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1. Introduction

This paper is concerned with the existence of nontrivial solutions to the following prob-
lem:

−�u− μ

|x|2 u= |u|
p−2u+ λu in Ω \ {0},

u(x)= 0 on ∂Ω,
(1.1)

where 0 ∈ Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, 0 ≤ μ < μ =
((N − 2)/2)2, and μ is the best constant in the Hardy inequality:

C
∫
RN

u2

|x|2 dx ≤
∫
RN
|∇u|2dx (1.2)

(cf. [3, Lemma 2.1]), 2 < p < 2∗, where 2∗ = 2N/(N − 2) is the so-called critical Sobolev
exponent and λ > 0 is a parameter.

Finally, in Theorem 1.3 we prove, for small λ > 0, the existence of a solution to

−�u− μ

|x|2 u= up−1 + λu in Ω \ {0},
u(x) > 0 in Ω \ {0},
u(x)= 0 on ∂Ω.

(1.3)
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2 Solutions for a nonlinear elliptic Dirichlet BVP

In the case μ= 0, problem (1.1) has been studied extensively. For example, when p =
2∗, Capozzi et al. [1] have shown that (1.1) has at least one positive solution for N ≥
5. When 2 < p < 2∗, the existence of positive solutions of (1.1) has been shown in [5,
Chapter 1].

Our results are the following.

Theorem 1.1. Let 0∈Ω⊂RN (N ≥ 3) be an open bounded domain. If 0≤ μ < μ, then for
any λ > 0, problem (1.1) possesses a nontrivial solution.

Remark 1.2. We mention that when p = 2∗, the existence of nontrivial solutions of (1.1)
has been proved in [2, Theorem 1.3].

Theorem 1.3. Let 0 ∈Ω ⊂ RN (N ≥ 3) be an open bounded domain. If 0 ≤ μ < μ̄, prob-
lem (1.3) has a positive solution for 0 < λ < λ1, where λ1 denotes the first eigenvalue of the
operator −�−μ/|x|2.

This paper is organized as follows. In Section 2, we give some preliminaries. Section 3
is devoted to the proof of Theorem 1.1. The proof of Theorem 1.3 is contained in Section
4.

2. Notations and preliminaries

Throughout this paper, c, ci will denote various positive constants whose exact values are
not important. H1

0 (Ω) will be denoted as the standard Sobolev space, whose norm ‖ · ‖
is deduced by the standard inner product. By | · |p, we denote the norm of Lp(Ω). All
integrals are taken over Ω unless stated otherwise. On H1

0 (Ω), we use the norm

‖u‖2μ =
∫ (
|∇u|2− μ

|x|2 u
2
)
dx. (2.1)

It follows from the Hardy inequality that the norm ‖ · ‖μ is equivalent to the usual norm
‖ · ‖ of H1

0 (Ω). H1
0 (Ω) with the norm ‖ · ‖μ is simply denoted by H .

By using the critical point theory, we define the action function on H :

Jμ(u)= 1
2

∫ (
|∇u|2− μ

|x|2 u
2
)
dx− 1

p

∫
|u|p dx− λ

2

∫
|u|2dx. (2.2)

It is well known that a weak solution u∈H1
0 (Ω) of (1.1) is precisely a critical point of Jμ.

That is,

〈
J
′
μ(u),ϕ

〉=
∫ (
∇u∇ϕ− μ

|x|2 uϕ
)
dx−

∫
|u|p−2uϕdx− λ

∫
uϕdx = 0 (2.3)

holds for any ϕ∈H1
0 (Ω). The following definition has become standard.
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Definition 2.1 (see [6, Definition 1.16]). Let c ∈ R, let E be a Banach space, and let I ∈
C1(E,R). Say that I satisfies (PS)c condition if any sequence {un} in E such that I(un)→ c
and ‖I ′(un)‖E−1 → 0 has a convergent subsequence. If this holds for every c ∈R, I satisfies
(PS) condition.

Now we will prove that Jμ satisfies (PS) condition, which is contained in the following
two lemmas.

Lemma 2.2. If 0≤ μ < μ= ((N − 2)/2)2, then any sequence {un} ⊂H1
0 (Ω) satisfying

Jμ
(
un
)−→ c, J

′
μ

(
un
)−→ 0, n−→∞, (2.4)

is bounded in H1
0 (Ω).

Proof. Since

Jμ
(
un
)= 1

2

∫ (∣∣∇un∣∣2− μ

|x|2 u
2
n

)
dx− 1

p

∫ ∣∣un∣∣p dx− λ

2

∫ ∣∣un∣∣2dx,
〈
J
′
μ

(
un
)
,ϕ
〉=

∫ (
∇un∇ϕ− μ

|x|2 unϕ
)
dx−

∫ ∣∣un∣∣p−2unϕdx− λ
∫
unϕdx.

(2.5)

Choose 2 < q < p, and let ϕ= un in (2.5). For n large enough,

c+1+ o(1)
∥∥un∥∥μ

≥ Jμ
(
un
)− 1

q

〈
J
′
μ

(
un
)
,un
〉

=
(
1
2
− 1
q

)∥∥un∥∥2μ +
(
1
q
− 1

p

)∫ ∣∣un∣∣p dx+
(
1
q
− 1
2

)
λ
∫ ∣∣un∣∣2dx

≥
(
1
2
− 1
q

)∥∥un∥∥2μ +
(
1
q
− 1

p

)∫ ∣∣un∣∣p dx+
(
1
q
− 1
2

)
λC
∥∥un∥∥2μ.

(2.6)

It follows from p > 2 that {un} is bounded in H1
0 (Ω). �

Lemma 2.3. Under the assumption of Lemma 2.2, {un} possesses a convergent subsequence
in H .

Proof. By Lemma 2.2, going if necessary to a subsequence, we can assume that

un⇀ u in H ,

un −→ u in Lr(Ω) for 1≤ r < 2∗.
(2.7)

Let f (u) = |u|p−2u, [5, Theorem A.2] implies that f (un)→ f (u) in Ls, where s = r/(r −
1). Observe that

∥∥un−u
∥∥2
μ =

〈
J
′
μ

(
un
)− J

′
μ(u),un−u

〉
+
∫ [(

f
(
un
)− f (u)

)(
un−u

)
+ λ
(
un−u

)2]
dx.

(2.8)
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It is clear that
〈
J
′
μ

(
un
)− J

′
μ(u),un−u

〉
−→ 0, n−→∞. (2.9)

It follows from the Hölder inequality that
∫ [(

f
(
un
)− f (u)

)(
un−u

)]
dx ≤ ∣∣ f (un)− f (u)

∣∣
r/(r−1)

∣∣un−u
∣∣
r −→ 0, n−→∞.

(2.10)

Thus we have proved that ‖un−u‖μ→ 0, n→∞. �

3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 via the following linking theorem from Rabi-
nowitz [5, Theorem 5.3] (see also [6]).

Proposition 3.1. Let E be a Banach space with E = Y ⊕X , where dimY <∞. Suppose that
I ∈ C1(E,R) and satisfies that

(i) there exist ρ,α > 0 such that I |∂Bρ
⋂
X≥ α;

(ii) there exist e ∈ ∂B1
⋂
X and R > ρ such that if Q ≡ (Bρ

⋂
Y)⊕{re; 0 < r < R}, then

I |∂Q≤ 0.
If I satisfies (PS)c condition with

c = inf
h∈Γ

max
u∈Q

I
(
h(u)

)
, (3.1)

where

Γ= {h∈ C(Q,E);h |∂Q= id
}
, (3.2)

then c is a critical value of I and c ≥ α.

Remark 3.2 (see [5, Remark 5.5(iii)]). Suppose I |Y≤ 0 and there are an e ∈ ∂B1
⋂
X and

T̃ > ρ such that I(u) ≤ 0 for u ∈ Y ⊕ span{e} and ‖u‖ ≥ T̃ , then for any large T , Q =
(Bρ

⋂
Y)⊕{te;0 < t < T} satisfies I |∂Q≤ 0.

To continue our discussion, we may assume that there is k such that λk ≤ λ < λk+1,
where λk is the kth eigenvalue of the operator (−�− μ/|x|2) with Dirichlet boundary
condition (see [2, 4]). Let

Y := Yk = span
{
φ1,φ2, . . . ,φk

}
, (3.3)

here φi denotes the eigenfunction corresponding to λi. DecomposeH1
0 (Ω)=Y ⊕X (where

X is the topological complement of Y in H1
0 (Ω)). For any y ∈ Y , we have that

∫ (∣∣∇y
∣∣2− μ

|x|2 y
2
)
dx ≤ λk

∫
y2dx, (3.4)

∫ (∣∣∇u∣∣2− μ

|x|2 u
2
)
dx ≥ λk+1

∫
u2dx for any u∈ X. (3.5)

Now we will show that Jμ satisfies (i), (ii) in Proposition 3.1 in our situation.
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Proposition 3.3. There exist ρ,α > 0 such that Jμ |∂Bρ
⋂
X≥ α.

Proof. For any u∈ X , λk ≤ λ < λk+1, we obtain from (3.5) and Sobolev inequality that

Jμ(u)= 1
2

∫ (
|∇u|2− μ

|x|2 u
2
)
dx− 1

p

∫
|u|p dx− λ

2

∫
|u|2dx

≥ 1
2
λk+1− λ

λk+1

∫ (
|∇u|2− μ

|x|2 u
2
)
dx− 1

p

∫
|u|p dx

≥ 1
2
λk+1− λ

λk+1
‖u‖2μ− c‖u‖pμ .

(3.6)

Then we can choose ‖u‖μ = ρ sufficiently small and α > 0 such that Jμ |∂Bρ
⋂
X≥ α. �

Proposition 3.4. Jμ verifies (ii) of Proposition 3.1.

Proof. First, for any y ∈ Y , we obtain from (3.4) that

Jμ(y)= 1
2

∫ (
|∇y|2− μ

|x|2 y
2
)
dx− 1

p

∫
|y|p dx− λ

2

∫
|y|2dx

≤ 1
2
λk − λ

λk

∫ (
|∇y|2− μ

|x|2 y
2
)
dx− 1

p

∫
|y|p dx

= 1
2
λk − λ

λk
‖y‖2μ−

1
p
|y|pp.

(3.7)

Thus Jμ(y)≤ 0 since all norms are equivalent on Y . Let e := φk+1 be the (k +1)th eigen-
function of (−�−μ/ | x |2), since for any y ∈ Y ,

Jμ
(
y + tφk+1

)−→−∞ as t −→∞. (3.8)

It follows fromRemark 3.2 that we can takeT sufficiently large and defineQ = (BT
⋂
Y)⊕

{re;0 < t < T} such that Proposition 3.4 holds. �

The proof in the case of c ≥ α is the same as in the proof of [5, Theorem 5.3], by now
we have completed the proof of Theorem 1.1.

4. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3. Here we define the following Euler-Lagrange
functional of (1.3) on H :

J̃μ(u)= 1
2

∫ (
|∇u|2− μ

|x|2 u
2
)
dx− 1

p

∫ (
u+
)p
dx− λ

2

∫ (
u+
)2
dx, (4.1)

where u+ =max{u,0}, and for any ϕ∈ C∞0 (Ω),

〈
J̃
′
μ(u),ϕ

〉
=
∫ (
∇u∇ϕ− μ

|x|2 uϕ
)
dx−

∫ (
u+
)p−1

ϕdx− λ
∫ (

u+
)
ϕdx. (4.2)

By using the same method in the proof of Theorem 1.1, we obtain that J̃μ satisfies (PS)
condition. Next, we just use the mountain pass theorem to prove Theorem 1.3.
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It is easy to check that J̃μ(u) ∈ C1(H1
0 (Ω),R), we will verify the assumptions of the

mountain pass theorem. By the Sobolev theorem, there exists c1 > 0, such that for u ∈
H ,‖u‖Lp(Ω) ≤ c1‖u‖μ. Hence we have

J̃μ(u)= 1
2

∫ (
|∇u|2− μ

|x|2 u
2
)
dx− 1

p

∫ (
u+
)p
dx− λ

2

∫ (
u+
)2
dx

≥ 1
2
‖u‖2μ−

c1
p
‖u‖pμ − λ

2λ1
‖u‖2μ

= 1
2

(
1− λ

λ1

)
‖u‖2μ−

c1
p
‖u‖pμ .

(4.3)

So there is r > 0 such that

b := inf
‖u‖μ=r

J̃μ(u) > 0= J̃μ(0). (4.4)

Let u∈H with u > 0 on Ω, we have, for t ≥ 0,

J̃μ(tu)= t2

2

∫ (
|∇u|2− μ

|x|2 u
2
)
dx− tp

p

∫
(u+)p dx− λt2

2

∫ (
u+
)2
dx. (4.5)

Since p > 2, there exists e := tu, such that ‖e‖μ > r and J̃μ(e) ≤ 0. By the mountain pass

theorem, J̃μ has a positive critical value, and problem

−�u− μ

|x|2 u=
(
u+
)p−1

+ λu+ in Ω \ {0},
u∈H1

0 (Ω)
(4.6)

has a nontrivial solution u. Multiplying the equation by u− and integrating over Ω, we
find

0=
∫ (∣∣∇u−∣∣2− μ

|x|2
(
u−
)2)

dx = ‖u−‖2μ. (4.7)

Hence u− = 0, that is, u ≥ 0. A standard elliptic regularity argument implies that u ∈
C2(Ω \ {0}), in which case, by the strong maximum principle, u is positive, thus is the
solution of problem (1.3).
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