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Abstract

In this paper, we investigate the Cauchy problem for the incompressible magneto-
micropolar fluid equations with partial viscosity in ℝn(n = 2, 3). We obtain a Beale-
Kato-Majda type blow-up criterion of smooth solutions.
MSC (2010): 76D03; 35Q35.

Keywords: magneto-micropolar fluid equations, smooth solutions; blow-up criterion

1 Introduction
The incompressible magneto-micropolar fluid equations in ℝn(n = 2, 3) takes the fol-

lowing form
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu − (μ + χ)�u + u · ∇u − b · ∇b + ∇(p +
1
2

|b|2) − χ∇ × v = 0,

∂tv − γ�v − κ∇divv + 2χv + u · ∇v − χ∇ × u = 0,

∂tb − ν�b + u · ∇b− b · ∇u = 0,

∇ · u = 0, ∇ · b = 0,

(1:1)

where u(t, x), v(t, x), b(t, x) and p(t, x) denote the velocity of the fluid, the micro-

rotational velocity, magnetic field and hydrostatic pressure, respectively. μ, c, g, � and

ν are constants associated with properties of the material: μ is the kinematic viscosity,

c is the vortex viscosity, g and � are spin viscosities, and 1
ν
is the magnetic Reynold.

The incompressible magneto-micropolar fluid equations (1.1) has been studied exten-

sively (see [1-8]). Rojas-Medar [5] established the local in time existence and unique-

ness of strong solutions by the spectral Galerkin method. Global existence of strong

solution for small initial data was obtained in [4]. Rojas-Medar and Boldrini [6] proved

the existence of weak solutions by the Galerkin method, and in 2D case, also proved

the uniqueness of the weak solutions. Wang et al. [2] obtained a Beale-Kato-Majda

type blow-up criterion for smooth solution (u, v, b) to the magneto-micropolar fluid

equations with partial viscosity that relies on the vorticity of velocity ∇ × u only (see

also [8]). For regularity results, refer to Yuan [7] and Gala [1].

If b = 0, (1.1) reduces to micropolar fluid equations. The micropolar fluid equations

was first proposed by Eringen [9]. It is a type of fluids which exhibits the micro-rota-

tional effects and micro-rotational inertia, and can be viewed as a non-Newtonian
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fluid. Physically, micropolar fluid may represent fluids that consisting of rigid, ran-

domly oriented (or spherical particles) suspended in a viscous medium, where the

deformation of fluid particles is ignored. It can describe many phenomena appeared in

a large number of complex fluids such as the suspensions, animal blood, liquid crystals

which cannot be characterized appropriately by the Navier-Stokes equations, and that

it is important to the scientists working with the hydrodynamic-fluid problems and

phenomena. For more background, we refer to [10] and references therein. The exis-

tences of weak and strong solutions for micropolar fluid equations were treated by

Galdi and Rionero [11] and Yamaguchi [12], respectively. The global regularity issue

has been thoroughly investigated for the 3D micropolar fluid equations and many

important regularity criteria have been established (see [13-19]). The convergence of

weak solutions of the micropolar fluids in bounded domains of ℝn was investigated

(see [20]). When the viscosities tend to zero, in the limit, a fluid governed by an Euler-

like system was found.

If both v = 0 and c = 0, then Equations 1.1 reduces to be the magneto-hydrodynamic

(MHD) equations. The local well-posedness of the Cauchy problem for the incompres-

sible MHD equations in the usual Sobolev spaces Hs(ℝ3) is established in [21] for any

given initial data that belongs to Hs(ℝ3), s ≥ 3. But whether this unique local solution

can exist globally is a challenge open problem in the mathematical fluid mechanics.

There are numerous important progresses on the fundamental issue of the regularity

for the weak solution to (1.1), (1.2) (see [22-34]). In this paper, we consider the mag-

neto-micropolar fluid equations (1.1) with partial viscosity, i.e., μ = c = 0. Without loss

of generality, we take g = � = ν = 1. The corresponding magneto-micropolar fluid

equations thus reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu + u · ∇u − b · ∇b + ∇(p +
1
2

|b|2) = 0,

∂tv − �v − ∇divv + u · ∇v = 0,
∂tb − �b + u · ∇b− b · ∇u = 0,
∇ · u = 0, ∇ · b = 0.

(1:2)

We obtain a blow-up criterion of smooth solutions to (1.2), which improves our pre-

vious result (see [2]).

In the absence of global well-posedness, the development of blow-up/non-blow-up

theory is of major importance for both theoretical and practical purposes. For incom-

pressible Euler and Navier-Stokes equations, the well-known Beale-Kato-Majda’s criter-

ion [35] says that any solution u is smooth up to time T under the assumption that∫ T
0 ‖ ∇ × u(t)‖L∞dt < ∞. Beale-Kato-Majda’s criterion is slightly improved by Kozono

et al. [36] under the assumption
∫ T
0 ‖ ∇ × u(t)‖BMOdt < ∞. In this paper, we obtain a

Beale-Kato-Majda type blow-up criterion of smooth solutions to Cauchy problem for

the magneto-micropolar fluid equations (1.2).

Now, we state our results as follows.

Theorem 1.1 Assume that u0, v0, b0 Î Hm(ℝn)(n = 2, 3), m ≥ 3 with ∇ · u0 = 0, ∇ ·

b0 = 0. Let (u, v, b) be a smooth solution to Equations 1.2 with initial data u(0, x) = u0
(x), v(0, x) = v0(x), b(0, x) = b0(x) for 0 ≤ t <T . If u satisfies
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∫ T

0
‖ ∇ × u(t)‖Ḃ0∞,∞

dt < ∞, (1:3)

then the solution (u, v, b) can be extended beyond t = T.

We have the following corollary immediately.

Corollary 1.1 Assume that u0, v0, b0 Î Hm(ℝn)(n = 2, 3), m ≥ 3 with ∇ · u0 = 0, ∇ ·

b0 = 0. Let (u, v, b) be a smooth solution to Equations 1.2 with initial data u(0, x) = u0
(x), v(0, x) = v0(x), b(0, x) = b0(x) for 0 ≤ t <T . Suppose that T is the maximal exis-

tence time, then

∫ T

0
‖ ∇ × u(t)‖Ḃ0∞,∞

dt = ∞. (1:4)

The plan of the paper is arranged as follows. We first state some preliminary on

functional settings and some important inequalities in Section 2 and then prove the

blow-up criterion of smooth solutions to the magneto-micropolar fluid equations (1.2)

in Section 3.

2 Preliminaries
Let S(Rn) be the Schwartz class of rapidly decreasing functions. Given f ∈ S(Rn), its

Fourier transform F f = f̂ is defined by

f̂ (ξ) =
∫
Rn

e−ix·ξ f (x)dx

and for any given g ∈ S(Rn), its inverse Fourier transform F−1g =
	

g is defined by

	

g(x) =
∫
Rn

eix·ξ g(ξ)dξ .

In what follows, we recall the Littlewood-Paley decomposition. Choose a non-nega-

tive radial functions φ ∈ S(Rn), supported in C = {ξ ∈ Rn : 3
4 ≤ |ξ | ≤ 8

3 } such that

∞∑
k=−∞

φ(2−k
ξ) = 1, ∀ξ ∈ Rn\{0}.

The frequency localization operator is defined by

�kf =
∫
Rn

	

φ(y)f (x − 2−ky)dy.

Next, we recall the definition of homogeneous function spaces (see [37]). For (p, q) Î

[1, ∞]2 and s Î ℝ, the homogeneous Besov space Ḃs
p,q is defined as the set of f up to

polynomials such that

‖ f‖Ḃs
p,q

�
∥∥∥2ks ‖ �kf‖Lp

∥∥∥
lq(Z)

< ∞.

In what follows, we shall make continuous use of Bernstein inequalities, which comes

from [38].

Lemma 2.1 For any s Î N, 1 ≤ p ≤ q ≤ ∞ and f Î Lp(ℝn), then the following inequal-

ities
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c2km ‖ �kf‖Lp ≤‖ ∇m�kf‖Lp ≤ C2km ‖ �kf‖Lp (2:1)

and

‖ �kf‖Lq ≤ C2
n( 1p−1

q )k ‖ �kf‖Lp (2:2)

hold, where c and C are positive constants independent of f and k.

The following inequality is well-known Gagliardo-Nirenberg inequality.

Lemma 2.2 Let j, m be any integers satisfying 0 ≤ j <m, and let 1 ≤ q, r ≤ ∞, and

p ∈ R, j
m ≤ θ ≤ 1 such that

1
p

− j
n
= θ(

1
r

− m
n
) + (1 − θ)

1
q
.

Then for all f Î Lq(ℝn) ∩Wm,r(ℝn), there is a positive constant C depending only on

n, m, j, q, r, θ such that the following inequality holds:

‖ ∇ jf‖Lp ≤ C ‖ f ‖1−θ
Lq ‖ ∇mf ‖θ

Lr (2:3)

with the following exception: if 1 <r < 1 and m − j − n
r is a nonnegative integer, then

(2.3) holds only for a satisfying j
m ≤ θ < 1.

The following lemma comes from [39].

Lemma 2.3 Assume that 1 <p < ∞. For f, g Î Wm,p, and 1 <q1, q2 ≤ ∞, 1 <r1, r2 < 1,

we have

‖ ∇α(fg) − f∇αg‖Lp ≤ C
(‖ ∇f‖Lq1 ‖ ∇α−1g‖Lr1 + ‖ g‖Lq2 ‖ ∇αf‖Lr2

)
, (2:4)

where 1 ≤ a ≤ m and 1
p = 1

q1
+ 1

r1
= 1

q2
+ 1

r2.

Lemma 2.4 There exists a uniform positive constant C, such that

‖ ∇f‖L∞ ≤ C
(
1+ ‖ f‖L2+ ‖ ∇ × f‖Ḃ0∞,∞ ln(e+ ‖ f‖H3 )

)
. (2:5)

holds for all vectors f Î H3(ℝn)(n = 2, 3) with ∇ · f = 0.

Proof. The proof can be founded in [36]. For the convenience of the readers, the

proof will be also sketched here. It follows from Littlewood-Paley composition that

∇f =
0∑

k=−∞
�k∇f +

A∑
k=1

�k∇f +
∞∑

k=A+1

�k∇f . (2:6)

Using (2.1), ( 2.2) and (2.6), we obtain

‖ ∇f‖L∞ ≤
0∑

k=−∞
‖ �k∇f‖L∞+ ‖

A∑
k=1

�k∇f‖L∞ +
∞∑

k=A+1

‖ �k∇f‖L∞

≤ C
0∑

k=−∞
2(1+

n
2 )k ‖ �kf‖L2 + A max

1≤k≤A
‖ �k∇f‖L∞+

∞∑
k=A+1

2−(2− n
2 )k ‖ �k∇3f‖L2

≤ C(‖ f‖L2 + A ‖ ∇f‖Ḃ0∞,∞
+ 2−(2− n

2 )A ‖ ∇3f‖L2).

(2:7)
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Taking

A =
[

1
(2 − n

2 ) ln 2
ln(e+ ‖ f‖H3)

]
+ 1. (2:8)

It follows from (2.7), (2.8) and Calderon-Zygmand theory that (2.5) holds. Thus, we

have completed the proof of lemma. □
In order to prove Theorem 1.1, we need the following interpolation inequalities in

two and three space dimensions.

Lemma 2.5 In three space dimensions, the following inequalities

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖ ∇f‖L2 ≤ C ‖ f ‖
2
3
L2‖ ∇3f ‖

1
3
L2 .

‖ f‖L∞ ≤ C ‖ f ‖
1
4
L2‖ ∇2f ‖

3
4
L2 .

‖ f‖L4 ≤ C ‖ f ‖
3
4
L2‖ ∇3f ‖

1
4
L2

(2:9)

hold, and in two space dimensions, the following inequalities
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖ ∇f‖L2 ≤ C ‖ f ‖
2
3
L2‖ ∇3f ‖

1
3
L2 .

‖ f‖L∞ ≤ C ‖ f ‖
1
2
L2‖ ∇2f ‖

1
2
L2 .

‖ f‖L4 ≤ C ‖ f ‖
5
6
L2‖ ∇3f ‖

1
6
L2

(2:10)

hold.

Proof. (2.9) and (2.10) are of course well known. In fact, we can obtain them by

Sobolev embedding and the scaling techniques. In what follows, we only prove the last

inequality in (2.9) and (2.10). Sobolev embedding implies that H3(ℝn), ↪ L4(ℝn) for n =

2, 3. Consequently, we get

‖ f‖L4 ≤ C(‖ f‖L2+ ‖ ∇3f‖L2). (2:11)

For any given 0 ≠ f Î H3(ℝn) and δ > 0, let

fδ(x) = f (δx). (2:12)

By (2.11) and (2.12), we obtain

‖ fδ‖L4 ≤ C(‖ fδ‖L2+ ‖ ∇3fδ‖L2 ), (2:13)

which is equivalent to

‖ f‖L4 ≤ C(δ− n
4 ‖ f‖L2 + δ

3− n
4 ‖ ∇3f‖L2). (2:14)

Taking δ =‖ f ‖
1
3
L2‖ ∇3f ‖− 1

3
L2

and n = 3 and n = 2, respectively. From (2.14), we imme-

diately get the last inequality in (2.9) and (2.10). Thus, we have completed the proof of

Lemma 2.5. □

3 Proof of main results
Proof of Theorem 1.1. Adding the inner product of u with the first equation of (1.2),

of v with the second equation of (1.2) and of b the third equation of (1.2), then using

integration by parts, we get
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1
2
d
dt
(‖ u(t) ‖2L2 + ‖ v(t) ‖2L2 + ‖ b(t) ‖2L2 )+ ‖ ∇v(t) ‖2L2 + ‖ divv(t) ‖2L2 + ‖ ∇b(t) ‖2L2= 0, (3:1)

where we have used ∇ ·· u = 0 and ∇ · b = 0.

Integrating with respect to t, we have

‖ u(t) ‖2L2 + ‖ v(t) ‖2L2 + ‖ b(t) ‖2L2 +2
∫ t

0
‖ ∇v(τ ) ‖2L2 dτ + 2

∫ t

0
‖ divv(τ ) ‖2L2 dτ+

2
∫ t

0
‖ ∇b(τ ) ‖2L2 dτ =‖ u0 ‖2L2 + ‖ v0 ‖2L2 + ‖ b0 ‖2L2 .

(3:2)

Applying ∇ to (1.2) and taking the L2 inner product of the resulting equation with

(∇u, ∇v, ∇b), with help of integration by parts, we have

1
2
d
dt
(‖ ∇u(t) ‖2L2 + ‖ ∇v(t) ‖2L2 + ‖ ∇b(t) ‖2L2 )+ ‖ ∇2v(t) ‖2L2 + ‖ div∇v(t) ‖2L2 + ‖ ∇2b(t) ‖2L2

= −
∫
Rn

∇(u · ∇u)∇udx +
∫
Rn

∇(b · ∇b)∇udx −
∫
Rn

∇(u · ∇v)∇vdx

−
∫
Rn

∇(u · ∇b)∇bdx +
∫
Rn

∇(b · ∇u)∇bdx.

(3:3)

By (3.3) and ∇ · u = 0, ∇ · b = 0, we deduce that

1
2
d
dt
(‖ ∇u(t) ‖2L2 + ‖ ∇v(t) ‖2L2 + ‖ ∇b(t) ‖2L2 )+ ‖ ∇2v(t) ‖2L2 + ‖ div∇v(t) ‖2L2 + ‖ ∇2b(t) ‖2L2

≤ 3 ‖ ∇u(t)‖L∞(‖ ∇u(t) ‖2L2 + ‖ ∇v(t) ‖2L2 + ‖ ∇b(t) ‖2L2 ).
(3:4)

Using Gronwall inequality, we get

‖ ∇u(t) ‖2L2 + ‖ ∇v(t) ‖2L2 + ‖ ∇b(t) ‖2L2 +2
∫ t

t0
‖ ∇2v(τ ) ‖2L2 dτ+

2
∫ t

t0
‖ div∇v(τ ) ‖2L2 dτ + 2

∫ t

t0
‖ ∇2b(τ ) ‖2L2 dτ

≤ (‖ ∇u(t0) ‖2L2 + ‖ ∇v(t0) ‖2L2 + ‖ ∇b(t0) ‖2L2 ) exp{C
∫ t

t0
‖ ∇u(τ )‖L∞dτ }.

(3:5)

Owing to (1.3), we know that for any small constant ε > 0, there exists T* <T such that

∫ T

T�

‖ ∇ × u(t)‖Ḃ0∞,∞
dt ≤ ε. (3:6)

Let

�(t) = sup
T�≤τ≤t

(‖ ∇3u(τ ) ‖2L2 + ‖ ∇3v(τ ) ‖2L2 + ‖ ∇3b(τ ) ‖2L2 ), T� ≤ t < T. (3:7)

It follows from (3.5), (3.6), (3.7) and Lemma 2.4 that

‖ ∇u(t) ‖2L2 + ‖ ∇v(t) ‖2L2 + ‖ ∇b(t) ‖2L2 +2
∫ t

T�

‖ ∇2v(τ ) ‖2L2 dτ+

2
∫ t

T�

‖ div∇v(τ ) ‖2L2 dτ + 2
∫ t

T�

‖ ∇2b(τ ) ‖2L2 dτ

≤ C1 exp{C0

∫ t

T�

‖ ∇ × u‖Ḃ0∞,∞ ln(e+ ‖ u‖H3 )dτ }

≤ C1 exp{C0ε ln(e + �(t))}
≤ C1(e + �(t))C0ε, T� ≤ t < T.

(3:8)
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where C1 depends on ‖ ∇u(T�) ‖2L2 + ‖ ∇v(T�) ‖2L2 + ‖ ∇b(T�) ‖2L2, while C0 is an

absolute positive constant.

Applying ∇m to the first equation of (1.2), then taking L2 inner product of the result-

ing equation with ∇mu and using integration by parts, we have

1
2
d
dt

‖ ∇mu(t) ‖2L2= −
∫
Rn

∇m(u · ∇u)∇mudx +
∫
Rn

∇m(b · ∇b)∇mudx. (3:9)

Likewise, we obtain

1
2
d
dt

‖ ∇mv(t) ‖2L2 + ‖ ∇m∇v(t) ‖2L2 + ‖ div∇mv(t) ‖2L2= −
∫
Rn

∇m(u · ∇v)∇mvdx. (3:10)

and

1
2
d
dt

‖ ∇mb(t) ‖2L2 + ‖ ∇m∇b(t) ‖2L2= −
∫
Rn

∇m(u · ∇b)∇mbdx+
∫
Rn

∇m(b · ∇u)∇mbdx. (3:11)

It follows (3.9), (3.10), (3.11), ∇ · u = 0, ∇ · b = 0 and integration by parts that

1
2
d
dt
(‖ ∇mu(t) ‖2L2 + ‖ ∇mv(t) ‖2L2 + ‖ ∇mb(t) ‖2L2)+

‖ ∇m∇v(t) ‖2L2 + ‖ div∇mv(t) ‖2L2 + ‖ ∇m∇b(t) ‖2L2
= −

∫
Rn

[∇m(u · ∇u) − u · ∇∇mu]∇mudx +
∫
Rn

[∇m(b · ∇b) − b · ∇∇mb]∇mudx

−
∫
Rn

[∇m(u · ∇v) − u · ∇∇mv]∇mvdx −
∫
Rn

[∇m(u · ∇b) − u · ∇∇mb]∇mbdx

+
∫
Rn

[∇m(b · ∇u) − b · ∇∇mu]∇mbdx.

(3:12)

In what follows, for simplicity, we will set m = 3.

With help of Hölder inequality and Lemma 2.3, we derive

| −
∫
Rn

[∇3(u · ∇u) − u · ∇∇3u]∇3udx| ≤ C ‖ ∇u(t)‖L∞ ‖ ∇3u(t) ‖2L2 . (3:13)

Using integration by parts and Hölder inequality, we get

| −
∫
Rn

[∇3(u · ∇v) − u · ∇∇3v]∇3vdx|
≤ 7 ‖ ∇u(t)‖L∞ ‖ ∇3v(t) ‖2L2 +4 ‖ ∇u(t)‖L∞ ‖ ∇2v(t)‖L2 ‖ ∇4v(t)‖L2+

||∇2u(t)‖L4 ‖ ∇v(t)‖L4 ‖ ∇4v(t)‖L2 .

(3:14)

Thanks to Lemma 2.5, Young inequality and (3.8), we get

4 ‖ ∇u(t)‖L∞ ‖ ∇2v(t)‖L2 ‖ ∇4v(t)‖L2

≤ C ‖ ∇u(t)‖L∞ ‖ ∇v(t) ‖
2
3
L2 ‖ ∇4v(t) ‖

4
3
L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t) ‖3L∞‖ ∇v(t) ‖2L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞ ‖ ∇u(t) ‖
1
2
L2 ‖ ∇3u(t) ‖

3
2
L2 ‖ ∇v(t) ‖2L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t))

5
4
C0ε

�

3
4 (t)
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in 3D and

4 ‖ ∇u(t)‖L∞ ‖ ∇2v(t)‖L2 ‖ ∇4v(t)‖L2

≤ C ‖ ∇u(t)‖L∞ ‖ ∇v(t) ‖
2
.3
L2 ‖ ∇4v(t) ‖

4
.3
L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t) ‖3L∞‖ ∇v(t) ‖2L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞ ‖ ∇u(t)‖L2 ‖ ∇3u(t)‖L2 ‖ ∇v(t) ‖2L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t))
3
.2C0ε�

1
.2 (t)

in 2D.

It follows from Lemmas 2.2, 2.5, Young inequality and (3.8) that

‖ ∇2u(t)‖L4 ‖ ∇v(t)‖L4 ‖ ∇4v(t)‖L2

≤ C ‖ ∇u(t) ‖
1
2
L∞‖ ∇3u(t) ‖

1
2
L2‖ ∇v(t) ‖

3
4
L2‖ ∇4v(t) ‖

5
4
L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t) ‖
4
3
L∞‖ ∇3u(t) ‖

4
3
L2‖ ∇v(t) ‖2L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞ ‖ ∇u(t) ‖
1
12
L2 ‖ ∇3u(t) ‖

19
12
L2 ‖ ∇v(t) ‖2L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t))
25
24C0ε�

19
24 (t)

in 3D and

‖ ∇2u(t)‖L4 ‖ ∇v(t)‖L4 ‖ ∇4v(t)‖L2

≤ C ‖ ∇u(t) ‖
1
2
L∞‖ ∇3u(t) ‖

1
2
L2‖ ∇v(t) ‖

5
6
L2‖ ∇4v(t) ‖

7
6
L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t) ‖
6
5
L∞‖ ∇3u(t) ‖

6
5
L2‖ ∇v(t) ‖2L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞ ‖ ∇u(t) ‖
1
10
L2 ‖ ∇3u(t) ‖

13
10
L2 ‖ ∇v(t) ‖2L2

≤ 1
4

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t))
21
20C0ε�

13
20 (t)

in 2D.

Consequently, we get

4 ‖ ∇u(t)‖L∞ ‖ ∇2v(t)‖L2 ‖ ∇4v(t)‖L2
≤ 1

4
‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t))

(3:15)

and

‖ ∇2u(t)‖L4 ‖ ∇v(t)‖L4 ‖ ∇4v(t)‖L2
≤ 1

4
‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t))

(3:16)

provided that

ε ≤ 1
5C0

.
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It follows from (3.14), (3.15) and (3.16) that

| −
∫
Rn

[∇3(u · ∇v) − u · ∇∇3v]∇3vdx|

≤ 1
2

‖ ∇4v(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t)).
(3:17)

Likewise, we have

| −
∫
Rn

[∇3(u · ∇b) − u · ∇∇3b]∇3bdx|

≤ 1
6

‖ ∇4b(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t)).
(3:18)

|
∫
Rn

[∇3(b · ∇b) − b · ∇∇3b]∇3udx|

≤ 1
6

‖ ∇4b(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t))
(3:19)

and

|
∫
Rn

[∇3(b · ∇u) − b · ∇∇3u]∇3bdx|

≤ 1
6

‖ ∇4b(t) ‖2L2 +C ‖ ∇u(t)‖L∞(e + �(t))
(3:20)

Collecting (3.12), (3.13), (3.17), (3.18), (3.19) and (3.20) yields

d
dt
(‖ ∇3u(t) ‖2L2 + ‖ ∇3v(t) ‖2L2 + ‖ ∇3b(t) ‖2L2 )+ ‖ ∇4v(t) ‖2L2 +

‖ div∇3v(t) ‖2L2 + ‖ ∇4b(t) ‖2L2
≤ C ‖ ∇u(t)‖L∞(e + �(t))

(3:21)

for all T* ≤ t <T.

Integrating (3.21) with respect to time from T* to τ and using Lemma 2.4, we have

e+ ‖ ∇3u(τ ) ‖2L2 + ‖ ∇3v(τ ) ‖2L2 + ‖ ∇3b(τ ) ‖2L2
≤ e+ ‖ ∇3u(T�) ‖2L2 + ‖ ∇3v(T�) ‖2L2 + ‖ ∇3b(T�) ‖2L2 +

C2

∫ τ

T�

[1+ ‖ u‖L2+ ‖ ∇ × u(s)‖Ḃ0∞,∞ ln(e + �(s))](e + �(s))ds.

(3:22)

Owing to (3.22), we get

e + A(t) ≤e+ ‖ ∇3u(T�) ‖2L2 + ‖ ∇3v(T�) ‖2L2 + ‖ ∇3b(T�) ‖2L2 +

C2

∫ t

T�

[1+ ‖ u‖L2+ ‖ ∇ × u(τ )‖Ḃ0∞,∞
ln(e + �(τ ))](e + �(τ ))dτ .

(3:23)

For all T* ≤ t <T, with help of Gronwall inequality and (3.23), we have

e+ ‖ ∇3u(t) ‖2L2 + ‖ ∇3v(t) ‖2L2 + ‖ ∇3b(t) ‖2L2≤ C, (3:24)

where C depends on ‖ ∇u(T�) ‖2L2 + ‖ ∇v(T�) ‖2L2 + ‖ ∇b(T�) ‖2L2.
Noting that (3.2) and the right-hand side of (3.24) is independent of t for T* ≤ t <T ,

we know that (u(T, ·), v(T, ·), b(T, ·)) Î H3(ℝn). Thus, Theorem 1.1 is proved.
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