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Abstract

In this article, we investigate the Dirichlet problem for a porous medium equation
with a more complicated source term. In some cases, we prove that the solutions
have global blow-up and the rate of blow-up is uniform in all compact subsets of
the domain. Moreover, in each case, the blow-up rate of |u(t)|∞ is precisely
determined.
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1 Introduction
Let Ω be a bounded domain in ℝN (N ≥ 1) with smooth boundary ∂Ω. We consider

the following parabolic equation with a localized reaction term

vτ − �vm = a(x)vq1 (x, τ )vs1 (x0, τ ), x ∈ �, τ > 0, (1:1)

v(x, τ ) = 0, x ∈ ∂�, τ > 0, (1:2)

v(x, 0) = v0(x), x ∈ �, (1:3)

where m ≥ 1, q1 ≥ 0, s1 >0 and x0 Î Ω is a fixed point. Throughout this article, we

assume the functions a(x) and v0(x) satisfy the following conditions:

(A1) a(x) and v0(x) Î C2(Ω); a(x), v0(x) >0 in Ω and a(x) = v0(x) = 0 on ∂Ω.

When Ω = B = {x Î ℝN; |x| < R}, we sometimes assume

(A2) a(x) and v0(x) are radially symmetric; a(r) and v0(r) are non-increasing for r Î
[0, R].

Problems (1.1)-(1.3) arise in the study of the flow of a fluid through a porous med-

ium with an internal localized source and in the study of population dynamics (see

[1-3]). Porous medium equations (m >1) with or without local sources have been stu-

died by many authors [4-6].

Concerning (1.1)-(1.3), to the best of authors knowledge, a number of articles have stu-

died it from the point of the view of blow-up and global existence [7-10]. Many studies

have been devoted to the case m = 1 [10-13]. The case m = 1, a(x) = 1, q1 = 0, s1 ≥ 1 and

m = 1, a(x) = 1, q1, s1 >1 were studied by Souple [10,11]. Souple [10] demonstrated that

the positive solution blows up in finite time if the initial value v0 is large enough. In the

case a(x) = 1, q1 = 0, and s1 >1, Souple [11] showed that the solution v(x, τ) blows up
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globally and the blow-up rate is precisely determined. The case q1 = 0 and s1 >0 was stu-

died by Cannon and Yin [12] and Chandam et al. [13]. Cannon and Yin [12] studied its

local solvability and Chandam et al. [13] investigated its blow-up properties.

The study of this article is motivated by some recent results of related problems (see

[14][15][16]. In the case of a(x)(= constant), the global existence and blow-up behavior

have been considered by Chen and Xie [15]. It turns out that if q1 + s1 < m or q1 + s1
= m and a(x)(= constant) is sufficiently small, there exists a global solution of problem

(1.1)-(1.3); if q1 + s1 > m, the solution of problem (1.1)-(1.3) blows up for large initial

datum while it admits a global solution for small initial datum. Furthermore, Du and

Xiang [16] obtained the blow-up rate estimates under some appropriate hypotheses on

initial datum. For some related localized models arising in physical phenomena, we

refer the readers to [17-19] and the references therein.

For the localized semi-linear parabolic equation of the form

vτ − �v = vq1 (x, τ )vs1 (x0, τ ), x ∈ �, τ > 0, (1:4)

with the Dirichlet boundary condition (1.2) and the initial condition (1.3). In [20], Li

and Wang proved that the blow-up set to system (1.2)-(1.4): (a) the system possesses

total blow-up when q1 ≤ 1; (b) the system presents single point blow-up patterns when

q1 >1.

We now restrict ourselves to the problem of the form

vτ − �vm = a(x)vq1 (x, τ )vs1 (0, τ ), x ∈ B, τ > 0, (1:5)

v(x, τ ) = 0, x ∈ ∂B, τ > 0, (1:6)

v(x, 0) = v0(x), x ∈ B, (1:7)

where q1 ≥ 0, s1 >0, and q1 + s1 > m >0. When m = 1, it was proved in [14] that

(1) If 0 ≤ q1 ≤ 1 and q1 + s1 >1, then the solution of (1.5)-(1.7) blows up in a finite

time T.

(2) If q1 >1, then x = 0 is the only blow-up point for (1.5)-(1.7).

In the meantime, they obtained the blow-up rate estimate but less precise. Namely,

(i) If 0 ≤ q1 <1, then for any x Î B

C1(a(x))1/(1−q1) ≤ v(x, τ )(T − τ )1/(q1+s1−1) ≤ C2, as τ → T,

where C1 = ((a(0))s1/(1−q1)(q1 + s1 − 1))1/(1−q1−s1) , C2 = (a(0)(p + q − 1))1/(1−q1−s1) .

(ii) If q1 = 1, then for any x Î B

a(x)
a(0)

ln (T − τ )−1/s1 ≤ ln v(x, τ ) ≤ ln (T − τ )−1/s1 , as τ → T.

It seems that the results of [14] can be extended to m ≥ 1 and the blow-up rate can

be precisely determined. Motivated by this, in this article, we will extend and improve

the results of [14].

The purpose of this article is to determine the blow-up rate of solutions for a non-

linear parabolic equation with a weighted localized source, that is, we investigate how

the localized source and the local term affect the blow-up properties of the problem
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(1.5)-(1.7). Indeed, we find that when q1 ≤ 1, the solution of (1.5)-(1.7) blows up at the

whole domain with a uniformly blow-up profile.

The rest of this article is organized as follows. The results are stated in Section 2.

We then prove these results in Section 3.

2 Preliminaries and Main Results
The following two theorems are our main results.

Theorem 2.1 Assume q1 + s1 > m, (A1) and (A2) hold. Let v(x, t) be the solution of

problem (1.5)-(1.7), then v(x,t) blows up provided that the initial value v0(x) is suffi-

ciently large.

The method used in the proof Theorem 2.1 is originally due to [8,18], and bears

much resemblance to that of Theorem 3.2 in [15] and Theorem 1.3 in [16]. Therefore,

we omitted them here.

For the case q1 >1, we do not know how to deal with the uniform blow-up rate of

problem (1.5)-(1.7). In the following, we focus only on the case of 0 ≤ q1 ≤ 1.

Theorem 2.2 Assume (A1) and (A2) hold. Let v(x, t) be the blow-up solution of (1.5)-

(1.7), which blows up in finite time T and v(x, t) is non-decreasing in time, then the fol-

lowing limits hold uniformly in all compact subsets of B.

(i) If 0 ≤ q1 <1, then

lim
τ→T

(T − τ )1/(q1+s1−1)v(x, τ ) = C(a(x))1/(1−q1), (2:1)

where C = ((q1 + s1 − 1)(a(0))s1/(1−q1))1/(1−q1−s1) .

(ii) If q1 = 1, then

lim
τ→T

ln v(x, τ ) =
a(x)
a(0)

ln (T − τ )−1/s1 . (2:2)

Remark 2.1 The domain we considered here is a ball, it seems that the results of

Theorem 2.2 remain valid for the general domain. (It is an open problem in this case.)

To get the blow-up profiles for problem (1.5)-(1.7), we need some transformations.

Let u(x, t) = vm(x, τ), t = mτ, then (1.5)-(1.7) becomes
⎧⎨
⎩
ut = up(�u + a(x)uq(x, t)us(0, t)), x ∈ B, t > 0,
u(x, t) = 0, x ∈ ∂B, t > 0,
u(x, 0) = u0(x) = vm0 (x), x ∈ B,

(2:3)

where 0 ≤ p = (m - 1)/m <1, q = q1/m, and s = s1/m.

Under above transformation, assumptions (A1) and (A2) become

(B1) a(x) and u0(x) Î C2(B); a(x), u0(x) >0 in B and a(x) = u0(x) = 0 on ∂B.

(B2) a(x) and u0(x) are radially symmetric; a(r) and u0(r) are non-increasing for r Î
[0, R].

In our consideration, a crucial role is played by the Dirichlet eigenvalue problem
{−�ϕ = λϕ, in B,

ϕ(x) = 0, on ∂B.
(2:4)

Denote l be the first eigenvalue and by � the corresponding eigenfunction with �(x)

>0 in B, normalized by
∫
B a(x)ϕ(x)dx = 1 .
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3 Proof of Theorem 2.2
For convenience, we denote

g(t) = us(0, t) and G(t) =
∫ t
0 g(s)ds.

Before proving our result, we would like to give a property of the following problem
⎧⎨
⎩
wt = wα(�w + a(x)g(t)), x ∈ B, t > 0,
w(x, t) = 0, x ∈ ∂B, t > 0,
w(x, 0) = w0(x) = u1−q

0 (x), x ∈ B,
(3:1)

where 0 ≤ a ≤ 1 and w = u1-q(x, t).

Lemma 3.1 Assume (B1) and (B2) hold. Let w(x, t) be the solution of Equation (3.1),

which blows up in a finite time T* and non-decreasing in time t, then the following lim-

its hold uniformly in all compact subsets of B.

(i) If 0 ≤ a <1, then

lim
t→T∗

w1−α(x, t)
G(t)

= (1 − α)a(x).

(ii) If a = 1, then

lim
t→T∗

lnw(x, t)
G(t)

= a(x).

Proof. (i) Assumption (B2) implies wr ≤ 0 (r = |x|), it then follows that

w(0, t) = maxx∈B̄w(x, t) and Δw(0, t) ≤ 0 for t >0. From (3.1), we then get

dw1−α(0, t)
dt

≤ (1 − α)a(0)g(t), 0 < t < T∗.

.

Consequently,

lim
t→T∗ sup

w1−α(0, t)
G(t)

≤ (1 − α)a(0), (3:2)

which implies

lim
t→T∗

G(t) = ∞ and lim
t→T∗

g(t) = ∞.

Moreover, it is apparent that limt-T* w(0, t)/g(t) = 0, since s >1 - q.

Set R1 Î (0, R), B1 = {x Î ℝN, | x |< R1} and b(x) = 1/a(x), x Î B1. Since a’(r) ≤ 0, we

obtain that b’(r) ≥ 0, for 0 ≤ r ≤ R1.

We now introduce the function

w1(x, t) = b1/(1−α)(x)w(x, t), x ∈ B1, 0 < t < T∗.

By a simple calculation, and note that ∇w(x, t)∇b(x) = ur(r, t)b’(r) ≤ 0, then there

exist m1, m2 >0 such that

b(x)�w(x, t) ≥ m1�w1(x, t) − m2w(x, t) x ∈ B1, 0 < t < T∗.
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Setting ε(t) = m2w(0, t)/g(t). From limt®T* w(0, t)/g(t) = 0, we infer that there exists

t1 Î (0, T*) such that 0 < ε(t) ≤ 1/2 for t1 ≤ t < T*.

Hence, in view of (3.1), we observe

1
1 − α

(w1
1−α)t = b(x)�w + g(t)

≥ m1�w1 + (1 − ε(t))g(t) + ε(t)g(t) − m2w(0, t)

= m1�w1 + (1 − ε(t))g(t), x ∈ B1, t1 < t < T∗.

Set g1(t) = (1 - ε(t))g(t), G1(t) =
∫ t
t1
g(s)ds , we then obtain

lim
t→T∗ G1(t) = ∞ and lim

t→T∗

G1(t)
G(t)

= 1.

Obviously, w1(x, t) is a sup-solution of the following equation
⎧⎨
⎩
(w∗)t = (w∗)α((m1 � w∗ + g1(t)), x ∈ B1, t1 < t < T∗,
w∗(x, t) = 0, x ∈ ∂B1, t > t1,
w∗(x, t1) = b1/1−α(x)w(x, t1), x ∈ B1.

By the maximum principle, w1(x, t) ≥ w*(x, t) and w∗
r ≤ 0 . Similar to the proof of

(4.15) in [15] that

lim
t→T∗

(w∗)1−α(x, t)
G(t)

= (1 − α),

uniformly in all compact subsets of B1,

Therefore, by the arbitrariness of B1, we obtain that the following inequatlity holds

uniformly in all compact subsets of B

lim
t→T∗ inf

w(1−α)(x, t)
G(t)

≥ (1 − α)a(x). (3:3)

In particular,

lim
t→T∗ inf

w(1−α)(0, t)
G(t)

≥ (1 − α)a(0). (3:4)

From (3.2) and (3.4), we deduce

lim
t→T∗

w(1−α)(0, t)
G(t)

= (1 − α)a(0). (3:5)

Multiplying both sides of (3.1) by � and integrating over B × (0, t), 0 < t < T*

1
1 − α

(∫
B
w1−αϕdx −

∫
B
w1−α
0 ϕdx

)
= −λ

∫ t

0

∫
B
wϕdxds + G(t).

Since
∫ t
0

∫
B wϕdxds ≤ ∫

B ϕdx
∫ t
0 w(0, s)ds , so we have

lim
t→T∗

∫ t
0

∫
B wϕdxds

G(t)
= 0.
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It then follows that

lim
t→T∗

∫
B w

1−αϕdx

G(t)
= (1 − α). (3:6)

Note that wr ≤ 0, (3.3) and (3.6), it is sufficient to prove

lim
t→T∗ sup

w1−α(x, t)
G(t)

≤ (1 − α)a(x), ∀x ∈ B. (3:7)

Assume on the contrary that there exists a point x1 Î B, x1 ≠ 0 such that

lim
t→T∗

supw1−α(x1, t)/G(t) = c > (1 − α)a(x1).

Then there exists a sequence {tn} such that tn ® T*

lim
tn→T∗

supw1−α(x1, tn)/G(tn) = c > (1 − α)a(x1).

By the continuity of a(x), we deduce that there exists x2 Î B such that (1 - a)a(x) < c

for B1 = {x Î ℝn : |x2| ≤ |x| ≤ |x1|}. Using wr ≤ 0, (3.3) and (3.6), it is easy to check

that

lim
tn→T∗

∫
B w

1−α(x, tn)ϕ(x)dx

G(tn)
= lim

tn→T∗

∫
B\B1

w1−α(x, tn)ϕ(x)dx +
∫
B1
w1−α(x, tn)ϕ(x)dx

G(tn)

≥
∫
B\B1

(1 − α)a(x)ϕ(x)dx + lim
tn→T∗ c

∫
B
ϕ(x)dx

> (1 − α),

which is a contradiction to (3.6). Combining (3.3) and (3.7), Lemma 3.1 (i) is proved.

Case (ii) can be treated similarly.

The key step in establishing the result of Theorem 2.2 is the following lemma.

Lemma 3.2 Under the assumption of Lemma 3.1, let u(x, t) be the blow-up solution

of (2.3), which blows up in a finite time T* and non-decreasing in time t, then the fol-

lowing statements hold uniformly in all compact subsets of B:

(i) If p + q <1, then

lim
t→T∗

u1−q−p(x, t)
G(t)

= (1 − q − p)a(x).

(ii) If p + q = 1, then

lim
t→T∗

ln u(x, t)
G(t)

= a(x).

Proof. (i) Since ur ≤ 0 and ut ≥ 0, it then follows that u(0, t) = maxx∈B̄u(x, t) and Δu

(0, t) ≤ 0 for t >0, which imply limt®T* u(0, t) = ∞. Obviously,

ut(0, t) ≤ a(0)up+q(0, t)g(t), 0 < t < T∗,

which implies

lim
t→T∗ sup

u1−p−q(0, t)
G(t)

≤ (1 − p − q)a(0). (3:8)
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Notice that p + q <1 and (3.8), hence limt®T* G(t) = ∞ and limt®T* g(t) = ∞.

A simple calculation yields

1
1 − r

�u1−r = −ru−(1+r)|∇u|2 + u−r�u (if 0 < r < 1).

In view of (2.3), we have, for x Î Ω, 0 < t < T*

1 − q
1 − p − q

du1−p−q

dt
= �u1−q + q(1 − q)u−q−1|∇u|2 + (1 − q)a(x)g(t). (3:9)

Multiplying both sides of Equation (3.9) by � and integrating over B × (0, t), it fol-

lows that

1
1 − p − q

(∫
B
u1−p−qϕdx −

∫
B
u1−p−q
0 ϕdx

)

= − λ

1 − q

∫ t

0

∫
B
u1−qϕdxds + G(t) +

∫ t

0

∫
B
qu−q−1|∇u|2ϕdxds,

(3:10)

for 0 < t < T*. Clearly,

∫ t
0

∫
B u

1−qϕdxds ≤ ∫ t
0 u

1−q(0, t)ds
∫
B ϕ(x)dx, (3:11)

which yields

lim
t→T∗

∫ t
0

∫
B u

1−qϕdxds

G(t)
= 0. (3:12)

Setting u1(r, t) = u(1-q)/2(r, t)(r = |x|). We may claim that

lim
t→T∗

(u1(r, t))r
(g(t))1/2

= 0, a.e. r ∈ (0,R).

Indeed, due to limt®T* g(t) = limt®T* u
s(0, t) = ∞, ur ≤ 0, and s >1 - q, we then have

lim
t→T∗

∫ R
0 (u1(r, t))rdr

(g(t))1/2
= lim

t→T∗

u1(R, t) − u1(0, t)

(g(t))1/2
= 0.

Therefore, by Lebesgue’s dominated convergence theorem, we infer that

lim
t→T∗

∫
B qu

−q−1|∇u|2ϕ(x)dx
g(t)

= qωn lim
t→T∗

∫ R
0 u−q−1(r, t)u2r ϕ(r)r

n−1dr

g(t)

≤ qωnR
n−1 lim

t→T∗

∫ R
0 u−q−1(r, t)u2r ϕ(r)dr

g(t)

=
4q

(1 − q)2
Rn−1ωn lim

t→T∗

∫ R
0 ((u(1−q)/2)r)

2
ϕ(r)dr

g(t)

≤ C

R∫
0

lim
t→T∗(

(u(1−q)/2)r
(g(t))1/2

)2dr = 0,

(3:13)

where wn is the surface area of unit ball in ℝN.
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Now according to (3.10)-(3.12), we obtain

lim
t→T∗

∫
B u

1−p−qϕdx

G(t)
= (1 − p − q). (3:14)

On the other hand, By (3.9), we find

du1−q

dt
≥ up(�u1−q + (1 − q)a(x)g(t)), x ∈ B, 0 < t < T∗,

where g = p/(1 - q). Consequently, u1-q is a sup-solution of the problem
⎧⎪⎪⎨
⎪⎪⎩

dv
dt

= vγ (�v + (1 − q)a(x)g(t)), x ∈ B, 0 < t < T∗,

v(x, t) = 0, x ∈ ∂B, t > 0,
v(x, 0) = u1−q

0 (x), x ∈ B.

By the maximum principle, u1-q ≥ v in B × (0, T*). Note that 0 ≤ g <1, we know from

Lemma 3.1 (i) that

lim
t→T∗

v(1−p−q)/(1−q)(x, t)
G(t)

= (1 − p − q)a(x),

uniformly in all compact subsets of B.

Thus,

lim
t→T∗ inf

u(1−p−q)(x, t)
G(t)

≥ (1 − p − q)a(x), (3:15)

uniformly in all compact subsets of B.

Next, we prove that

lim
t→T∗ sup

u(1−p−q)(x, t)
G(t)

≤ (1 − p − q)a(x), (3:16)

uniformly in all compact subsets of B.

We can verify (3.15) by similar means of (3.7). Therefore, we conclude the proof of

case (i).

(ii) Proceeding as (3.8), we have

lim
t→T∗ sup

ln u(0, t)
G(t)

≤ a(0).

For any compact subset B1 Î B, there exists t1 Î (0, T*) such that u(x, t1) ≥ 1 for all

x ∈ B̄1 , and thus ln u(x, t) ≥ 0 in B̄1 × (t1,T∗) .

Direct calculation shows

d ln u

dt
=

1
1 − q

�u1−q + qu−q−1|∇u|2 + a(x)g(t). (3:17)

Let l1 be the first eigenvalue of -Δ in H1
0(B1) and by �1 >0 the corresponding eigen-

function, normalized by
∫
B1
a(x)ϕ1(x)dx = 1 . Set G1(t) =

∫ t
t1
g(s)ds . Clearly, limt®T* G

(t)/G1(t) = 1.
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Multiplying both sides of Equation (3.16) by �1 and integrating over B1 × (t1, t), we

get
∫
B1

(ln u)ϕ1dx −
∫
B1

(ln u(x, t1))ϕ1dx

= −λ

∫ t

t1

∫
B1

u1−qϕdxds + G(t) +
∫ t

t1

∫
B1

qu−q−1|∇u|2ϕdxds, t1 < t < T∗.
(3:18)

The result of case (ii) follows by analogy with the argument used in the proof of case

(i).

Proof of Theorem 2.2

(i) By Lemma 3.2 (i), we infer that

u(0, t) ∼ ((1 − q − p)a(0))1/(1−q−p)G(t), as t → T∗,

hence

G′(t) = g(t) = uq(0, t) ∼ ((1 − q − p)a(0))q/(1−q−p)G(t)q/(1−q−p). (3:19)

Integrating equivalence (3.18) between t and T*, we obtain

G(t) ∼ (a(0)(1 − q − p))−1(a(0)(p + q + s − 1)(T∗ − t))(1−q−p)/(1−p−q−s). (3:20)

Using Lemma 3.2 (i) and substituting p = (m - 1)/m, q = q1/m, s = s1/m, t* = mτ, and

u(x, t) = vm(x, τ) into (3.19), we complete the proof of Theorem 2.2 (i).

(ii) To obtain the blow-up rate of the exponent type, we need to be more careful in

this case, since exponentiation of equivalents is not permitted. Similar to the proof of

Theorem 3 in [14] and Lemma 2.3 in [16], we get

lim
t→T∗ G(t) = a−1(0) ln (T∗ − t)(−1/s). (3:21)

Thanks to Lemma 3.2(ii) and (3.20), we then get the desired result.

4 Discussion
This article deals with the porous medium equation with local and localized source

terms, represented by two factors vq1 (x, τ ) and vs1 (0, τ ) , respectively. As we all know

that, in the absence of weight function, the solutions of model (1.5)-(1.7) have a global

blow-up and the rate of blow-up is uniform in all compact subsets of the domain. A

natural question is what happens in the model (1.5)-(1.7), where the source term is the

product of localized source, local source, and weight function. It is shown by Theorem

2.2 that if 0 ≤ q1 ≤ 1, this equation possesses uniform blow-up profiles. In other words,

the localized term plays a leading role in the blow-up profile for this case. Moreover,

the blow-up rate estimates in time and space is obtained.
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