(r)ρ′(r)

)
dr ds. (2.9)

For any (fixed) positive T , we may define the Banach space

K1[0,T]= {u∈ C[0,T], pu′ ∈ C[0,T]
}

(2.10)

with norm

‖u‖1 =max
{‖u‖,‖pu′‖}, (2.11)

where ‖u‖ denotes the usual sup-norm of u on [0,T]. On the other hand, in order to
prove that the operator

S : K1[0,T]−→ K1[0,T] (2.12)

is compact, we note that if ρ0 takes values in a bounded set, there exist positives K0 and
K1 such that

∣
∣(Sρ)(t)

∣
∣≤ ∣∣ρ0

∣
∣+M

∫ t

0

1
p(s)

∫ s

0
p(r)dr ds≤ K0,

∣
∣p(t)(Sρ)′(t)

∣
∣≤M

∫ t

0
p(r)dr ≤ K1, 0≤ t ≤ T.

(2.13)

Then,

‖Sρ‖1 ≤ K =max
{
K0,K1

}
. (2.14)
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Furthermore, {Sρ} is an equicontinuous family since

∣
∣(Sρ)(t)− (Sρ)(t′)

∣
∣=

∣
∣
∣
∣

∫ t

t′

1
p(s)

∫ s

0
p(r) f

(
r,ρ(r), p(r)ρ′(r)

)
dr ds

∣
∣
∣
∣

≤M
∣
∣φ(t)−φ(t′)

∣
∣,

∣
∣p(t)(Sρ)′(t)− p(t)(Sρ)′(t′)

∣
∣ <

∣
∣
∣
∣

∫ t

t′
p(r) f

(
r,ρ(r), p(r)ρ′(r)

)
dr
∣
∣
∣
∣

≤M
∣
∣φ∗(t)−φ∗(t′)

∣
∣, 0≤ t, t′ ≤ T ,

(2.15)

and the mappings

φ(t)=
∫ t

0

1
p(s)

∫ s

0
p(r)dr ds, φ∗(t)=

∫ t

0
p(r)dr (2.16)

are absolutely continuous. Finally, by an application of the standard Schauder fixed-point
theorem, we get a solution ρ = ρ(r) defined over the entire interval [0,T]. �

We consider now the segment

E := {(ρ, pρ′) : ρ = ρ0 ∈ (−1,0), pρ′ = 0
}
. (2.17)

Theorem 2.2. Assume that the assumption (2.5) and the sign property on f are fulfilled.
Then (2.6) has a local solution ρ∈�(P), P ∈ E.

Proof. Let B := {(t,u,v) : t ≥ 0, max{‖u− ρ0‖, ‖v‖} < 1}.We associate to any P∈[0,T]×
R2, the closest point Q in B. This is obviously a continuous mapping. Defining the mod-
ification g : [0,T]×R2 → R by g(P) = f (Q), we see that g is continuous, bounded, and
g = f on B. By the previous proposition, there is a solution ρ ∈ �(P) that solves the
problem

1
p(t)

(
p(t)ρ′(t)

)′ = g
(
t,ρ(t), p(t)ρ′(t)

)
,

ρ(0)= ρ0, lim
r→0+

p(r)ρ′(r)= 0
(2.18)

on [0,T]. Let

β := sup
{
s∈ [0,T] :

(
t,ρ(t), p(t)ρ′(t)

)∈ B for 0≤ t ≤ s
}
. (2.19)

Evidently, 0 < β ≤ T . On the other hand, since g = f on B, we have

1
p(t)

(
p(t)ρ′(t)

)′ = f
(
t,ρ(t), p(t)ρ′(t)

)
, 0≤ t ≤ β, (2.20)

consequently, ρ is a local solution of (2.6). �

Taking into account the classical theorem of the extendability of solutions, we impose
one more condition on the desired solution

lim
r→+∞ p(r)ρ′(r)= 0. (2.21)
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Figure 2.1. (ξ � 0.6616, ρ0 �−0.999112).

Actually we seek for a strictly increasing solution of the differential equation in (2.1),
which has (exactly) one zero and satisfies the asymptotic relationship limr→+∞ ρ(r)= ξ.

We notice now that a vector field can be defined on the phase plane, with crucial
properties for our study. More precisely, noticing (2.3) and considering the (ρ, pρ′) phase
semiplane (pρ′ ≥ 0), we easily check that

(pρ′)′ < 0 for ρ∈ (−∞,−1)∪ (0,ξ),

(pρ′)′ > 0 for ρ ∈ (−1,0)∪ (ξ,+∞).
(2.22)

Thus, it is obvious that any solution of (2.6) with ρ0 ≥ ξ does not satisfy the demand
limr→+∞ ρ(r)= ξ, since it is an increasing function. Similarly, whenever ρ0 ≤−1, the cor-
respondingly solution ρ = ρ(r), r ≥ 0, is not an increasing map. Consequently, the con-
dition ρ0 ∈ (−1,0) is necessary in order to obtain a solution with the desired properties and
this is the reason for the restriction of the parameter ρ0 ∈ (−1,0) in (2.6). Finally, any tra-
jectory (ρ(r), p(r)ρ′(r)), r ≥ 0, emanating from the segment E, “moves” in a natural way
(initially, when ρ(r) < 0) toward the positive pρ′-semiaxis and then (when ρ(r)≥ 0) to-
ward the positive ρ-semiaxis (see Figures 2.1–2.4). As a result, assuming a certain growth
rate on f , we can control the vector field in such a way that it assures the existence of a
trajectory satisfying the given properties and the boundary conditions

lim
r→+∞ρ(r)= ξ, lim

r→+∞ p(r)ρ′(r)= 0. (2.23)

These properties, will be referred to in the rest of this paper as “the nature of the vec-
tor field.” Therefore, a combination of properties of the associated vector field with the
Kneser’s property of the cross sections of the solutions’ funnel is the main tool that we
will employ in our study. It is obvious therefore, that the technique presented here is dif-
ferent from those employed in the previous papers [6, 12], but closely related, at the same
time, to the methods of [9, 11] or [10].

For the convenience of the reader and to make the paper self-contained, we summa-
rize here the basic notions used in the sequel. First, we refer to the well-known Kneser’s
theorem (see, e.g., the Copel’s text book [5]).
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Figure 2.2. (ξ � 0.6617, ρ0 �−0.999112).
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Figure 2.3. (ρ0 �−0.77075, ξ � 0.3).
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Figure 2.4. (ρ0 �−0.9999999932, ξ � 0.83428).

Theorem 2.3. Consider the system

y′ = f (x, y), (x, y)∈ [α,β]×Rn, (2.24)
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with f continuous and let Ê0 be a continuum (i.e., compact and connected) subset ofRn and
let �(Ê0) be the family of all solutions of 2.24 emanating from Ê0. If any solution y ∈�(Ê0)
is defined on the interval [α,τ], then the cross section

�
(
τ; Ê0

)= {y(τ) : y ∈�
(
Ê0
)}

(2.25)

is a continuum in Rn.

Reminding that a set-valued mapping �, which maps a topological space X into com-
pact subsets of another one Y , is called upper semicontinuous (usc) at the point x0 if and
only if for any open subset V in Y with �(x0) ⊆ V there exists a neighborhood U of x0
such that �(x) ⊆ V for every x ∈ U , we recall the next two lemmas, which were proved
(without any assumption of uniqueness of solutions) in [9].

Lemma 2.4. Let X and Y be metric spaces and let � : X → 2Y be a usc mapping. If A is
a continuum subset of X such that, for every x ∈ A, the set �(x) is a continuum, then the
image �(A) :=∪{�(x) : x ∈ A} is also a continuum subset of Y .

We consider the set

ω := {(ρ, pρ′) :−1≤ ρ < ξ, pρ′ ≥ 0
}

(2.26)

any point P0 := (ρ0,ρ′0)∈ E ⊆ ∂ω and the family �(P0) of all noncontinuable solutions of
the initial value problem (2.6). By the continuity of the nonlinearity and the nature of the
vector field (sign of f ), we have two possible cases.

(i) Considering a solution ρ ∈�(P0), there exists r1 ≥ 0 (depending on ρ) such that

p
(
r1
)
ρ′
(
r1
)= 0, ρ

(
r1
)
< ξ, or p

(
r1
)
ρ′
(
r1
)
> 0, ρ

(
r1
)= ξ, (2.27)

and furthermore the restriction ρ | [0,r1] is an increasing function. Consequently in this
case, we can define a map � : E→ 2∂ω by

�
(
P0
)
:= {(ρ(r1

)
, p
(
r1
)
ρ′
(
r1
))∈ ∂ω : ρ∈�

(
P0
)}
. (2.28)

(ii) In the case where �(E) = ∪{�(P0) : P0 ∈ E} �=∅ and there a point P0 ∈ E such
that Dom(ρ)= [0,+∞) and

lim
r→+∞ p(r)ρ′(r)= 0, lim

r→+∞ρ(r)= ξ (2.29)

for some ρ ∈ �(P0), we will say that P0 is a singular point of the above map �. This is
exactly the case, the existence of which we must investigate.

Lemma 2.5 [9]. The above mapping � is upper semicontinuous (usc) at any nonsingular
point P0 := (ρ0,ρ′0)∈ E and the set �(P0) is a continuum. Moreover, the image �(B) of any
continuum B is also a connected and compact set.

We also need another lemma from the classical topology.
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Lemma 2.6 (see [8, Chapter V, Paragraph 47, point III, Theorem 2]). If A is an arbitrary
proper subset of a continuum B and S a connected component of A, then

S∩ (B\A) �=∅, (2.30)

that is,

S∩ ∂A �=∅. (2.31)

Let A be a subset of ω. We set

�(A) :=∪{�(P) : P ∈A
}

(2.32)

and recall that �(r∗;A) := {(ρ(r∗), p(r∗)ρ′(r∗)) : ρ ∈�(A)} represents the cross-section
of all solutions ρ ∈�(A) at the point r = r∗. For the domain ω, let � denote the above
mapping, which is defining with respect to the set ω. Then the following lemma holds.

Lemma 2.7. If the subset E0 ⊂ E is a continuum such that

�
(
E0
)∩E∗ξ �=∅, �

(
E0
)∩E∗ �=∅ (2.33)

and contains exactly one singular point P0 := (ρ0, pρ′0) of the map �, then both the sets
�(E0)∩E∗ξ and �(E0)∩E∗ are bounded and connected subsets of ∂ω, where

E∗ξ =
{
(ρ, pρ′)∈ ∂ω : ρ= ξ

}
, E∗ := {(ρ, pρ′)∈ ∂ω : pρ′ = 0

}
. (2.34)

Proof. By the continuation of solutions and the singularity of � at the point P0, the set
�(P0) =∅. Taking into account the nature of the vector field and the definition of the
singularity of the map �, this means that

lim
r→+∞ p(r)ρ′(r)= 0, lim

r→+∞ρ(r)= ξ. (2.35)

Since P0 separates E0 into two bounded connected sets, the result follows by the continu-
ity of � and the uniqueness of the solution ρ(r)= ξ. �

Proposition 2.8. Let P0 = (ρ0, pρ′0) ∈ E0 be a singular point of the consequent map �,
where E0 ⊂ E is a continuum. Then, every connected component S of the (assuming non-
empty) set S= E∗ ∩�(E0) approaches the boundary E∗ξ of ∂ω in the sense that S∩ ∂E∗ξ �=∅.

Proof. By Lemma 2.7, the set B = (E∗ ∪ E∗ξ )∩ (�(E0)∪ {(ξ,0)}) is a continuum. The
set A = E∗ ∩�(E0) is a connected subset of B. Then the same set S = E∗ ∩�(E0) is a
connected subset of A. Therefore, an ample use of Lemma 2.6 gives S∩ ∂E∗ξ �=∅. �

Now we give a theorem which summarizes the main results, concerning the existence
of a solution of the boundary value problem, under consideration.

Theorem 2.9. Let also E0 be a continuum in E such that

�
(
E0
)∩E∗ �=∅, �

(
E0
)∩E∗ξ �=∅. (2.36)

Then the boundary value problem (2.1)–(2.21) admits a strictly increasing solution.
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Proof. The result follows by Proposition 2.8. �

Remark 2.10. In view of the above procedure and since by assumption limt→0+ p(t)= 0, it
is clear that the second initial condition limr→0+ p(r)ρ′(r)= 0 in (2.6) can be relax to any
one of the form limr→0+ p∗(r)ρ′(r)= 0, where the new function p∗(r) > 0, r > 0, satisfies
also the restriction (2.5) and

lim
r→0+

p∗(r)ρ′(r)= 0=⇒ lim
r→0+

p(r)ρ′(r)= 0. (2.37)

In particular, if limt→0+ p∗(t) = l > 0, for example whenever p∗(t) = 1 is the constant
map, then (2.5) are fulfilled automatically, that is, the boundary conditions in (2.6) can
read as

ρ(0)= ρ0 ∈ (−1,0), lim
r→0+

ρ′(r)= 0. (2.38)

3. Main results

Consider the following singular boundary value problem:

1
rn−1

(
rn−1ρ′(r)

)′ = 4λ2(ρ+1)ρ(ρ− ξ) := f (ρ),

lim
r→0+

rn−1ρ′(r)= 0, lim
r→+∞ρ(r)= ξ,

(3.1)

modeling the density profile problem.
Since limρ→0( f (ρ)/ρ)=−4λ2ξ for every ε ∈ (0,ξ), there exists an η ∈ (0,1) such that

−4λ2(ξ + ε)ρ≤ f (ρ)≤ 4λ2(−ξ + ε)ρ ≤ 0, 0≤ ρ ≤ η,

0≤ 4λ2(−ξ + ε)ρ ≤ f (ρ)≤−4λ2(ξ + ε)ρ, −η ≤ ρ ≤ 0.
(3.2)

Consider the corresponding initial value problem

1
rn−1

(
rn−1ρ′(r)

)′ = 4λ2(ρ+1)ρ(ρ− ξ) := f (ρ),

ρ(0)=−η, lim
r→0+

rn−1ρ′(r)= 0.
(3.3)

In view of Theorem 2.2 and Remark 2.10, this singular IVP has a local solution. By the
nature of the vector field (sign of the nonlinearity), any solution ρ = ρ(r) of (3.3) as well
as its derivative rn−1ρ′(r) are strictly increasing functions in a (right) neighborhood of
r = 0, precisely as far as ρ(r) ≤ 0. With respect to the existence of ρ = ρ(r), we notice
that the point r = 0 is a regular singularity for the equation in (3.3) (see, e.g., [14] or
[13]). Precisely, this initial value problem has a unique solution, which is a holomorphic
function at the point r = 0, that is,

ρ(r)=−η+
+∞∑

k=1
ρ2k(−η)r2k, 0≤ r ≤ δ, (3.4)
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where the coefficients ρ2k = ρ2k(−η) are given by a recurrence formulae, for example,

ρ2(−η)=
(
2λ2/n

)
(−η)(−η+1)(−η− ξ). (3.5)

Remark 3.1. Although the initial condition limr→0+ rn−1ρ′(r) = 0 in (3.3) seems to be
weaker than the natural boundary condition limr→0+ ρ′(r)= 0 (see (1.6)), in the present
situation the later follows. Indeed, since

lim
r→0+

(
rn−1ρ′(r)

)′

rn−1
= 4λ2(−η+1)(−η)(−η− ξ)= θ0 > 0 (3.6)

for any small enough ε > 0,

0≤ (rn−1ρ′(r))′ ≤ (θ0 + 1
)
rn−1, 0≤ r ≤ ε. (3.7)

Hence, an integration on the interval [0,ε] yields

ρ′(ε)≤
(
θ0 + 1

)

n
ε, (3.8)

that is,

lim
r→0+

ρ′(r)= 0. (3.9)

Lemma 3.2. For any (small) y0 > 0, there exists an η0 ∈ [0,η) and r1 > 0 such that the
solution ρ = ρ(r) of (3.3), (with η replaced by η0) satisfies

−η0 ≤ ρ(r) < 0, ρ
(
r1
)= 0, 0≤ rn−1ρ′(r)≤ y0, 0≤ r < r1. (3.10)

Proof. We assume that there is not any r1 > 0 for which the first of (3.10) is fulfilled. Then,
let us suppose that

ρ(r)≤ 0, r ≥ 0. (3.11)

In view of (3.1)–(3.3) and recalling the nature of the vector field, we have

(
rn−1ρ′(r)

)′ ≥ 4λ2(−ξ + ε)ρ(r)rn−1, 0≤ r < +∞. (3.12)

Consequently, (rn−1ρ′(r))′ ≥ 0, 0≤ r < +∞, so rn−1ρ′(r) > 0, 0≤ r < +∞ and further this
means that the solution ρ = ρ(r), 0≤ r < +∞ is an increasing map. Hence,

lim
r→+∞ρ(r)= l ≤ 0, (3.13)

and this implies

lim
r→+∞ρ

′(r)= 0. (3.14)

Now given that

lim
r→0+

rρ′(r)= 0=⇒ lim
r→0+

rn−1ρ′(r)= 0, (3.15)
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an integration of (3.12) on the interval [0,r] yields

rn−1ρ′(r)≥−4λ2(ξ − ε)
∫ r

0
ρ(t)tn−1dt, 0≤ r < +∞. (3.16)

We notice first that for l = 0 (by the L’Hospital’s rule),

lim
t→+∞ t

n−1[− ρ(t)
]= lim

t→+∞
−ρ(t)
1/tn−1

= 1
n− 1

lim
t→+∞ t

nρ′(t)= +∞, (3.17)

because the function rn−1ρ′(r) is positive and increasing. Hence,

lim
r→+∞

∫ r

0
[−ρ(t)]tn−1dt = +∞. (3.18)

If l < 0, then (3.18) is still true and further

lim
r→+∞ρ

′(t)≥ 4λ2(ξ − ε) lim
r→+∞

∫ r
0

[− ρ(t)
]
tn−1dt

rn−1
=−4λ2(ξ − ε)

n− 1
lim
r→+∞rρ(r)= +∞,

(3.19)

a contradiction to (3.14). Let us now assume that l = 0. Then by (3.14), we have
limr→+∞ ρ′(r)= 0 and then noticing (3.16),

0= lim
r→+∞ρ

′(r)≥−4λ2(−ξ + ε) lim
r→+∞

∫ r
0

[− ρ(t)
]
tn−1dt

rn−1

=−4λ2(−ξ + ε)
n− 1

lim
r→+∞

rn−1
[− ρ(r)

]

rn−2

=−4λ2(−ξ + ε)
n− 1

lim
r→+∞

ρ(r)
1/r

= 4λ2(ξ − ε)
n− 1

lim
r→+∞r

2ρ′(r)≥ 0,

(3.20)

provided that the last limit limr→+∞ r2ρ′(r) exists.
In order to demonstrate this assertion, we notice first that

lim
r→+∞r

n−1ρ′(r)=m≤ +∞, (3.21)

because (rn−1ρ′(r))′ ≥ 0, 0≤ r < +∞. Now since

lim
r→+∞r

2ρ′(r)= lim
r→+∞

rn−1ρ′(r)
rn−3

, (3.22)

we immediately get

lim
r→+∞r

2ρ′(r)=
⎧
⎨

⎩
m if n= 3,

0 if n > 3,
m< +∞. (3.23)

So assume that n > 3 andm= +∞. Then

lim
r→+∞r

2ρ′(r)= lim
r→+∞

(
rn−1ρ′(r)

)′
(
rn−3

)′ = lim
r→+∞

rn−14λ2
(
ρ(r)− 1

)
ρ(r)

(
ρ(r)− ξ

)

(n− 3)rn−4
, (3.24)
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given that the limit

lim
r→+∞r

3[− ρ(r)
]= lim

r→+∞

[− ρ(r)
]

r−3
(3.25)

exists. One more application of the L’Hospital’s rule guarantee, that (3.25) exists if

lim
r→+∞r

4ρ′(r) (3.26)

exists too. As above

lim
r→+∞r

4ρ′(r)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+∞ if n= 3,4,

m if n= 5,

0 if n > 5,

m< +∞. (3.27)

For n > 5 andm= +∞, we similarly get

lim
r→+∞r

4ρ′(r)= lim
r→+∞

rn−14λ2
(
ρ(r)− 1

)
ρ(r)

(
ρ(r)− ξ

)

(n− 5)rn−6
, (3.28)

given that

lim
r→+∞

[− ρ(r)
]

r−5
(3.29)

exists.
Continuing this procedure, we conclude that the limit limr→+∞ r2ρ′(r) exists if at least

one of

lim
r→+∞r

n−1[− ρ(r)
]

or lim
r→+∞r

n−1ρ′(r) (3.30)

exists. But this is true (see (3.17) or (3.21)).
This is a contradiction if n ≤ 3, in view of (3.16). If n > 3, we assert that there exists

a sequence {rν} with limrν = +∞, such that limr2νρ
′(rν) > 0 and this clearly contradicts

the above equality limr→+∞ r2ρ′(r)= 0. In order to demonstrate the last assertion, let us
suppose that limr2νρ

′(rν) = 0 for any such sequence. On the other hand, we know that
limr→+∞ rn−1ρ′(r) > 0 and so let

k =max
{
m= 2,3, . . . ,n− 2 : ∃ rν −→∞, limrmν ρ

′(rν
)= 0

}
. (3.31)

Then since limr→+∞ rn−1ρ′(r) > 0, it is clear that k ≤ n− 3 and further by maximality of
k, there is a subsequence of {rν}, say itself such that

limrkν ρ
′(rν

)= 0, limrk+2ν ρ′
(
rν
)
> 0. (3.32)

Then again (3.16) implies

rkν ρ
′(rν

)≥−4λ2(ξ − ε)
1

rn−1−kν

∫ rν

0
ρ(t)tn−1dt, 0≤ rν < +∞, (3.33)
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and hence, given that

lim
r→+∞

∫ r
0

[− ρ(t)
]
tn−1dt

rn−1−k
= 1

n− 1− k
lim
r→+∞

rn−1
[− ρ(r)

]

rn−2−k
, (3.34)

it follows that

0= limrkν ρ
′(rν

)≥ 4λ2(ξ − ε) lim

∫ rν

0

[− ρ(t)
]
tn−1dt

rn−1−kν
= 4λ2(ξ − ε)

n− 1− k
lim

rn−1ν

[− ρ(rν)
]

rn−2−kν

= 4λ2(−ξ + ε)
n− 1− k

lim
ρ′
(
rν
)

(−k− 1)r−k−2ν
= 4λ2(ξ − ε)

(n− 1− k)(k+1)
limrk+2ν ρ′

(
rν
)
> 0,

(3.35)

a contradiction.
Consequently for each η0 ∈ [0,η], there is an rη0 > 0 such that

−η0 ≤ ρ(r)≤ 0, 0≤ r < rη0 , ρ
(
rη0
)= 0. (3.36)

Consider now the set

ω0 =
{(
ρ,rn−1ρ′

)
:−η ≤ ρ ≤ 0, rn−1ρ′ ≥ 0

}
(3.37)

and define a map �0 : E0 = [−η,0]×{0} → 2∂ω0 by the formula

�0
(−η0,0

)= (ρ(rη0
)
, rn−1η0 ρ′

(
rη0
))
. (3.38)

Clearly the image �0(E0) is a continuum. Thus the point

rη =max
{
rη0 : η0 ∈ [0,η]

}
(3.39)

is finite and independent η0.
On the other hand, by (3.2), we also have

(
rn−1ρ′(r)

)′ ≤ −4λ2(ξ + ε)ρ(r)rn−1, 0≤ r < rη0 ≤ rη (3.40)

and so

rn−1η0 ρ′
(
rη0
)≤−4λ2(ξ + ε)

∫ rη0

0
ρ(r)rn−1dr ≤−4λ2(ξ + ε)ρ(0)

∫ rη0

0
rn−1dr

=−4λ2(ξ + ε)
rnη0
n
ρ(0)= 4λ2(ξ + ε)

rnη0
n
η0.

(3.41)

Hence we get

rn−1η0 ρ′
(
rη0
)≤ 4λ2(ξ + ε)η0

rnη
n
, (3.42)
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that is, we may choose

η0 ≤min

{

η,
n

(ξ + ε)4λ2rnη
y0

}

(3.43)

and then clearly (3.10) is fulfilled. �

Lemma 3.3. Consider any η1 ≤ η, then there is a (small enough) y∗0 such that for every posi-
tive y0 ≤ y∗0 the corresponding solution ρ = ρ(r)with initial value ρ(r1)= 0, rn−11 ρ′(r1)= y0
satisfies

0≤ ρ(r) < η1, y0 ≥ rn−1ρ′(r) > 0, r1 ≤ r < r2, rn−12 ρ′
(
r2
)= 0, (3.44)

for some r2 > r1.

Proof. Let us suppose on the contrary that an arbitrary small point y0 exists, with

rn−1ρ′(r) > 0, r1 ≤ r < +∞. (3.45)

We will show there exists an r2 > r1 such that

ρ
(
r2
)= η1. (3.46)

Assume on the contrary that

0≤ ρ(r) < η1, r ≥ r1. (3.47)

Since the function rn−1ρ′(r), r ≥ r1, is decreasing,

lim
r→+∞r

n−1ρ′(r)=m≥ 0. (3.48)

Hence

lim
r→+∞ρ

′(r)= 0, and then lim
r→+∞ρ(r)= l ∈ (0,η1

)
. (3.49)

Now in view of (3.2),

(
rn−1ρ′(r)

)′ ≤ 4λ2(−ξ + ε)ρ(r)rn−1, r1 ≤ r < +∞, (3.50)

and this yields the contradiction

lim
r→+∞ρ

′(t)≤ 4λ2(−ξ + ε) lim
r→+∞

∫ r
r1

[
ρ(t)

]
tn−1dt

rn−1
− lim

r→+∞
y0
rn−1

= 4λ2(−ξ + ε)
n− 1

lim
r→+∞rρ(r)=−∞.

(3.51)

Thus (3.46) holds.
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We fix a point ŷ0 > 0 and we will prove first that the set

{
r2 > r1 : ∃y0 ∈

(
0, ŷ0

]
such that the corresponding solution with

ρ
(
r1
)= 0, rn−11 ρ′

(
r1
)= y0 satisfies (3.45)-(3.46)

}

(3.52)

is bounded, say by r∗2 . Assume on the contrary, that there exist sequences

{
y0k
}⊂ (0, ŷ0

]
,
{
r2,k
}
with limr2,k = +∞ (3.53)

such that the corresponding solutions {ρk} satisfy

0≤ ρk(r) < η1, y0k ≥ rn−1ρ′k(r) > 0, r1 ≤ r < r2,k, ρ2k
(
r2,k
)= η1. (3.54)

Then by (3.2) and (3.45), we get

(
rn−1ρ′k(r)

)′ ≤ 4λ2(−ξ + ε)ρk(r)rn−1, r1 ≤ r < r2,k. (3.55)

Thus, an integration on the interval [r1,r2,k] yields

rn−12,k ρ′k
(
r2,k
)≤ y0k +4λ2(−ξ + ε)

∫ r2,k

r1
ρk(t)tn−1dt

= y0k +4λ2(−ξ + ε)

[
rn2,k
n

ρk
(
r2,k
)− rn1

n
ρk
(
r1
)−

∫ r2,k

r1

tn

n
ρ′k(t)dt

]

≤ y0k +4λ2(−ξ + ε)
rn2,k
n

η1− 4λ2(−ξ + ε)y0k
r22,k − r21

2n
, r ∈ [r1,r2,k

]
.

(3.56)

Hence we get

ρ′k
(
r2,k
)≤ y0k

rn−12,k

[

1− 4λ2(−ξ + ε)
r22,k − r21

2n

]

+4λ2(−ξ + ε)
r2,k
n

η1, (3.57)

and then for all large k, we conclude the contradiction ρ′k(r2,k) < 0.
We set now

y∗0 =min

{

ŷ0,
4λ2(ξ − ε)

(
rn1 /n

)
η1

1+ 4λ2(ξ − ε)
(
r∗n2 − rn1

)
/2n

}

(3.58)

and consider any

y0 ∈
(
0, y∗0

)
(3.59)

such that (3.45)-(3.46) are fulfilled. Then again by (3.2), we get

(
rn−1ρ′(r)

)′ ≤ 4λ2(−ξ + ε)ρ(r)rn−1, r1 ≤ r < r2. (3.60)



A. P. Palamides and T. G. Yannopoulos 17

Thus, noticing (3.58) and the definition of r∗2 , an integration on the interval [r1,r2] yields

rn−12 ρ′
(
r2
)≤ y0 + 4λ2(−ξ + ε)

∫ r2

r1
ρ(t)tn−1dt

= y0k +4λ2(−ξ + ε)
[
rn2
n
ρ
(
r2
)− rn1

n
ρ
(
r1
)−

∫ r2

r1

tn

n
ρ′(t)dt

]

= y0 + 4λ2(−ξ + ε)
rn2
n
η1− 4λ2(−ξ + ε)y0

r22 − r21
2n

≤ y0

[

1− 4λ2(−ξ + ε)y0
((
r∗22 − r21

)
/2n
)

2n

]

+4λ2(−ξ + ε)
rn2
n
η1

≤ y∗0

[

1− 4λ2(−ξ + ε)y0
((
r∗2

2−r21
)
/2n
)

2n

]

+4λ2(−ξ + ε)
rn1
n
η1.

(3.61)

Consequently, in view of (3.58) we obtain rn−12 ρ′(r2)≤ 0, a contradiction to (3.45). �

Proposition 3.4. For any η1 ≤ η, there is a positive η0 ≤ η such that the solution ρ = ρ(r)
with initial value

ρ(0)=−η0, lim
r→0+

rn−1ρ′(r)= 0 (3.62)

satisfies

−η0 ≤ ρ(r) < η1, rn−1ρ′(r)≥ 0, 0 < r < r2, rn−12 ρ′
(
r2
)= 0 (3.63)

for some r2 > 0.

Proof. By the previous Lemma 3.3, for the given η1, there exists a y∗0 such that for all pos-
itive y0 ≤ y∗0 , the solution passing through the point (0, y0) satisfies inequalities (3.44).
On the other hand, in view of Lemma 3.2, there is an η0 > 0 such that (3.10) is fulfilled.
Therefore, the result follows. �

Lemma 3.5. There is a y1 > y0 such that for any solution ρ= ρ(r) with

ρ
(
r1
)= 0, rn−11 ρ′

(
r1
)= y1 (3.64)

for some r1 > 0, there exist 0 < r0 < r1 < r2 so that

−1≤ ρ(r) < 0, rn−1ρ′(r) > 0, r0 ≤ r ≤ r1, ρ
(
r0
)=−1,

0≤ ρ(r) < ξ, rn−1ρ′(r) > 0, r1 ≤ r ≤ r2, ρ
(
r2
)= ξ.

(3.65)

Moreover, this solution is a (both sides) nonbounded strictly increasing solution, that is,

lim
r→0+

ρ(r)=−∞, rn−1ρ′(r) > 0, r ∈ (0,+∞), lim
r→+∞ρ(r)= +∞. (3.66)

Proof. Supposing first that n > 2 and that the first conclusion is false. Then for any y1 > y0,

−1 < ρ(r)≤ 0 ∀r ∈ (0,r1
)
. (3.67)
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Now we fix any positive r0 < r1. By its definition, the nonlinearity f (ρ), −1 ≤ ρ ≤ ξ is a
bounded function, namely,

−4λ2 ≤ f (ρ)≤ 4λ2, −1≤ ρ≤ ξ. (3.68)

So it follows that

(
rn−1ρ′(r)

)′ ≤ 4λ2rn−1, r0 ≤ r ≤ r1, (3.69)

which in turn implies

rn−11 ρ′
(
r1
)− rn−1ρ′(r)≤ 4λ2

rn1 − rn

n
, r0 ≤ r ≤ r1, (3.70)

Consequently, as in the precedent argument, we obtain

ρ
(
r0
)≤−m1y1 +

4λ2

n

rn1
2−n

[
1

rn−21
− 1
rn−20

]

− 4λ2

n

[
r21 − r20

2

]

, (3.71)

where

m1 = 1
n− 2

[
1

rn−20
− 1
rn−21

]

> 0. (3.72)

Thus, by choosing y1 large enough, we conclude the contradiction

ρ
(
r0
)≤−1. (3.73)

Similarly, let us assume that for every y1 > 0 and an (also fixed) r2 > r1, it holds

0≤ ρ(r) < ξ, rn−1ρ′(r) > 0, r1 ≤ r ≤ r2, rn−12 ρ′
(
r2
)= 0. (3.74)

Also by 3.68, we have

(
rn−1ρ′(r)

)′ ≥ −4λ2rn−1, r1 ≤ r ≤ r2, (3.75)

which implies

rn−1ρ′(r)− rn−11 ρ′
(
r1
)≥−4λ2 r

n− rn1
n

, r1 ≤ r ≤ r2. (3.76)

Hence, as above we obtain (recall that n > 2)

ρ
(
r2
)− ρ

(
r1
)≥−4λ2

n

[
r22 − r21

2
− rn1
2−n

(
1

rn−22
− 1
rn−21

)]

+
y1

2−n

[
1

rn−22
− 1
rn−21

]

,

(3.77)

that is, for y1 large enough, ρ(r2)≥ ξ, another contradiction. Noticing now the nature of
the vector field, we conclude immediately that the obtained solution is a strictly increasing
map.
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In order to demonstrate (3.66), we assume that there exists M > 0 such that for every
y1 > y0,

−M < ρ(r) <M, ∀r ∈ (0,+∞). (3.78)

We suppose first that for any y1 > y0,

−M < ρ(r)≤ 0, ∀r ∈ (0,r1
)

(3.79)

and fix any positive r0 < r1. By its definition, the nonlinearity f (ρ), −M ≤ ρ ≤M is a
bounded function, namely,

−K ≤ f (ρ)≤ K , −M ≤ ρ≤M. (3.80)

So it follows that

(
rn−1ρ′(r)

)′ ≤ Krn−1, r0 ≤ r ≤ r1, (3.81)

which in turn implies

rn−11 ρ′
(
r1
)− rn−1ρ′(r)≤ K

rn1 − rn

n
, r0 ≤ r ≤ r1, (3.82)

Consequently, as in the preceding argument, we obtain

ρ
(
r0
)≤−m1y1 +

K

n

rn1
2−n

[
1

rn−21
− 1
rn−20

]

− K

n

[
r21 − r20

2

]
. (3.83)

where

m1 = 1
n− 2

[
1

rn−20
− 1
rn−21

]
> 0. (3.84)

Thus, by choosing y1 large enough, we conclude the contradiction

ρ
(
r0
)≤−M. (3.85)

Similarly, let us assume that for every y1 > 0 and an (also fixed) r2 > r1, it holds

0≤ ρ(r) <M, rn−1ρ′(r) > 0, r1 ≤ r ≤ r2, rn−12 ρ′
(
r2
)= 0. (3.86)

Also by (3.80), we have

(
rn−1ρ′(r)

)′ ≥ −Krn−1, r1 ≤ r ≤ r2, (3.87)

which implies

rn−1ρ′(r)− rn−11 ρ′
(
r1
)≥−K rn− rn1

n
, r1 ≤ r ≤ r2. (3.88)
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Hence, as above we obtain (recall that n > 2)

ρ
(
r2
)− ρ

(
r1
)≥−K

n

[
r22 − r21

2
− rn1
2−n

(
1

rn−22
− 1
rn−21

)]

+
y1

2−n

[
1

rn−22
− 1
rn−21

]

,

(3.89)

that is, for y1 large enough, ρ(r2)≥M, another contradiction.
A similar argument works for the case n= 2 and this clearly ends the proof. �

Remark 3.6. We notice that, since the inequality f (ρ)= (ρ+1)ρ(ρ− ξ) < 0 holds true for
ρ < −1, the map rn−1ρ′(r) > 0, 0 < r < r0, is decreasing (see the nature of vector field),
hence by the extendability of solutions, limr→0+ rn−1ρ′(r) = +∞ and so limr→0+ ρ(r) =
−∞. Similarly f (ρ) > 0, for ρ > ξ and this yields limr→+∞ ρ(r)= +∞.

Remark 3.7. Consider the solution ρ = ρ(r) of the initial value problem (3.3), with (fixed)
−η ∈ (−1,0) and let r1, r2 be two points such that

−η ≤ ρ(r) < 0, rn−1ρ′(r)≥ 0, 0≤ r < r1, ρ
(
r1
)= 0,

ρ(r)≥ 0, rn−1ρ′(r)≥ 0, r1 ≤ r < r2.
(3.90)

Since the graph of the function limξ→1 f (ρ) = 4λ2(ρ2− 1)ρ is symmetric with respect to
the rn−1ρ′-axis, it is clear that

ρ(r) < ξ, r1 ≤ r < r2, (3.91)

for the case when ξ is close enough to 1.
Indeed, considering the initial value problem

(
rn−1ρ′(r)

)′ = 4λ2
(
ρ2− 1

)
ρrn−1,

ρ(0)=−η, lim
r→0+

rn−1ρ′(r)= 0,
(3.92)

if we prove that (ρ = ρ(r) denotes now the solution of IVP (3.92))

ρ(r) < η, r ≥ 0, (3.93)

by the continuity of solutions upon the nonlinearity, at the case when ξ → 1−, the bound-
ary value problem (3.1) does not admit any solution.

Suppose in the contrary, that there exists a point r̂2 > r̂1 = r1 such that

ρ
(
r̂2
)= η, 0 <m0 = r̂ n−12 ρ′

(
r̂2
)≤ r̂ n−11 ρ′

(
r̂1
)=m1. (3.94)

Then there exist a point r̂0 ∈ (0, r̂1) such that r̂ n−10 ρ′(r̂0) =m1 and furthermore, for any
t ∈ (r̂1, r̂2), there is an r ∈ (r̂0, r̂1) with

rn−1ρ′(r)= tn−1ρ′(t). (3.95)
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Since r < t, it follows that (for all such r and t)

ρ′(r) > ρ′(t). (3.96)

Consider now a partition {m0 < m1 < ··· < mk} of the interval [m0,m1] as well as the
corresponding partitions

{
r̂0 = r0 < r1 < ··· < rk = r̂1

}
,

{
r̂2 = t0 > t1 > ··· > tk = r̂1

}
(3.97)

of [r̂0, r̂1] and [r̂1, r̂2], respectively, so that

rn−1i ρ′
(
ri
)= tn−1i ρ′

(
ti
)
, (i= 0,1, . . . ,k). (3.98)

Then, of course,

ρ′
(
ri
)
> ρ′

(
ti
)
, (i= 0,1, . . . ,k). (3.99)

In addition, because the map ρ′ = ρ′(t), r̂0 ≤ r ≤ r̂2, is continuous (and bounded), we can
choose the max {mi−mi−1 : i= 1,2, . . . ,k} small enough, so that

ti+1− ti
2

ρ′
(
ti
)≤ ri+1− ri

2
ρ′
(
ri
)
, (i= 0,1, . . . ,k− 1). (3.100)

Hence

k∑

i=1

ti+1− ti
2

ρ′
(
ti
)≤

k∑

i=1

ri+1− ri
2

ρ′
(
ri
)
, (3.101)

and thus we obtain the contradiction

η = ρ
(
r̂2
)=

∫ r̂2

r̂1
ρ′(t)dt ≤

∫ r̂1

r̂0
ρ′(r)dr <

∫ r̂1

0
ρ′(r)dr =−ρ(0)= η. (3.102)

In conclusion, (3.93) and so (3.91) hold true. In others words, using the terminology of
the previous section, for all large enough ξ ∈ (0,1), we have

�
(
P0
)⊂ E∗ := {(ρ, pρ′)∈ ∂ω : pρ′ = 0

}
, P0 = (−η,0). (3.103)

On the other hand, when ξ → 0+, there always exists a solution ρ = ρ(r) of the IVP (3.3)
such that

−η ≤ ρ(r) < 0, rn−1ρ′(r)≥ 0, 0≤ r < r1, ρ
(
r1
)= 0,

0≤ ρ(r) < ξ, rn−1ρ′(r) > 0, r1 ≤ r < r2, ρ
(
r2
)= ξ,

(3.104)

that is,

�
(
P0
)⊂ E∗1 =

{
(ρ, pρ′)∈ ∂ω : ρ = ξ

}
. (3.105)

Theorem 3.8. For every small enough ξ ∈ (0,1), the boundary value problem (3.1) admits
(at least) one strictly increasing solution.
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Proof. In view of Proposition 3.4, for a given ξ, there is an η∗1 > 0 small enough and a
solution ρ = ρ0(r) of the IVP (3.3), such that (3.103) is satisfied, with P0 = (−η∗1 ,0). On
the other hand, since ξ is small, there exists an η∗0 ∈ (0,1) large enough and a solution
ρ = ρ1(r) with

−η∗0 ≤ ρ(r) < 0, rn−1ρ′(r)≥ 0, 0≤ r < r1, ρ(0)=−η∗0 , ρ
(
r1
)= 0,

0≤ ρ(r) < ξ, rn−1ρ′(r) > 0, r1 ≤ r < r2, ρ
(
r2
)= ξ

(3.106)

for some positive values r1 and r2 of the variable r, that is, (3.105) is also fulfilled with
P0 = (−η∗0 ,0).

Considering finally the continuum set

E0 :=
[−η∗0 ,−η∗1

]×{0}, (3.107)

we may apply Theorem 2.9 to get an η ∈ [−η∗0 ,−η∗1 ] and the unique solution ρ = ρ(r)∈
�(P), P = (η,0) of the initial value problem (3.3) such, that limr→+∞ ρ(r)= ξ. �

Conjecture 3.9. If we know that the above obtained singular point P = (η,0) is unique,
then by Theorem 2.9, the corresponding solution ρ ∈ �(P) is also unique. Numerical
trials indicate that is true! However this actually is an open problem.

Remark 3.10. The above obtained solution of the boundary value problem (3.1), transfer-
ring via the transformation given above of (1.8), clearly gives a positive solution ρ = ρ(r)
of our problem (1.5)–(1.7), that is,

0 < ρ1 < ρ(r) < ρl, 0 < r < +∞. (3.108)

Theorem 3.11. A unique ξM ∈ (0,1) exists such that the terminal value problem

1
rn−1

(
rn−1ρ′(r)

)′ = 4λ2(ρ+1)ρ
(
ρ− ξM

)
:= f (ρ),

lim
r→0+

ρ(r)=−1, lim
r→+∞ρ(r)= ξM

(3.109)

admits at least one strictly increasing solution.
Furthermore, the point ξM ∈ (0,1) is the maximal one in the sense that, for every ξ > ξM ,

the boundary value problem (3.1) does not admit any solution.

Proof. We consider a fixed ξ ∈ (0,1) and notice Lemma 3.2. Then for any (small) y0 > 0
there exists an η0 ∈ [0,1) and r1 > 0 such that the solution of IVP

1
rn−1

(
rn−1ρ′(r)

)′ = 4λ2(ρ+1)ρ(ρ− ξ),

ρ(0)=−η0, lim
r→0+

rn−1ρ′(r)= 0
(3.110)
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satisfies

−η0 ≤ ρ(r) < 0, ρ
(
r1
)= 0, 0≤ rn−1ρ′(r)≤ y0, 0≤ r < r1. (3.111)

In view of Lemma 3.5, there is a y1 > y0 such that the solution ρ = ρ(r) which satisfies
ρ(r1)= 0 and rn−11 ρ′(r1)= y1, for some r1 > 0, there exists an r0 ∈ (0,r1) such that

−1≤ ρ(r) < 0, rn−1ρ′(r) > 0, r0 ≤ r ≤ r1, ρ
(
r0
)=−1. (3.112)

Consider the continuum

E0 = {0}×
[
y0, y1

]
(3.113)

in the domain

Ω := {(ρ, pρ′) :−1≤ ρ≤ 0, rn−1ρ′ ≥ 0
}
. (3.114)

By the sign property of the nonlinearity (nature of the vector field), it is clear that every
solution ρ ∈�(E0) extended backwards is a strictly increasing function. Therefore, by the
fundamental continuation theorem, we can define a map

�∗ : E0 −→ 2∂Ω, (3.115)

analogously with the similarly defined one above, by

�∗(P) := {(ρ(r0
)
,rn−10 ρ′

(
r0
))∈ ∂Ω : ρ∈�(P), P = (0, y)∈ E0

}
, (3.116)

for some r0 ∈ (0,r1). Consider the subsets

E∗−1 =
{(
ρ,rn−1ρ′

)∈ ∂Ω : ρ =−1}, E∗ :=
{(
ρ,rn−1ρ′

)∈ ∂Ω : rn−1ρ′ = 0
}

(3.117)

of Ω, and notice that both sets

�∗(E0
)∩E∗−1, �∗(E0

)∩E∗ (3.118)

are nonempty connected subsets of the boundary ∂Ω. Consequently, in view of Lemma
2.6, we must have

∂
(
�∗(E0

)∩E∗
)∩E∗−1 =

{
(−1,0)} �=∅. (3.119)

This means that there exists a singular point P ∈ E0 of the map �∗, that is, there is a
solution ρ = ρ(r) ∈ �(P) which remains left asymptotic in Ω and so it satisfies the left
asymptotic relations in (3.109).
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Finally, noticing Remark 3.7, for the case where ξ = ξ1 is close enough to the right end
of the interval (0,1), there is an r2 > 0 such that

0≤ ρ1(r) < ξ1, rn−1ρ′1(r)≥ 0, r1 ≤ r ≤ r2, rn−12 ρ′1
(
r2
)= 0, (3.120)

and mainly ρ1(r2) < ξ1, where ρ = ρ1(r) is a solution of the equation in (3.109), with ξM
replaced by ξ1 such that limr→0+ ρ1(r)=−1.

On the other hand, there exists a ξ0 < ξ1 such that (now ρ = ρ0(r) is a solution of the
equation in (3.109), with ξM replaced by ξ0 and the new r2 generally different by the above
one)

lim
r→0+

ρ0(r)=−1, ρ0
(
r2
)= ξ0, rn−1ρ′0(r) > 0, 0 < r ≤ r2 (3.121)

for (at least) one such solution. This is obvious, since for ξ = 0, the nonlinearity f (ρ)=
4λ2(ρ + 1)ρ2 > 0, ρ ≥ −1, that is, the function rn−1ρ′(r) is strictly increasing and thus
limr→+∞ ρ(r)= +∞.

Now we set ξ0 = ξ00, ξ1 = ξ10, and

ξ00 + ξ10
2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ01 if the analogous of (3.121) with respect to

ξ00 + ξ10
2

instead of ξ0 holds true,

ξ11 if the analogous of (3.120) with respect to

ξ00 + ξ10
2

instead of ξ1 holds true.

(3.122)

This definition of ξ01 and ξ11 is well posed because, since the function rn−1ρ′(r) is de-
creasing on [r1,r2] and ρ = ρ(r) is an increasing one on [r1,r2], we may apply the usual
continuation theorem to guarantee that there is not other case. We repeat this procedure
replacing the interval [ξ01,ξ10] or [ξ00,ξ11], according to (3.121) or (3.120), with [ξ01,ξ11]
to get a second interval [ξ02,ξ12] with same as [ξ01,ξ11] properties and so forth and finally
we can obtain sequences {ξ0n} and {ξ1n} such that

limξ0n = limξ1n = ξM. (3.123)

By the construction of {ξin} (i = 0,1) and the definition of ξM , we conclude that the
BVP (3.109) is solvable.

The last result for the maximality of ξM ∈ (0,1) follows by the monotonicity of {ξin}.
�

Remark 3.12. If the singular point P0 of the map �∗ is unique, then the uniqueness of the
point ξM and the uniqueness of solutions with respect to their initial data function ρM(r)
yield the uniqueness of the above obtained solution ρ = ρM(r), 0 < r < +∞. This remains
also an open problem. Some monotonicity assumptions on the nonlinearity, possibly, are
sufficient for that.
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4. A numerical approach

By the previous and especially in view of Theorems 3.8 and 3.11, it is obvious that we
cannot find out theoretically the maximal point ξM and (then an initial one) ρ0 such that
the BVP (3.1) admits an increasing solution. But if we know that for some ξ∗ there is an
initial point ρ∗0 such that the corresponding solution ρ = ρ(r) satisfies for some r1 > 0,

ρ(0)= ρ∗0 , ρ∗0 < ρ(r) < ξ∗, rn−1ρ′(r) > 0, 0 < r < r1, ρ
(
r1
)= ξ∗, (4.1)

then we can approximate numerically the solution of (3.1), for every ξ ∈ (0,ξ∗], using
the NDSolve command of MATHEMATICA and applying the shooting method. So, we
restrict our consideration in the sequel for the case n= 3 and λ= 1. Precisely, by the series
expression (3.4)-(3.5) of the solutions, we may use as initial values

ρ
(
r0
)= ρ0, rn−10 ρ′

(
r0
)= (4/3)rn0 λ

2(ρ0 + 1
)
ρ0
(
ρ0− ξ

)
, (4.2)

for a small enough r0. In this way for r0 = 0.01, and ξ = 0.6616, ρ0 = −0.999112 or
ξ = 0.6617, ρ0 = −0.999112, we obtained the two curves on the phase plane (ρ,rn−1ρ′),
respectively, (see Figures 2.1 and 2.2). We notice that at the first case the relations

ρ(0)= ρ0, ρ0 < ρ(r) < ξ, rn−1ρ′(r) > 0, 0 < r < r1, ρ
(
r1
)= ξ, (4.3)

are fulfilled, while at the second one, we have

ρ(0)= ρ0, ρ0 ≤ ρ(r) < ξ, rn−1ρ′(r)≥ 0, 0≤ r ≤ r1, rn−11 ρ′
(
r1
)= 0. (4.4)

Following the same technique, we get the next two Figures 2.3 and 2.4 and notice that
in view of the last one, it seems that ξ = 0.83428� ξM is a “good” approximation of the
extreme (existence) point ξM according to Theorem 3.11.

We notice finally, for the convenience of the reader, that we have used the next NDSolve
command of MATHEMATICA:

ξ = 0.8; ρ0 =−0.9999997; r0 = 0.01; ρ′0 = (4/3)
(
ρ0 + 1

)
ρ0
(
ρ0− ξ

)
r30 ;

solution

=NDSolve
[{
p′1[r]= p2[r], r2p′2[r]+2r p2[r]= 4r2

(
p1[r] + 1

)
p1[r]

(
p1[r]− ξ

)
,

p1[r0]=ρ0,r20 p2
[
r0
]=ρ0

}
,
{
p1[r], p2[r]

}
,{r,0.1,12},MaxSteps->103

]
.

ParametricPlot
[
Evaluate

[{
p1[r],r2\p2[r]

}/
.solution

]
,{r,0,12}].

(4.5)

Remark 4.1. Following the same technique, we may prove the following existence result
(see Figure 4.1).
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Figure 4.1. (ρ0 � 0.999112, ξ �−0.6372).

There is a minimum ξm ∈ (−1,0) such that for every ξ ∈ (ξm,0), there exists a ρ0 ∈
(0,1) such that the solution ρ ∈�(P0), P0 = (ρ0,0) of the IVP

1
rn−1

(
rn−1ρ′(r)

)′ = 4λ2(ρ− 1)ρ(ρ− ξ),

lim
r→0+

rn−1ρ′(r)= 0, ρ(0)= ρ0
(4.6)

is a strictly decreasing function, which satisfies

lim
r→+∞r

n−1ρ′(r)= 0, lim
r→+∞ρ(r)= ξ. (4.7)

Furthermore, there exists a strictly decreasing solution ρm of the terminal value problem

1
rn−1

(
rn−1ρ′(r)

)′ = 4λ2(ρ− 1)ρ
(
ρ− ξm

)
,

lim
r→0+

ρ(r)= 1, lim
r→+∞ρ(r)= ξm.

(4.8)

Also, there is a (monoparametric) family of strictly decreasing solutions

lim
r→0+

ρ(r)= +∞, rn−1ρ′(r) < 0, −∞ < r < +∞, lim
r→+∞ρ(r)=−∞. (4.9)

Finally by Proposition 3.4 and taking into account Remark 3.7, we presume (Figure 4.2).

Conjecture 4.2. For any ξ ∈ (0,1), there is a maximal ρ0M ∈ (0,1) such that the solution
of IVP

1
rn−1

(
rn−1ρ′(r)

)′ = 4λ2(ρ+1)ρ(ρ− ξ) := f (ρ),

lim
r→0+

rn−1ρ′(r)= 0, lim
r→0

ρ(r)= ρ0,
(4.10)

with 0 < ρ0 < ρ0M , is oscillating and asymptotically stable, that is, limr→+∞ ρ(r)= 0.
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Figure 4.2. (ρ0 �−0.0001, ξ � 0.6597253).
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second Painlevé equation on the half-line, Nonlinear Analysis 57 (2004), no. 3, 401–419.
[12] Y. Rocard, Thermodynamique, chapter 5, Masson, Paris, 1967.



28 A terminal BVP

[13] W. Walter, Ordinary Differential Equations, Graduate Texts in Mathematics, vol. 182, Springer,
New York, 1998.

[14] W. Wasov, Asymptotic Expressions for Ordinary Differential Equations, John Wiley & Sons, New
York, 1965.

Alex P. Palamides: Department of Telecommunications Science and Technology,
University of Peloponesse, 22100 Tripolis, Greece
E-mail address: palamid@uop.gr

Theodoros G. Yannopoulos: Department of Mathematics, Technological Educational Institute (TEI)
of Athens, 12210 Egaleo, Greece
E-mail address: thyann@teiath.gr

mailto:palamid@uop.gr
mailto:thyann@teiath.gr

	1. Introduction
	2. Preliminaries: general theory
	3. Main results
	4. A numerical approach
	Acknowledgment
	References

