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Abstract

In this paper, by using the coincidence degree theory, we consider the following
boundary value problem for fractional differential equation{

Dα
0+x(t) = f (t, x(t), x′(t), x′′(t)), t ∈ [0, 1],

x(0) = x(1), x′(0) = x′′(0) = 0,

where Dα
0+ denotes the Caputo fractional differential operator of order a, 2 <a ≤ 3.

A new result on the existence of solutions for above fractional boundary value
problem is obtained.
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1 Introduction
Fractional calculus is a generalization of ordinary differentiation and integration on an

arbitrary order that can be noninteger. This subject, as old as the problem of ordinary

differential calculus, can go back to the times when Leibniz and Newton invented dif-

ferential calculus. As is known to all, the problem for fractional derivative was origin-

ally raised by Leibniz in a letter, dated September 30, 1695.

In recent years, the fractional differential equations have received more and more

attention. The fractional derivative has been occurring in many physical applications

such as a non-Markovian diffusion process with memory [1], charge transport in amor-

phous semiconductors [2], propagations of mechanical waves in viscoelastic media [3],

etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, and

material science are also described by differential equations of fractional order (see

[4-9]).

Recently, boundary value problems (BVPs for short) for fractional differential equa-

tions at nonresonance have been studied in many papers (see [10-16]). Moreover, Kos-

matov studied the BVPs for fractional differential equations at resonance (see [17]).

Motivated by the work above, in this paper, we consider the following BVP of frac-

tional equation at resonance{
Dα

0+x(t) = f (t, x(t), x′(t), x′′(t)), t ∈ [0, 1],
x(0) = x(1), x′(0) = x′′(0) = 0,

(1:1)
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where Dα
0+ denotes the Caputo fractional differential operator of order a, 2 <a ≤ 3. f

: [0, 1] × ℝ3 ® ×ℝ is continuous.

The rest of this paper is organized as follows. Section 2 contains some necessary

notations, definitions, and lemmas. In Section 3, we establish a theorem on existence

of solutions for BVP (1.1) under nonlinear growth restriction of f, basing on the coinci-

dence degree theory due to Mawhin (see [18]). Finally, in Section 4, an example is

given to illustrate the main result.

2 Preliminaries
In this section, we will introduce notations, definitions, and preliminary facts that are

used throughout this paper.

Let X and Y be real Banach spaces and let L : domL ⊂ X ® Y be a Fredholm opera-

tor with index zero, and P : X ® X, Q : Y ® Y be projectors such that

ImP = KerL, KerQ = ImL,

X = KerL ⊕ KerP, Y = ImL ⊕ ImQ.

It follows that

L|domL∩KerP : domL ∩ KerP → ImL

is invertible. We denote the inverse by KP.

If Ω is an open bounded subset of X, and domL ∩ �̄ �= ∅ , the map N : X ® Y will be

called L-compact on � if QN(�) is bounded and KP(I − Q)N : � → X is compact.

Where I is identity operator.

Lemma 2.1. ([18]) If Ω is an open bounded set, let L : domL ⊂ X ® Y be a Fred-

holm operator of index zero and N : X ® Y L-compact on � . Assume that the follow-

ing conditions are satisfied

(1) Lx ≠ lNx for every (x, l) Î [(domL\KerL)] ∩ ∂Ω × (0, 1);

(2) Nx ∉ ImL for every x Î KerL ∩ ∂Ω;

(3) deg(QN|KerL, KerL ∩ Ω, 0) ≠ 0, where Q : Y ® Y is a projection such that ImL =

KerQ.

Then the equation Lx = Nx has at least one solution in domL ∩ � .

Definition 2.1. The Riemann-Liouville fractional integral operator of order a > 0 of

a function x is given by

Iα0+x(t) =
1

�(α)

t∫
0

(t − s)α−1x(s)ds,

provided that the right side integral is pointwise defined on (0, +∞).

Definition 2.2. The Caputo fractional derivative of order a > 0 of a continuous

function x is given by

Dα
0+x(t) = In−α

0+
dnx(t)
dtn

=
1

�(n − α)

t∫
0

(t − s)n−α−1x(n)(s)ds,

where n is the smallest integer greater than or equal to a, provided that the right

side integral is pointwise defined on (0, +∞).
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Lemma 2.2. ([19]) For a > 0, the general solution of the Caputo fractional differen-

tial equation

Dα
0+x(t) = 0

is given by

x(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1,

where ci Î ℝ, i = 0, 1, 2, . . ., n - 1; here, n is the smallest integer greater than or

equal to a.
Lemma 2.3. ([19]) Assume that x Î C(0, 1) ∩ L(0, 1) with a Caputo fractional deriva-

tive of order a > 0 that belongs to C(0, 1) ∩ L(0, 1). Then,

Iα0+D
α
0+x(t) = x(t) + c0 + c1t + c2t

2 + · · · + cn−1t
n−1

where ci Î ℝ, i = 0, 1, 2, . . ., n - 1; here, n is the smallest integer greater than or

equal to a.
In this paper, we denote X = C2[0, 1] with the norm ||x||X = max{||x||∞, ||x’||∞, ||

x“||∞} and Y = C[0, 1] with the norm ||y||Y = ||y||∞, where ||x||∞ = maxtÎ[0, 1] |x(t)|.

Obviously, both X and Y are Banach spaces.

Define the operator L : domL ⊂ X ® Y by

Lx = Dα
0+x, (2:1)

where

domL = {x ∈ X|Dα
0+x(t) ∈ Y, x(0) = x(1), x′(0) = x′′(0) = 0}.

Let N : X ® Y be the Nemytski operator

Nx(t) = f (t, x(t), x′(t), x′′(t)), ∀t ∈ [0, 1].

Then, BVP (1.1) is equivalent to the operator equation

Lx = Nx, x ∈ domL.

3 Main result
In this section, a theorem on existence of solutions for BVP (1.1) will be given.

Theorem 3.1. Let f : [0, 1] × ℝ3 ® ℝ be continuous. Assume that

(H1) there exist nonnegative functions p, q, r, s Î C[0, 1] with Γ(a - 1) - q1 - r1 - s1 >

0 such that

|f (t, u, v,w)| ≤ p(t) + q(t)|u| + r(t)|v| + s(t)|w|, ∀t ∈ [0, 1], (u, v,w) ∈ R3,

where p1 = ||p||∞, q1 = ||q||∞, r1 = ||r||∞, s1 = ||s||∞.

(H2) there exists a constant B > 0 such that for all u Î ℝ with |u| >B either

uf (t, u, v,w) > 0, ∀t ∈ [0, 1], (v,w) ∈ R2

or

uf (t, u, v,w) < 0, ∀t ∈ [0, 1], (v,w) ∈ R2.
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Then, BVP (1.1) has at leat one solution in X.

Now, we begin with some lemmas below.

Lemma 3.1. Let L be defined by (2.1), then

KerL = {x ∈ X|x(t) = c0, c0 ∈ R, ∀t ∈ [0, 1]}, (3:1)

ImL = {y ∈ Y|
1∫

0

(1 − s)α−1y(s)ds = 0}. (3:2)

Proof. By Lemma 2.2, Dα
0+x(t) = 0 has solution

x(t) = c0 + c1t + c2t
2, c0, c1, c2 ∈ R.

Combining with the boundary value condition of BVP (1.1), one has (3.1) hold.

For y Î ImL, there exists x Î domL such that y = Lx Î Y. By Lemma 2.3, we have

x(t) =
1

�(α)

t∫
0

(t − s)α−1y(s)ds + c0 + c1t + c2t
2.

Then, we have

x′(t) =
1

�(α − 1)

t∫
0

(t − s)α−2y(s)ds + c1 + 2c2t

and

x′′(t) =
1

�(α − 2)

t∫
0

(t − s)α−3y(s)ds + 2c2.

By conditions of BVP (1.1), we can get that y satisfies

1∫
0

(1 − s)α−1y(s)ds = 0.

Thus, we get (3.2). On the other hand, suppose y Î Y and satisfies∫ 1
0 (1 − s)α−1y(s)ds = 0 . Let x(t) = Iα0+y(t) , then x Î domL and Dα

0+x(t) = y(t) . So that,

y Î ImL. The proof is complete.

Lemma 3.2. Let L be defined by (2.1), then L is a Fredholm operator of index zero,

and the linear continuous projector operators P : X ® X and Q : Y ® Y can be defined

as

Px(t) = x(0), ∀t ∈ [0, 1],

Qy(t) = α

1∫
0

(1 − s)α−1y(s)ds, ∀t ∈ [0, 1].
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Furthermore, the operator KP : ImL ® domL ∩ KerP can be written by

KPy(t) =
1

�(α)

t∫
0

(t − s)α−1y(s)ds, ∀t ∈ [0, 1].

Proof. Obviously, ImP = KerL and P2x = Px. It follows from x = (x - Px) + Px that X

= KerP + KerL. By simple calculation, we can get that KerL ∩ KerP = {0}. Then, we get

X = KerL ⊕ KerP.

For y Î Y, we have

Q2y = Q(Qy) = Qy · α

1∫
0

(1 − s)α−1ds = Qy.

Let y = (y - Qy) + Qy, where y - Qy Î KerQ = ImL, Qy Î ImQ. It follows from KerQ

= ImL and Q2y = Qy that ImQ ∩ ImL = {0}. Then, we have

Y = ImL ⊕ ImQ.

Thus,

dim KerL = dim ImQ = codim ImL = 1.

This means that L is a Fredholm operator of index zero.

From the definitions of P, KP, it is easy to see that the generalized inverse of L is KP.

In fact, for y Î ImL, we have

LKPy = Dα
0+ I

α
0+y = y. (3:3)

Moreover, for x Î domL ∩ KerP, we get x(0) = x’(0) = x“(0) = 0. By Lemma 2.3, we

obtain that

Iα0+Lx(t) = Iα0+D
α
0+x(t) = x(t) + c0 + c1t + c2t

2, c0, c1, c2 ∈ R,

which together with x(0) = x’(0) = x“(0) = 0 yields that

KPLx = x. (3:4)

Combining (3.3) with (3.4), we know that KP = (L|domL∩KerP)
-1. The proof is

complete.

Lemma 3.3. Assume Ω ⊂ X is an open bounded subset such that domL ∩ �̄ �= ∅ ,
then N is L-compact on � .

Proof. By the continuity of f, we can get that QN(�) and KP(I − Q)N(�) are

bounded. So, in view of the Arzelà -Ascoli theorem, we need only prove that

KP(I − Q)N(�) ⊂ X is equicontinuous.

From the continuity of f, there exists constant A > 0 such that |(I - Q)Nx| ≤ A,

∀x ∈ � , t Î [0, 1]. Furthermore, denote KP,Q = KP(I - Q)N and for 0 ≤ t1 <t2 ≤ 1,

x ∈ � , we have
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∣∣(KP,Qx)(t2) − (KP,Qx)(t1)
∣∣

≤ 1
�(α)

∣∣∣∣∣∣
t2∫

0

(t2 − s)α−1(I − Q)Nx(s)ds −
t1∫

0

(t1 − s)α−1(I − Q)Nx(s)ds

∣∣∣∣∣∣
≤ A

�(α)

⎡
⎣ t1∫

0

(t2 − s)α−1 − (t1 − s)α−1ds +

t2∫
t1

(t2 − s)α−1ds

⎤
⎦

=
A

�(α + 1)
(tα2 − tα1),

|(KP,Qx)′(t2) − (KP,Qx)′(t1)|

=
α − 1
�(α)

∣∣∣∣∣∣
t2∫

0

(t2 − s)α−2(I − Q)Nx(s)ds −
t1∫

0

(t1 − s)α−2(I − Q)Nx(s)ds

∣∣∣∣∣∣
≤ A

�(α − 1)

⎡
⎣ t1∫

0

(t2 − s)α−2 − (t1 − s)α−2ds +

t2∫
t1

(t2 − s)α−2ds

⎤
⎦

≤ A
�(α)

(tα−1
2 − tα−1

1 )

and

|(KP,Qx)′′(t2) − (KP,Qx)′′(t1)|

=
(α − 2)(α − 1)

�(α)

∣∣∣∣∣∣
t2∫

0

(t2 − s)α−3(I − Q)Nx(s)ds −
t1∫

0

(t1 − s)α−3(I − Q)Nx(s)ds

∣∣∣∣∣∣
≤ A

�(α − 2)

⎡
⎣ t1∫

0

(t1 − s)α−3 − (t2 − s)α−3ds +

t2∫
t1

(t2 − s)α−3ds

⎤
⎦

≤ A
�(α − 1)

[tα−2
1 − tα−2

2 + 2(t2 − t1)α−2].

Since ta, ta-1 and ta-2 are uniformly continuous on [0, 1], we can get that

(KP,Q)′(�) ⊂ C[0, 1] , (KP,Q)′(�) ⊂ C[0, 1] and (KP,Q)′′(�) ⊂ C[0, 1] are equicontin-

uous. Thus, we get that KP,Q : � → X is compact. The proof is completed.

Lemma 3.4. Suppose (H1), (H2) hold, then the set

�1 = {x ∈ domL\KerL|Lx = λNx, λ ∈ (0, 1)}

is bounded.

Proof. Take x Î Ω1, then Nx Î ImL. By (3.2), we have

1∫
0

(1 − s)α−1f (s, x(s), x′(s), x′′(s))ds = 0.

Then, by the integral mean value theorem, there exists a constant ξ Î (0, 1) such

that f(ξ, x(ξ), x’(ξ), x“(ξ)) = 0. Then from (H2), we have |x(ξ)| ≤ B.
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Then, we have

|x(t)| =

∣∣∣∣∣∣∣x(ξ) +
t∫

ξ

x′(s)ds

∣∣∣∣∣∣∣ ≤ B+ ‖ x′‖∞.

That is

‖ x‖∞ ≤ B+ ‖ x′‖∞. (3:5)

From x Î domL, we get x’(0) = 0. Therefore,

|x′(t)| =
∣∣∣∣∣∣x′(0) +

t∫
0

x′′(s)ds

∣∣∣∣∣∣ ≤‖ x′′‖∞.

That is

‖ x′‖∞ ≤‖ x′′‖∞. (3:6)

By Lx = lNx and x Î domL, we have

x(t) =
λ

�(α)

t∫
0

(t − s)α−1f (s, x(s), x′(s), x′′(s))ds + x(0).

Then we get

x′(t) =
λ

�(α − 1)

t∫
0

(t − s)α−2f (s, x(s), x′(s), x′′(s))ds

and

x′′(t) =
λ

�(α − 2)

t∫
0

(t − s)α−3f (s, x(s), x′(s), x′′(s))ds.

From (3.5),(3.6), and (H1), we have

∥∥x′′∥∥
∞ ≤ 1

�(α − 2)

t∫
0

(t − s)α−3|f (s, x(s), x′(s), x′′(s))|ds

≤ 1
�(α − 2)

t∫
0

(t − s)α−3[p(s) + q(s)|x(s)| + r(s)|x′(s)| + s(s)|x′′(s)|]ds

≤ 1
�(α − 2)

t∫
0

(t − s)α−3(p1 + q1 ‖ x‖∞ + r1 ‖ x′‖∞ + s1 ‖ x′′‖∞)ds

≤ 1
�(α − 2)

t∫
0

(t − s)α−3[p1 + q1B + (q1 + r1 + s1) ‖ x′′‖∞]ds

≤ 1
�(α − 1)

[p1 + q1B + (q1 + r1 + s1) ‖ x′′‖∞].
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Thus, from Γ(a - 1) - q1 - r1 - s1 > 0, we obtain that

‖ x′′‖∞ ≤ p1 + q1B

�(α − 1) − q1 − r1 − s1
:= M1.

Thus, we get

‖ x′‖∞ ≤‖ x′′‖∞ ≤ M1

and

‖ x‖∞ ≤ B+ ‖ x′‖∞ ≤ B +M1.

Therefore,

‖ x‖X ≤ max{M1,B +M1}.

So Ω1 is bounded. The proof is complete.

Lemma 3.5. Suppose (H2) holds, then the set

�2 = {x|x ∈ KerL,Nx ∈ ImL}

is bounded.

Proof. For x Î Ω2, we have x(t) = c, c Î ℝ, and Nx Î ImL. Then, we get

1∫
0

(1 − s)α−1f (s, c, 0, 0)ds = 0,

which together with (H2) implies |c| ≤ B. Thus, we have

‖ x‖X ≤ B.

Hence, Ω2 is bounded. The proof is complete.

Lemma 3.6. Suppose the first part of (H2) holds, then the set

�3 = {x|x ∈ KerL,λx + (1 − λ)QNx = 0, λ ∈ [0, 1]}

is bounded.

Proof. For x Î Ω3, we have x(t) = c, c Î ℝ, and

λc + (1 − λ)α

1∫
0

(1 − s)α−1f (s, c, 0, 0)ds = 0. (3:7)

If l = 0, then |c| ≤ B because of the first part of (H2). If l Î (0, 1], we can also

obtain |c| ≤ B. Otherwise, if |c| >B, in view of the first part of (H2), one has

λc2 + (1 − λ)α

1∫
0

(1 − s)α−1cf (s, c, 0, 0)ds > 0,

which contradicts to (3.7).

Therefore, Ω3 is bounded. The proof is complete.
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Remark 3.1. Suppose the second part of (H2) hold, then the set

�′
3 = {x|x ∈ KerL, −λx + (1 − λ)QNx = 0, λ ∈ [0, 1]}

is bounded.

The proof of Theorem 3.1. Set Ω = {x Î X | ||x||X < max{M1, B, B + M1} + 1}. It

follows from Lemma 3.2 and 3.3 that L is a Fredholm operator of index zero and N is

L-compact on � . By Lemma 3.4 and 3.5, we get that the following two conditions are

satisfied

(1) Lx ≠ lNx for every (x, l) Î [(domL\KerL) ∩ ∂Ω] × (0, 1);

(2) Nx ∉ ImL for every x Î KerL ∩ ∂Ω.

Take

H(x,λ) = ±λx + (1 − λ)QNx.

According to Lemma 3.6 (or Remark 3.1), we know that H(x, l) ≠ 0 for x Î KerL ∩
∂Ω. Therefore,

deg(QN|KerL,� ∩ KerL, 0) = deg(H(·, 0),� ∩ KerL, 0)

= deg(H(·, 1),� ∩ KerL, 0)

= deg(±I,� ∩ KerL, 0) �= 0.

So that, the condition (3) of Lemma 2.1 is satisfied. By Lemma 2.1, we can get that

Lx = Nx has at least one solution in domL ∩ � . Therefore, BVP (1.1) has at least one

solution. The proof is complete.

4 An example
Example 4.1. Consider the following BVP{

D
5
2
0+x(t) =

t
16 (x − 10) + t2

16 e
−|x′ | + t3

16 sin[(x
′′)2], t ∈ [0, 1]

x(0) = x(1), x′(0) = x′′(0) = 0.
(4:1)

where

f (t, u, v,w) =
t
16

(u − 10) +
t2

16
e−|v| +

t3

16
sin(w2).

Choose p(t) = 10t+2
16 , q(t) = t

16 , r(t) = 0, s(t) = 0, B = 10. We can get that q1 = 1
16 , r1

= 0, s1 = 0 and

�

(
5
2

− 1
)

− q1 − r1 − s1 > 0.

Then, all conditions of Theorem 3.1 hold, so BVP (4.1) has at least one solution.
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