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The paper deals with the existence and nonexistence of positive solutions for a class of
p-Laplacian systems. We investigate the effect of the size of the domain on the existence
of positive solution for the problem in sublinear cases. We will use fixed point theorems
in a cone.

Copyright © 2006 Haiyan Wang. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper we consider the existence and nonexistence of positive solutions to the
boundary value problem of the p-Laplacian system

(
tN−1

∣
∣u′i (t)

∣
∣p−2u′i (t)

)′
+ tN−1 fi

(
u1, . . . ,un

)= 0, 0 < t < R, i= 1, . . . ,n,

u′i (0)= ui(R)= 0, i= 1, . . . ,n,
(1.1)

where p > 1, N ≥ 1, R > 0, and fi is nonnegative continuous, i= 1, . . . ,n.
Such a problem arises when we seek the radial solutions of the following elliptic sys-

tem:

−Δpui = fi
(
u1, . . . ,un

)
in B, i= 1, . . . ,n,

ui = 0 on ∂Ω, i= 1, . . . ,n,
(1.2)

where Δpui = div(|∇ui|p−2∇ui), i= 1, . . . ,n, p > 1, B = {x ∈RN : |x| < R}, R > 0.
Equation (1.2) covers several important cases. When p = 2, (1.2) becomes the elliptic

system

−Δui = fi(u1, . . . ,un) in B, i= 1, . . . ,n,

ui = 0 on ∂B, i= 1, . . . ,n.
(1.3)
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2 Existence and nonexistence of positive solutions

When n= 1, (1.2) becomes the usual p-Laplacian

−Δpu= f (u) in B,

u= 0 on ∂B.
(1.4)

When n= 1 and p = 2, (1.2) becomes the usual Laplacian

−Δu= f (u) in B

u= 0 on ∂B.
(1.5)

In several papers [6, 8], Wang studied the existence of nontrivial solutions of (1.1)
for a fixed R > 0. It was shown that (1.1), for a fixed R > 0, has a nontrivial solution for
sublinear nonlinearities. Related results can also be found in [1].

In this paper we investigate the effect of the size of the domain on the existence and
nonexistence of positive solutions of the quasilinear elliptic system (1.1) in sublinear
cases.

Let R = (−∞,∞), R+ = [0,∞), and Rn
+ =

∏n
i=1R+. Also, for u = (u1, . . . ,un) ∈ Rn

+, let
‖u‖ =∑n

i=1 |ui| and

f(u)= ( f1(u), . . . , fn(u)
)= ( f1

(
u1, . . . ,un

)
, . . . , fn

(
u1, . . . ,un

))
. (1.6)

We now turn to the general assumptions for this paper.
(H1) fi :Rn

+→R+ is continuous, i= 1, . . . ,n.
(H2) There exists an i∈ {1, . . . ,n} such that

lim
‖u‖→0

fi(u)
‖u‖p−1 =∞ (1.7)

for u= (u1, . . . ,un)∈Rn
+.

(H3) For all i∈ {1, . . . ,n},

lim
‖u‖→∞

fi(u)
‖u‖p−1 = 0, (1.8)

where u= (u1, . . . ,un)∈Rn
+.

The main results of this paper are Theorems 1.1, 1.2, and 1.3.

Theorem 1.1. Assume (H1) and (H2) hold. Then there is an R0 > 0 such that (1.1) has a
positive solution for 0 < R < R0.

Theorem 1.2. Assume (H1), (H2), and (H3) hold. Then (1.1) has a positive solution for all
R > 0.

The following assumption will allow us to establish a nonexistence theorem.
(H4) For all i∈ {1, . . . ,n},

limsup
‖u‖→0

fi(u)
‖u‖p−1 <∞, limsup

‖u‖→∞

fi(u)
‖u‖p−1 <∞, (1.9)

where u= (u1, . . . ,un)∈Rn
+.
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Theorem 1.3. Assume (H1) and (H4) hold. Then there is an R0 > 0 such that (1.1) has no
positive solution for 0 < R < R0.

We now give two examples to demonstrate the theorems.

Example 1.4.

div
(∣∣∇u1

∣
∣p−2∇u1

)
+ e(u1+···+un) = 0 in B,

div
(∣∣∇ui

∣
∣p−2∇ui

)
+ fi

(
u1, . . . ,un

)
in B, i= 2, . . . ,n,

ui = 0 on ∂B, i= 1, . . . ,n,

(1.10)

where p > 1, B = {x ∈RN : |x| < R}, R > 0, fi are any nonnegative continuous functions.
Then (1.10) has a positive solution for sufficiently small R > 0 according to Theorem 1.1.

Example 1.5.

div
(|∇ui

∣
∣p−2∇ui

)
+
(
u1 + ···+un

)pi = 0 in B i= 1, . . . ,n,

ui = 0 on ∂B, i= 1, . . . ,n,
(1.11)

where p > 1, 0 < p1, p2, . . . , pn < p− 1, B = {x ∈ RN : |x| < R}, R > 0. Then (1.11) has a
nontrivial solution for all R > 0 according to Theorem 1.2.

2. Preliminaries

Let ϕ(t) = |t|p−2t, then, for t > 0, ϕ(t) = tp−1 and ϕ−1(t) = t1/(p−1). It is easy to see that
ϕ−1(σϕ(t))= ϕ−1(σ)t for t > 0 and σ > 0.

We will deal with classical solutions of (1.1), namely a vector-valued function u =
(u1(t), . . . ,un(t)) with ui ∈ C1[0,R], and ϕ(u′i )∈ C1(0,R), i= 1, . . . ,n, which satisfies (1.1).
A solution u(t)= (u1(t), . . . ,un(t)) is positive if ui(t)≥ 0, i= 1, . . . ,n, for all t ∈ (0,R) and
there is at least one nontrivial component of u. In fact, it is easy to prove that such a
nontrivial component of u is positive on (0,R).

Applying the change of variables, t = Rr, we can transform (1.1) into the form

(
rN−1ϕ

(
u′i (r)
R

))′
+RrN−1 fi(u)= 0, 0 < r < 1, i= 1, . . . ,n,

u′(0)= u(1)= 0.
(2.1)

Note that we still use ui(r) and vi(r) for the new functions, ui(Rr) and vi(Rr). Thus
dui(t)/dt = (dui(Rr)/dr)(dr/dt)= (dui(Rr)/dr)(1/R)= (dui(r)/dr)(1/R).

We now recall some concepts and conclusions on the fixed point index in a cone in
[2, 3]. Let X be a Banach space and let K be a closed, nonempty subset of X . K is said to
be a cone if (i) αu+βv ∈ K for all u,v ∈ K and all α,β > 0 and (ii) u,−u∈ K imply u= 0.
Assume Ω is a bounded open subset in X with the boundary ∂Ω, and let T : K ∩Ω→ K
be completely continuous such that Tx 
= x for x ∈ ∂Ω∩K , then the fixed point index
i(T ,K ∩Ω,K) is defined. If i(T ,K ∩Ω,K) 
= 0, then T has a fixed point in K ∩Ω. The
following well-known result of the fixed point index is crucial in our arguments.



4 Existence and nonexistence of positive solutions

Lemma 2.1 [2, 3]. Let E be a Banach space and K a cone in E. Further let r > 0, Kr =
{u ∈ K : ‖x‖ < r}, and ∂Kr = {u ∈ K : ‖x‖ = r}. Assume that T : K̄r → K is completely
continuous.

(i) If there exists an x0 ∈ K \ {0} such that

x−Tx 
= tx0 ∀x ∈ ∂Kr , t ≥ 0, (2.2)

then

i(T ,Kr ,K)= 0. (2.3)

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr and Tx 
= x for x ∈ ∂Kr , then

i(T ,Kr ,K)= 1. (2.4)

In order to apply Lemma 2.1 to (1.1), let X be the Banach space C[0,1]×···×C[0,1]
︸ ︷︷ ︸

nand, for u= (u1, . . . ,un)∈ X ,

‖u‖ =
n∑

i=1
sup
t∈[0,1]

∣
∣ui(t)

∣
∣. (2.5)

For u∈ X or Rn
+, ‖u‖ denotes the norm of u in X or Rn

+, respectively.
Define K to be a cone in X defined by

K = {(u1, . . . ,un
)∈ X : ui(t)≥ 0, t ∈ [0,1], i= 1, . . . ,n

}
. (2.6)

Also, for each r positive number, define Ωr by

Ωr = {u∈ K : ‖u‖ < r}. (2.7)

Note that ∂Ωr = {u∈ K : ‖u‖ = r}.
Let T : K → X be a map with components (T1, . . . ,Tn). We define Ti, i= 1, . . . ,n, by

Tiu(t)= R
∫ 1

t
ϕ−1

(
R

sN−1

∫ s

0
τN−1 fi

(
u(τ)

)
dτ
)
ds, t ∈ [0,1]. (2.8)

It is straightforward to verify that the problem of finding positive solutions to (1.1) is
equivalent to the fixed point equation

Tu= u in K. (2.9)

It is easy to show that T(K)⊂ K and is completely continuous. In particular, we have
the following assertion.

Lemma 2.2. Assume (H1) holds. Then T(K)⊂ K and T : K → K is completely continuous.

For each i= 1, . . . ,n, define new function f̂i(t) :R+→R+ by

f̂i(t)=max
{
fi(u) : u∈Rn

+ and ‖u‖ ≤ t
}
. (2.10)
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Lemma 2.3 [7, Lemma 2.8]. Let (H1) hold and assume lim‖u‖ → ∞( fi(u)/‖u‖p−1) = f i∞
and lim‖u‖→0( fi(u)/‖u‖p−1)= f i0 , u∈Rn

+ , f
i
0 , f

i∞ ∈ [0,∞] for some i∈ {1, . . . ,n}.
Then limt→0+( f̂i(t)/ϕ(t))= f i0 and limt→∞( f̂i(t)/ϕ(t))= f i∞.

Lemma 2.4. Assume (H1) holds and let r > 0. If there exists an ε > 0 such that

f̂i(r)≤ ϕ(ε)ϕ(r), i= 1, . . . ,n, (2.11)

then

‖Tu‖ ≤ nRϕ−1
[
R

N

]
ε‖u‖ for u∈ ∂Ωr . (2.12)

Proof. From the definition of T , for u∈ ∂Ωr , we have

‖Tu‖ =
n∑

i=1
sup
t∈[0,1]

∣
∣Tiu(t)

∣
∣= R

n∑

i=1

∫ 1

0
ϕ−1

[
R

sN−1

∫ s

0
τN−1 fi

(
u(τ)

)
dτ
]
ds

≤ R
n∑

i=1

∫ 1

0
ϕ−1

[
R

sN−1

∫ s

0
τN−1dτ f̂i(r)

]
ds≤ nRϕ−1

[
R

N
ϕ(ε)ϕ(r)

]

= nRϕ−1
[
R

N
ϕ(εr)

]
= nRϕ−1

(
R

N

)
ε‖u‖.

(2.13)

�

Lemma 2.5. Assume (H1) holds and r > 0. Then

‖Tu‖ ≤ nRϕ−1
(
R

N

)
ϕ−1

(
M̂r
)

holds∀u∈ ∂Ωr , (2.14)

where M̂r = 1+max{ fi(u) : u∈Rn
+ and ‖u‖ ≤ r, i= 1, . . . ,n} > 0.

Proof. Since fi(u(t)) ≤ M̂r = ϕ(ϕ−1(M̂r)) for t ∈ [0,1], i = 1, . . . ,n, it is easy to see that
this lemma can be shown in a similar manner as Lemma 2.4. �

3. Proof of Theorem 1.1

Fix a number r2 > 0. Lemma 2.5 implies that there exists an R0 > 0 such that

‖Tu‖ < ‖u‖ for u∈ ∂Ωr2 , 0 < R < R0. (3.1)

Now let 0 < R < R0 and η > 0 be such that

R
η

2
ϕ−1

(
R

N4N

)
≥ 1. (3.2)
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Since

lim
‖u‖→0

fi(u)
‖u‖p−1 =∞, (3.3)

there is 0 < r1 < r2 such that

fi(u)≥ ϕ(η)ϕ(‖u‖) (3.4)

for u= (u1, . . . ,un)∈Rn
+ and ‖u‖ ≤ r1.

If u−Tu = 0 for some u ∈ ∂Ωr1 , we already find the desired solution of (1.1). There-
fore we assume that

u−Tu 
= 0 ∀u∈ ∂Ωr1 , (3.5)

we now claim that

u−Tu 
= tv ∀u∈ ∂Ωr1 , t ≥ 0, (3.6)

where v = (θ(r), . . . ,θ(r)), and θ ∈ C[0,1] such that 0 ≤ θ(r) ≤ 1 on [0,1], θ(r) ≡ 1 on
[0,1/4] and θ(r)≡ 0 on [1/2,1]. Thus, v ∈ K \ {0}. If there exists u∗ = (u∗1 , . . . ,u∗n )∈ ∂Ωr1

and t0 ≥ 0 such that u∗ −Tu∗ = t0v, we will show that this leads to a contradiction. Since
(3.5) is true, we have t0 > 0. Since T(K) ⊂ K , we obtain u∗i (r) ≥ t0θ(r) for all r ∈ [0,1].
Let

t∗ = sup
{
t : u∗i (r)≥ tθ(r)∀r ∈ [0,1]

}
. (3.7)

It follows that t0 ≤ t∗ <∞ and u∗i (r) ≥ t∗θ(r) for all r ∈ [0,1]. Now, for r ∈ [0,1], we
have

u∗i (r)= Tiu∗(r) + t0θ(r)

= R
∫ 1

r
ϕ−1

(
R

sN−1

∫ s

0
τN−1 fi(u∗(τ))dτ

)
ds+ t0θ(r).

(3.8)

Note that
∑n

j=1u
∗
j (r)≤ r1 for r ∈ [0,1]. Formula (3.4) implies that, for r ∈ [0,1/2],

u∗i (r)≥ R
∫ 1

1/2
ϕ−1

(
R

sN−1

∫ s

0
τN−1ϕ(η)ϕ

( n∑

j=1
u∗j (τ)

)

dτ

)

ds+ t0θ(r)

≥ R
∫ 1

1/2
ϕ−1

(

R
∫ s

0
τN−1ϕ(η)ϕ

(
u∗i (τ)

)
dτ

)

ds+ t0θ(r)

≥ R

2
ϕ−1

(

R
∫ 1/4

0
τN−1ϕ(η)ϕ

(
t∗θ(τ)

)
dτ

)

+ t0θ(r)

= R

2
ϕ−1

(

R
∫ 1/4

0
τN−1dτϕ(η)ϕ

(
t∗
)
)

+ t0θ(r)

= R

2
ϕ−1

(
R

N4N
ϕ
(
ηt∗
)
)

+ t0θ(r).

(3.9)
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Now, in view of the fact that ϕ−1(σϕ(t))= ϕ−1(σ)t, we have, for r ∈ [0,1/2],

u∗i (r)≥ t∗
ηR

2
ϕ−1

(
R

N4N

)
+ t0θ(r)≥ t∗ + t0θ(r)≥

(
t∗ + t0

)
θ(r), (3.10)

and hence

u∗i (r)≥
(
t∗ + t0

)
θ(r), r ∈ [0,1], (3.11)

which is a contradiction to the definition of t∗. Thus, in view of Lemma 2.1,

i
(
T,Ωr1 ,K

)= 0, i
(
T,Ωr2 ,K

)= 1. (3.12)

It follows from the additivity of the fixed point index that i(T,Ωr2 \ Ω̄r1 ,K)= 1. Thus,
T has a fixed point in Ωr2 \ Ω̄r1 , which is the desired positive solution of (1.1).

4. Proof of Theorem 1.2

Let R be an arbitrary positive number. Since (H3) is true, it follows from Lemma 2.3 that

limt→∞( f̂i(t)/ϕ(t))= 0, i= 1, . . . ,n. Hence, there is an r2 > 0 such that

f̂i(r2)≤ ϕ(ε)ϕ(r2), i= 1, . . . ,n, (4.1)

where the constant ε > 0 satisfies

nRϕ−1
(
R

N

)
ε < 1. (4.2)

Thus, we have by Lemma 2.4 that

‖T(u)‖ ≤ nRϕ−1
(
R

N

)
ε‖u‖ < ‖u‖ for u∈ ∂Ωr2 . (4.3)

By Lemma 2.1,

i
(
T,Ωr2 ,K

)= 1. (4.4)

Next using exactly the same argument as in Theorem 1.1, we can determine a 0<r1<r2
from (H2) such that (3.6) holds. Note that R can be any positive number for Theorem 1.2.
Thus it follows from Lemma 2.1 that

i
(
T,Ωr1 ,K

)= 0, i
(
T,Ωr2 ,K

)= 1, (4.5)

and hence, i(T,Ωr2 \ Ω̄r1 ,K) = 1. Thus, T has a fixed point in Ωr2 \ Ω̄r1 . Consequently,
(1.1) has a positive solution for all R > 0.
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5. Proof of Theorem 1.3

Since (H4) is true, for each i= 1, . . . ,n, there exist positive numbers εi1, ε
i
2, r

i
1, and ri2 such

that ri1 < ri2,

fi(u)≤ εi1ϕ(‖u‖) for u∈Rn
+, ‖u‖ ≤ ri1,

fi(u)≤ εi2ϕ(‖u‖) for u∈Rn
+, ‖u‖ ≥ ri2.

(5.1)

Let

εi =max

{

εi1,ε
i
2,max

{
fi(u)

ϕ(‖u‖) : u∈Rn
+, r

i
1 ≤ ‖u‖ ≤ ri2

}}

> 0 (5.2)

and ε =maxi=1,...,n{εi} > 0. Thus, we have

fi(u)≤ εϕ(‖u‖) for u∈Rn
+, i= 1, . . . ,n. (5.3)

Assume v(t) is a positive solution of (1.1). We will show that this leads to a contradiction
for 0 < R < R0, where

nR0ϕ
−1
(
R0ε

N

)
< 1. (5.4)

In fact, for 0 < R < R0, since Tv(t)= v(t) for t ∈ [0,1], we find

‖v‖ = ‖Tv‖ =
n∑

i=1
sup
t∈[0,1]

∣
∣Tiv(t)

∣
∣≤ R

n∑

i=1

∫ 1

0
ϕ−1

[
R

sN−1

∫ s

0
τN−1dτεϕ

(‖v‖)
]

ds

≤ nRϕ−1
(
Rε

N
ϕ(‖v‖)

)
= nRϕ−1

(
Rε

N

)
‖v‖ < ‖v‖,

(5.5)

which is a contradiction.
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