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Abstract

In this paper, the vectorial Sturm-Liouville operator LQ = − d2

dx2
+Q(x) is considered,

where Q(x) is an integrable m × m matrix-valued function defined on the interval
[0,π] The authors prove that m2+1 characteristic functions can determine the
potential function of a vectorial Sturm-Liouville operator uniquely. In particular, if Q(x)

is real symmetric, then
m(m + 1)

2
+ 1 characteristic functions can determine the

potential function uniquely. Moreover, if only the spectral data of self-adjoint
problems are considered, then m2 + 1 spectral data can determine Q(x) uniquely.
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1. Introduction
The study on inverse spectral problems for the vectorial Sturm-Liouville differential

equation

�y′′ + (λIm − Q(x))�y = 0, 0 < x < π , (1:1)

on a finite interval is devoted to determine the potential matrix Q(x) from the spec-

tral data of (1.1) with boundary conditions

U(�y) := �y′(0) − h�y(0) = 0, V(�y) := �y′(π) +H�y(π) = 0, (1:2)

where l is the spectral parameter, h = [hij]i,j=1,m and H = [Hij]i,j=1,m are in Mn(C) and

Q(x) = [Qij(x)]i,j=1,m is an integrable matrix-valued function. We use Lm = L(Q, h, H)

to denote the boundary problem (1.1)-(1.2). For the case m = 1, (1.1)-(1.2) is a scalar

Sturm-Liouville equation. The scalar Sturm-Liouville equation often arises from some

physical problems, for example, vibration of a string, quantum mechanics and geophy-

sics. Numerous research results for this case have been established by renowned math-

ematicians, notably Borg, Gelfand, Hochstadt, Krein, Levinson, Levitan, Marchenko,

Gesztesy, Simon and their coauthors and followers (see [1-9] and references therein).

For the case m ≥ 2, some interesting results had been obtained (see [10-20]). In parti-

cular, for m = 2 and Q(x) is a two-by-two real symmetric matrix-valued smooth func-

tions defined in the interval [0, π] Shen [18] showed that five spectral data can
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determine Q(x) uniquely. More precisely speaking, he considered the inverse spectral

problems of the vectorial Sturm-Liouville equation:

�y′′ + (λI2 − Q2(x))�y(x) = 0, 0 < x < π , (1:3)

where Q2(x) is a real symmetric matrix-valued function defined in the interval [0, π].

Let sD (Q) denotes the Dirichlet spectrum of (1.3), sND (Q) the Neumann-Dirichlet

spectrum of (1.3) and sj (Q) the spectrum of (1.3) with boundary condition

�y′(0) − Bj�y(0) = �y(π) = �0, (1:4)

for j = 1, 2, 3, where

Bj =
[

αj βj

βj γj

]
is a real symmetric matrix and {(aj, bj, gj,), j = 1, 2, 3} is linearly independent over ℝ.

Then

Theorem 1.1 ([18], Theorem 4.1). Let Q2(x) and Q̃2(x) be two continuous two-by-two

real symmetric matrix-valued functions defined on [0, π]. Suppose that

σND(Q̃) = σND(Q̃)σND(Q̃) = σND(Q̃) and σj(Q) = σj(Q̃) for j = 1, 2, 3, then Q(x) = Q̃(x)

on [0, π].

The purpose of this paper is to generalize the above theorem for the case m ≥ 3. The

idea we use is the Weyl’s matrix for matrix-valued Sturm-Liouville equation

Y ′′ + (λIm − Q(x))Y = 0, 0 < x < π . (1:5)

Some uniqueness theorems for vectorial Sturm-Liouville equation are obtained in the

last section.

2. Main Results

Let C(x,λ) = [Cij(x,λ)]i,j=1,m and S(x,λ) = [Sij(x,λ)]i,j=1,m be two solutions of equation

(1.5) which satisfy the initial conditions

C(0,λ) = S′(0,λ) = Im,

C′(0,λ) = S(0,λ) = 0m,

where 0m is the m × m zero matrix, Im = [δij]i,j=1,m is the m × m identity matrix and

δij is the Kronecker symbol. For given complex-valued matrices h and H, we denote

ϕ(x,λ) =
[
ϕij(x,λ)

]
i,j=1,m and 
(x,λ) =

[

ij(x,λ)

]
i,j=1,m

be two solutions of equation (1.5) so that �(x, l) = C(x, l) + S(x, l)h and


(x,λ) = S(x,λ) + ϕ(x,λ)M(λ) which satisfy the boundary conditions{
U(
) = 
′(0) − h
(0) = Im,

V(
) = 
′(π) +H
(π) = 0m.
(2:1)

Then, M(λ) = 
(0,λ). The matrix M(λ) = [Mij(λ)]i,j=1,m is called the Weyl matrix

for Lm (Q, h, H). In 2006, Yurko proved that:

Theorem 2.1 ([20], Theorem 1). Let M(λ) and M̃(λ) denote Weyl matrices of the

problems Lm (Q, h, H) and Lm(Q̃, h̃, H̃)separately. Suppose M(λ) = M̃(λ), then

h = h̃, h = h̃and H = H̃.
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Also note that from [20], we have


(x,λ) = S(x,λ) + ϕ(x,λ)M(λ) = ψ(x,λ)(U(ψ))−1, (2:2)

M(λ) = −(V(ϕ))−1V(S) = ψ(0,λ)(U(ψ))−1 (2:3)

where ψ(x,λ) = [ψij(x,λ)]i,j=1,m is a matrix solution of equation (1.5) associated with

the conditions ψ(π, l) = Im and ψ’ (π, l) = -H. It is not difficult to see that both F(x, l)
and M(λ) are meromorphic in l and the poles of M(λ) are coincided with the eigenva-

lues of Lm (Q, h, H). Moreover, we have

M(λ) = −(V(ϕ))−1V(S) = −Adj(ϕ′(π ,λ) +Hϕ(π ,λ))
det(ϕ′(π ,λ) +Hϕ(π ,λ))

(S′(π ,λ) +HS(π ,λ)),

where Adj(A) denotes the adjoint matrix of A and det(A) denotes the determinant of

A. In the remaining of this section, we shall prove some uniqueness theorems for vec-

torial Sturm-Liouville equations. Let B(i, j) =
[
brs

]
r,s=1,m,

brs =
(
0, (r, s) �= (i, j),
1, (r, s) = (i, j),

1 ≤ i, j ≤ m,

and B(0, 0) = 0m The characteristic function for this boundary value problem Lm (Q, h +

B(i, j), H) is

�ij(λ) = det(V(ϕ + SB(i, j))), 1 ≤ i, j ≤ m or (i, j) = (0, 0). (2:4)

The first problem we want to study is as following:

Problem 1. How many Δij (l) can uniquely determine Q, h and H? where (i, j) = (0,

0) or 1 ≤ i, j ≤ m

To find the solution of Problem 1, we start with the following lemma

Lemma 2.2. Let B(i, j) = [brs]m×m and Δij be defined as above. Then

�ij(λ) =�00(λ) + det(Augment[ϕ′
1(π ,λ) +Hϕ1(π ,λ), . . . ,

(jth column)

S′
i(π ,λ) +HSi(π ,λ), . . . ,ϕ′

m(π ,λ) +Hϕm(π ,λ)]),

where �k (π, l) is the kth column of � (π, l) and Sk (π, l) the kth column of S (π, l)
for k = 1, 2, 3, ..., m.

Proof. Let

Y(x,λ) = [C(x,λ) + S(x,λ)(h + B(i, j))]

= [(C(x,λ) + S(x,λ)h) + S(x,λ)B(i, j)]

= [ϕ(x,λ) + S(x,λ)B(i, j)]

Then

�ij(λ) = det(Y ′(π ,λ) +HY(π ,λ))

= det((ϕ′(π ,λ) +Hϕ(π ,λ)) + (S′(π ,λ) +HS(π ,λ)B(i, j))

= det((ϕ′(π ,λ) +Hϕ(π ,λ)) +
(jth column)

[0, S′
i(π ,λ) +HSi(π ,λ)0])

= det(ϕ′(π ,λ) +Hϕ(π ,λ)) + det(ϕ′
1(π ,λ) +Hϕ1(π ,λ), . . . ,

(jth column)

S′
i(π ,λ) +HSi(π ,λ), . . . ,ϕ′

m(π ,λ) +Hϕm(π ,λ))

= �00(λ) + det(ϕ′
m(π ,λ) +Hϕ1(π ,λ), . . . ,

(jth column)

S′
i(π ,λ) +HSi(π ,λ), . . . ,ϕ′

m(π ,λ) +Hϕm(π ,λ)).

□
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Next, we shall prove the first main theorem. For simplicity, if a symbol a denotes an

object related to Lm(Q, h, H), then the symbol α̃ denotes the analogous object related

to Lm(Q̃, h̃, H̃).

Theorem 2.3. Suppose that �ij(λ) = �̃ij(λ) for (i, j) = (0, 0) or 1 ≤ i, j ≤ m then

h = h̃, h = h̃and H = H̃.

Proof. Since

0m = 
′(π ,λ) +H
(π ,λ)

and


(x,λ) = S(x,λ) + ϕ(x,λ)M(λ),

we have that

−(S′(π ,λ) +HS(π ,λ))ei = (ϕ′(π ,λ) +Hϕ(π ,λ))M(λ)ei

for each i = 1, ..., m, that is,

−(S′
i(π ,λ) +HSi(π ,λ)) = (ϕ′(π ,λ) +Hϕ(π ,λ))Mi(λ).

By Crammer’s rule,

Mji(λ)

=
−det(ϕ′

1(π ,λ) +Hϕ1(π ,λ), . . . ,
(jth column)

S′
i(π ,λ) +HSi(π ,λ), . . . ,ϕ′

m(π ,λ) +Hϕm(π ,λ))

det(ϕ′(π ,λ) +Hϕ(π ,λ))

=
�00(λ) − �ij(λ)

�00(λ)

=
�̃00(λ) − �̃ij(λ)

�̃00(λ)

= M̃ji(λ) for 1 ≤ i, j ≤ m.

Applying Theorem 2.1, we conclude that Q = Q̃, h = h̃ and H = H̃. □
Lemma 2.4. Suppose that h, H are real symmetric matrices and Q(x) is a real sym-

metric matrix-valued function. Then, M(λ) = −V(ϕ)−1V(S)is real symmetric for all l
Î ℝ.

Proof. Let

U(x,λ) =
[

ϕ′(x,λ) S′(x,λ)
ϕ(x,λ) S(x,λ)

]
. (2:5)

For l Î ℝ,⎧⎪⎪⎪⎨⎪⎪⎪⎩
(S′∗ϕ − S∗ϕ′)(x,λ) = (S′∗ϕ − S∗ϕ′)(0,λ) = Im,

(S′∗S − S∗S′)(x,λ) = (S′∗S − S∗S′)(0,λ) = 0m,

(ϕ∗ϕ′ − ϕ′∗ϕ)(x,λ) = (ϕ∗ϕ′ − ϕ′∗ϕ)(0,λ) = 0m,

(ϕ∗S′ − ϕ′∗S)(x,λ) = (ϕ∗S′ − ϕ′∗S)(0,λ) = Im,

This leads to

U−1(x,λ) =
[−(S)∗(x,λ) (S∗)′(x,λ)

ϕ∗(x,λ) −(ϕ∗)′(x,λ)

]
. (2:6)
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Now let

U2(x,λ) =
[
Im H
0 Im

]
U(x,λ).

Then

U2(1,λ) =
[
Im H
0 Im

]
U(1,λ) =

[
V(ϕ) V(S)

ϕ(1,λ) S(1,λ)

]
and

U−1
2 (1,λ) = (

[
Im H
0 Im

]
U(1,λ))−1 =

[ −S∗(1;λ) [V(S)]∗

(ϕ)∗(1,λ) −[V(ϕ)]∗
]
.

Since

U(x,λ)U−1(x,λ) = I2m,

we have

V(ϕ)[V(S)]∗ = V(S)[V(ϕ)]∗,

i.e., M(λ) = V(ϕ)−1V(S)is real symmetric for all l Î ℝ. □
Definition 2.1. We call Lm(h, H, Q) a real symmetric problem if h, H are real sym-

metric matrices and Q(x) is a real symmetric matrix-valued function.

Corollary 2.5. Let Lm(h, H, Q) and L(h̃, H̃, Q̃) be two real symmetric problems. Sup-

pose that �ij(λ) = �̃ij(λ) for (i, j) = (0, 0) or 1 ≤ i ≤ j ≤ m, then h = h̃, h = H̃ and Q = Q̃.

Proof. For l Î ℝ. both M(λ) and M̃(λ) are real symmetric. Moreover,

Mji(λ) =
�00(λ) − �ij(λ)

�00(λ)

=
�̃00(λ) − �̃ij(λ)

�̃00(λ)

= M̃ji(λ), for 1 ≤ i ≤ j ≤ m.

Hence, Mij(λ) = M̃ij(λ) for l Î ℝ and 1 ≤ i, j ≤ m. This leads to �ij(λ) = �̃ij(λ) for

l Î ℝ. We conclude that �ij(λ) = �̃ij(λ) and Mij(λ) = M̃ij(λ) for l Î ℂ. This com-

pletes the proof. □
From now on, we let Lm(Q, h, H) be a real symmetric problem. We would like to

know that how many spectral data can determine the problem Lm(Q, h, H) if we

require all spectral data come from real symmetric problems. Denote


ij =
[
e1, . . . ,

(ith-column)
0 , . . . ,

(jth-column)
0 , . . . , em

]
,


ij =
[
0, . . . ,

(ith-column)
ei , . . . ,

(ith-column)
ej , . . . , 0

]
,

where ei = (0, 0, . . . , 0,
(ith-coordiante)

1 , 0, . . . , 0)t . Hence, Γij + Γij = Im. Let Θij(l) be the

characteristic function of the self-adjoint problem

y′′ + (λIm − Q(x))y = 0, 0 < x < π (2:7)
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associated with some boundary conditions{

ijy′(0,λ) − (
ijh + 
ij)y(0,λ) = 0,

y′(π ,λ) +Hy(π ,λ) = 0,
(2:8)

then

�ij(λ) = det[V(ϕ1), . . . ,
(ith-column)
V(Sj) , . . . ,

(jth-column)
V(Si) , . . . ,V(ϕm)],

where V (Lj) denotes the jth column of (V(L)) for a m × m matrix L. Similarly, we

denote Ωij(l) the characteristic function of the real symmetric problem

Lm(Q, h + 1
2(B(i, j) + B(j, i)),H) for 1 ≤ i, j ≤ m, then

�ij(λ) = det

⎡⎢⎣V(ϕ1), . . . ,

(ith-column)

V(ϕi) +
1
2
V(Sj), . . . ,

(jth-column)

V(ϕj) +
1
2
V(Si), . . . ,V(ϕm)

⎤⎥⎦
= det[V(ϕ1), . . . ,V(ϕi), . . . ,V(ϕm)]

+
1
2
det[V(ϕ1), . . . ,

(ith-column)
V(Sj) , . . . ,

(jth-column)
V(ϕj) , . . . ,V(ϕm)]

+
1
2
det[V(ϕ1), . . . ,

(ith-column)
V(ϕi) , . . . ,

(jth-column)
V(Si) , . . . ,V(ϕm)]

+ det[V(ϕ1), . . . ,
(ith-column)
V(Sj) , . . . ,

(jth-column)
V(Si) , . . . ,V(ϕm)]

(2:9)

for 1 ≤ i, j ≤ m. For simplicity, we write

�00(λ) = det[V(ϕ1), . . . ,V(ϕj), . . . ,V(ϕm)].

Now, we are going to focus on self-adjoint problems. For a self-adjoint problem Lm
(Q, h, H) all its eigenvalues are real and the geometric multiplicity of an eigenvalue is

equal to its algebraic multiplicity. Moreover, if we denote {(li, mi)}i = 1,∞ the spectral

data of Lm(Q, h, H) where mi is the multiplicity of the eigenvalue li of Lm(Q, h, H)

then the characteristic function of Lm(Q, h, H) is

�(λ) = C�∞
i=1(1 − λ

λi
)mi

where C is determined by {(li, mi)}i = 1,∞. This means that the spectral data deter-

mined the corresponding characteristic function.

Theorem 2.6. Assuming that Lm(Q, h, H) and Lm(Q̃, h̃, H̃) are two real symmetric

problems. If the conditions

(1) �ij(λ) = �̃ij(λ)for (i, j) = (0, 0) or 1 ≤ i ≤ j ≤ m,

(2) �ij(λ) = �̃ij(λ)for 1 ≤ i < j ≤ m.,

are satisfied, then h = h̃, H = H̃and Q(x) = Q̃(x)a.e on [0, 1].
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Proof. Note that for any problem Lm(Q, h, H) we have

�ij(λ) = det[V(ϕ1), . . . ,
(ith-column)
V(ϕi) , . . . ,

(jth-column)
V(ϕj) + V(Si), . . . ,V(ϕm)]

= det[V(ϕ1), . . . ,V(ϕj), . . . ,V(ϕm)]

+ det[V(ϕ1), . . . ,
(ith-column)
V(ϕi) , . . . ,

(jth-column)
V(Si) , . . . ,V(ϕm)]

= �00(λ) + det[V(ϕ1), . . . ,
(ith-column)
V(ϕi) , . . . ,

(jth-column)
V(Si) , . . . ,V(ϕm)]

= �00(λ) − �00(λ)Mji(λ).

Similarly,

�̃ij(λ) = �̃00(λ) − �̃00(λ)M̃ji(λ).

Moreover, by the assumptions and Lemma 2.4, we have Mij(l) = Mji(l) Hence,

(1) Δij (l) = Δji(l) and �̃ij(λ) = �̃ji(λ) for 1 ≤ i ≤ j ≤ m,

(2) �ii(λ) = �ii(λ) = �̃ii(λ) = �̃ii(λ) for i = 0, 1, ..., m,

(3) �ij(λ) = �ij(λ) − �ij(λ) = �̃ij(λ) − �̃ij(λ) = �̃ij(λ) for 1 ≤ i < j ≤ m.

This implies Lm(Q, h,H) = Lm(Q̃, h̃, H̃).

The authors want to emphasis that for n = 1, the result is classical; for n = 2, Theo-

rem 2.6 leads to Theorem 1.1. Shen also shows by providing an example that 5 mini-

mal number of spectral sets can determine the potential matrix uniquely (see [18]).

The readers may think that if all Q, h and H are diagonals then Lm(Q, h, H) is an

uncoupled system. Hence, everything for the operator Lm(Q, h, H) can be obtained by

applying inverse spectral theory for scalar Sturm-Liouville equation. Unfortunately, it is

not true. We say Lm(Q, h, H) diagonal if all Q, h and H are diagonals.

Corollary 2.7. Suppose Lm(Q, h, H) and Lm(Q̃, h̃, H̃) are both diagonals. If

�kk(λ) = �̃kk(λ) for k = 0, 1, ..., m, then Q = Q̃, h = h̃and H = H̃.

Proof. Since Lm(Q, h, H) and Lm(Q̃, h̃, H̃) are both diagonals, we know

M(λ) =
−Adj(ϕ′(π ,λ) +Hϕ(π ,λ))
det(ϕ′(π ,λ) +Hϕ(π ,λ))

(S′(π ,λ) +HS(π ,λ))

is diagonal and so is M̃(λ). Hence,

Mij(λ) = 0 for i �= j, 1 ≤ i, j ≤ m.

Moreover,

Mkk(λ) =
−1

�00(λ)
(ϕ′

1(π ,λ) +H1ϕ1(π ,λ) · · ·
(k)

(S′
k(π ,λ) +HkSk(π ,λ)) · · ·

=
−1

�00(λ)
(�kk(λ) − �00(λ))

=
�00(λ) − �kk(λ)

�00(λ)

=
�̃00(λ) − �̃kk(λ)

�̃00(λ)

= M̃kk(λ).
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for k = 1, 2, ..., m. This implies. M(λ) = M̃(λ). Applying Theorem 2.1 again, we

have Q = Q̃, h = h̃ and H = H̃. □
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