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Abstract

We study the existence of solutions for a class of nonlinear Caputo-type fractional
boundary value problems with nonlocal fractional integro-differential boundary
conditions. We apply some fixed point principles and Leray-Schauder degree theory
to obtain the main results. Some examples are discussed for the illustration of the
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1 Introduction
Nonlocal boundary value problems of fractional differential equations have been exten-
sively studied in the recent years. In fact, the subject of fractional calculus has been quite
attractive and exciting due to its applications in the modeling of many physical and en-
gineering problems. For theoretical and practical development of the subject, we refer to
the books [1-5]. Some recent results on fractional boundary value problems can be found
in [6—-14] and references therein. In [11], the authors studied a boundary value problem of
fractional differential equations with fractional separated boundary conditions.

In this article, motivated by [11], we consider a fractional boundary value problem with

fractional integro-differential boundary conditions given by

D*x(t) =f(t,x(2), l<a<2,t€]0,1],

s o—2
c1x(0) + Bu(DPx(0)) = w1 [y Ygrxls)ds, 0<p<1, (11)
o (o—s =2
arx(1) + Bo(DPx(1) = v fy Flals)ds, 0<no<l,

where D% denotes the Caputo fractional derivative of order «, f is a given continuous
function, and «;, B;, y; (i = 1,2) are suitably chosen real constants.

The main aim of the present study is to obtain some existence results for the problem
(1.1). As a first step, we transform the given problem to a fixed point problem and show
the existence of fixed points for the transformed problem which in turn correspond to
the solutions of the actual problem. The methods used to prove the existence results are
standard; however, their exposition in the framework of the problem (1.1) is new.
© 2012 Ahmad and Alsaedi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
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2 Preliminaries
Let us recall some basic definitions of fractional calculus [1, 2].

Definition 2.1 For (n — 1)-times absolutely continuous function g : [0,00) — R, the

Caputo derivative of fractional order g is defined as

1 t
Dig(t) = ——— / (t—s) g (s)ds, n-1<g<mn=[ql+1,
F(n-q) Jo

where [g] denotes the integer part of the real number 4.

Definition 2.2 The Riemann-Liouville fractional integral of order g is defined as

Ig(t) = ds, q>0,

T(g) / (t- S)lq

provided the integral exists.

To define the solution of the boundary value problem (1.1), we need the following lemma,

which deals with a linear variant of the problem (1.1).

Lemma 2.3 For a given y € C([0,1],R), the unique solution of the linear fractional bound-

ary value problem

D*x(t) =y(t), l<a<2,

alx(o) + ﬁl(CDpx(O)) =N 0’7 (111—*_; 1) (S) dS, 0 <p< 1, (2.1)

(1) + Bo(DPx(1) = 1 [y} 2L x(s) ds, 0<no<l

(X

is given by
t (t )a Za 2
x<t>=/0 o (s)ds+u1(t)/ m ¥(s)ds
o _ )22 a—p-1
+I«L2(t){V2v/0 (?(2 ) J’(S /32/ a ;) p) y(s) ds
1 (1 _ S)D(—l

—azfo Wy(s)ds}, (2.2)

where

u1(t) = ni(Ay — Aqt), Ma(t) = 1Az + Ayt
1 o 1 -1
Ar=—|a2- L P , Ay=— az_yza )
A Fa+l) T2-p) A T(a)

not 1 J/1)701—1 (23)
A=ty Ag=—(ar- :
AT (x + 1) A I'a)

_(a_ymal>(a_ not P >+ nn® (a_V20°‘1>7!0
"\ T T+l r2-p) Te@+)\ > T '
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Proof 1t is well known [2] that the solution of the fractional differential equation in (2.1) 1

can be written as 2
3
t t— a-1 4
x(t) = /0 %y(s) ds + cg + c1t. (2.4) ]
6
Using DPb = 0 (b is a constant), ‘DPt = Fz(l;’p) , DPIy(t) = 177Py(t), (2.4) gives 7
8
o t (t _ S)oz—p—l 4 tl—p 9
)= | ———— -—q=—. 2.5
x(t) /0 Mo —p) y(s) ds ClF(Z—p) (25) 1o
1
Using the integral boundary conditions of the problem (2.1) together with (2.3), (2.4), and 12
(2.5) yields 13
14
co = 1 oy — 120" + 2 /-n (-9 (s)ds ;
A\ T+ "Te-p /) ), TQa-1’ 16
17
yin® 7 (0 -5
R d. 18
T+ (VZ oy TQa-1) ys)ds .
1 p1 1 -1
(L-s)*? (1-s) 20
- ————y(s)ds — / ———y(s)ds | ¢,
A e LR v ,
. 1 yzo_oz—l fﬂ (77 _ S)Zoz—Z (s) s 2
= —4q— oy — —_—
AT e ) ), Tea-)? 23
Ao ylna—l /U ((T _S)za—z (S) ds 24
T J\?), Tee-1” 25
1 a—-p-1 1 a-1 26
(1-9)*? (1-s)
- ———y(s)ds - ———y(s)ds | ¢.
/32/0 Fa—p) y(s)ds — o T y(s)ds 27
28
Substituting the values of ¢y, ¢; in (2.4), we get (2.2). This completes the proof. o %
30
Remark 2.4 Notice that the solution (2.2) is independent of the parameter 1, which dis- .
tinguishes the present work from the one containing the fractional differential equation .
33
of (2.1) with the boundary conditions of the form: "
. v 35
ax0)+ i 0 = [ ALty §
o Ma-1)
(2.6) 37
, o ((I _ S)a—z
apx(1) + fox’ V) =y | ———x(s)ds. 38
o Tle-1) 39
40
In case 1 = 0 = B, the boundary conditions in (2.1) coincide with (2.6) and consequently a
the corresponding solutions become identical. 2
43
3 Main results 44

Let C = C([0,1],R) denote the Banach space of all continuous functions from [0,1] into R~ 45

endowed with the usual supremum norm. 46
47
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In view of Lemma 2.3, we define an operator F : C — C by

t(t_ )a—l n ( _ )20{—2
(Fx)(t) = /0 ﬁf(s,x(s)) ds + ,ul(t)/o %f(s,x(s)) ds

o (a _ S)za-z 1 (1 _ s)a—p—l

+ Mz(t){yz \ mf (s,%(5)) ds — B2 /0 F(T—p)f (s, %(5)) ds
1 (1 _ s)a—l
— oy /(; Wf(s,x(s)) ds}. (3.1)

Observe that the problem (1.1) has solutions if and only if the operator equation Fx = x
has fixed points.
In the sequel, we use the following notation:

w = max{ e, ()l N (t)|(|7/2|02‘7“1 LBl el )}
~refon]| M(a +1) I'(2a) = Fe) Tlae-p+1) T(a+1)

_ L+ laality  un® ™ + fio]yalo® |Bal 2

Fa+1) T'(2a) "Tla-p+1)’

(3.2)

where 1 = [y1|(|A1] + [Az]), 2 = [11As] + [Ag| with A; (i =1,2,3,4) given by (2.3).
Our first result is based on the Leray-Schauder nonlinear alternative [15].

Lemma 3.1 (Nonlinear alternative for single valued maps) Let E be a Banach space, C a
closed, convex subset of E, U an open subset of C, and 0 € U. Suppose that F: U — C is a
continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either
(i) F has a fixed point in U, or
(ii) thereisau e dU (the boundary of U in C) and A € (0,1) with u = LF ().

Theorem 3.2 Letf:[0,1] x R — R be a jointly continuous function. Assume that:

(A1) thereexistafunction p € C([0,1],R*) and a nondecreasing function  : R* — R* such
that |[f (¢, x)| < p(e)¥ (llx[l), V(£,%) € [0,1] x R;
(Ay) there exists a constant M > O such that

M
Ltlagliiy | fun?*"l+figlyslo2et \ﬂzlﬂz
w(M) (a+1) + I'(2a) + (a-p+1) }”p”

Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof Consider the operator F : C — C defined by (3.1). We show that F maps bounded sets
into bounded sets in C([0,1], R). For a positive number r, let B, = {x € C([0,1],R) : ||x|| < r}
be a bounded set in C([0,1],R). Then

(t=s)*! s‘)‘1 (n—s)
”f"”ftitt‘i]{ / 1 (5,5) | ds + |1 (® / oo 1f(5,59) | ds

o (O,_S)Za—Z
+|M2(t)‘<|)’2| A mlf ()] ds

1 (1 _ S)a—p—l
+ |ﬁ2| ; F(a—_p) [f(s,x(s)) | dS
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1 (1 _ )a—l
+ |012|/0 Tsa){f(s,x(s)ﬂds)}

L+ |aalits  un® ™ + ol yalo [Bal itz
+ + lpll-
'« +1) I'2a) MNa-p+1)

201

swm{

Next, we show that F maps bounded sets into equicontinuous sets of C([0,1],R). Let ¢/, ¢" €
[0,1] with ¢ < ¢” and x € B,, where B, is a bounded set of C([0,1],R). Then we obtain

|(Fa)(e) - (fx)(t/)l
" _ q-1 _
’ ra /) t s) f (s x s) T (q) / t s s,x(s)) ds

n _ )22
(1) /0 %f(s,x(s)) ds

o ((I _S)Zoz—Z -1

"oy 1(q-s)r
+A4(t —L‘){Vz A mf(s,x(s))ds—ﬁzfo F(T

=) f(s,x(s)) ds
1 1-— o-1
_a2/0 %f(&x(s)) ds}

/‘t —s —( s)q71|w(r)p(s)ds

’ ﬁ / |7 sy (r)pls) ds

n _ o202
¢ Pnda(t - 1) j %w(ﬂpm ds

1 a—p-1
+laate =)l [ w(r)p(s) ds—18ol [ 2 pts) ds
nz |

['(a-p)
1-— a-1
—|a2|/(; RS F(So|z) w(r)p(s)ds}.

Obviously, the right-hand side of the above inequality tends to zero independently of x € B,
as t” —t' — 0. As F satisfies the above assumptions, therefore, it follows by the Arzela-
Ascoli theorem that F : C([0,1], R) — C([0,1],R) is completely continuous.

Let x be a solution. Then for ¢ € [0,1], using the computations in proving that F is
bounded, we have

lx(®)| = [M(Fx)(0)

<y (lxl) 1+ |azlfts . an* =+ o) ya|o 2t . |Balft2 2l
- Ma+1) I'(2a) MNa-p+1) '

Consequently, we have

&l

1 20-1 2a-1 m —
v (Jlxl{ +log|fig + i +iglylo + 1B21it2 Hipl

[ (a+1) '2a) I(a—p+1)

In view of (A;), there exists M such that ||x|| # M. Let us set

U={xeC([0,1],R): [lx[l <M +1}.
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Note that the operator F : U — C([0,1],R) is continuous and completely continuous.
From the choice of U, there is no x € AU such that x = AF(x) for some A € (0,1). Con-
sequently, by the nonlinear alternative of Leray-Schauder type (Lemma 3.1), we deduce
that F has a fixed point x € { which is a solution of the problem (1.1). This completes the
proof. O

In the special case when p(t) =1 and ¥ (]x|) = «|x| + N (x and N are suitable constants)
in the statement of Theorem 3.2, we have the following corollary.

Corollary 3.3 Let f : [0,1] x R — R be a continuous function. Assume that there exist
constants 0 < k < 1/w, where w is given by (3.2) and N > 0 such that |f(t,x)| < k|x| + N for
all t € [0,1], x € C[0,1]. Then the boundary value problem (1.1) has at least one solution.

Next, we prove an existence and uniqueness result by means of Banach’s contraction

mapping principle.

Theorem 3.4 Suppose that f : [0,1] x R — R is a continuous function and satisfies the
following assumption:

(Az) |f(t,x)—f(t,y)| <Llx—y|, ¥t €[0,1],L >0, %,y cR.

Then the boundary value problem (1.1) has a unique solution provided
w<1/L, (3.3)

where w is given by (3.2).

Proof With r > Mw/(1 - Lw), we define B, = {x € F : |x|| < r}, where M = sup,c(oy; [f(t,
0)| < 00 and w is given by (3.2). Then we show that FB, C B,. For x € B,, we have

IFxll = sup [(Fx)()]

te(0,1]
(£ (-9
< t:l[’:)?l]{/ l"( ) s,x(s))‘ds+ ’ul(t)| ; m[f(s,x(s)ﬂds

(G )Za -2 1 (1 _S)a—p—l
|M2 <|)’2|/ T (a - 1) s,x(s))|ds+|ﬁ2|/0 F(a——p)lf(s’x(s))‘ds

1-s)*?!
+|Oéz|f F( ) sx(s))|ds)}.

Using |f(s,x(s))| < |f(s,x(s)) —f(s,0)| + [f(s,0)| < L|lx|| + M < Lr + M, the above expression
yields

a-1 _ o)2a— 2
| Fx| < (Lr + M) sup {/ (- S) ————ds+ ‘//,1 f (77 9
'2a -1)

te(0,1]

( _ )201 -2 (I_S)a—p—l
|M2(t)|<|)/2|/ T@a-1) ds + | Ba] ; F‘(T—p)ds

S)a 1
+ |0!2|f T@) S)}
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1 ~ o 20—1 ~ 2a-1 ~
§(Lr+M){ +laglpy  an® T+ falyalo N | B2l it2 }

Ta+1) ' (2a) Tla-p+1)
=(Lr+M)w<r,

where we used (3.2). Now, for x,y € C and for each ¢ € [0, 1], we obtain
[(Fx)(2) = (Fy)@)|

(t s)oz 1
StZHﬁ]{ f Tl If (s, %(s)) = f (s, ¥(5)) | ds

" (n—s)?
+|m @)  Tae D If (s, %(5)) = £ (5, (5))| ds

2a 2
\Mz(t)|(|)/2|/ r2a—1) ————|f(s,x(5)) = f(s,(5)) | ds

(1 _ S)a—p—l
o I'le-p)

1 (1 _ )Dl—l
+ lo] /0 Tix) If (s,%(5)) = f (5, %(5)) | ds) }

s lora| Lo s ™ + o)yl s |Bal 2 eyl
- '« +1) I'2a) MNa-p+1)

+ B2l If (s,%(5)) = f (5, %(5)) | s

=Lolx-y|.

Note that w depends only on the parameters involved in the problem. As Lw < 1, therefore,
F is a contraction. Hence, by Banach’s contraction mapping principle, the problem (1.1)

has a unique solution on [0, 1].

Now, we prove the existence of solutions of (1.1) by applying Krasnoselskii’s fixed point

theorem [16].

Theorem 3.5 (Krasnoselskii’s fixed point theorem) Let M be a closed, bounded, convex,
and nonempty subset of a Banach space X. Let A, B be the operators such that (i) Ax + By €
M whenever x,y € M; (ii) A is compact and continuous; (iil) B is a contraction mapping.

Then there exists z € M such that z = Az + Bz.

Theorem 3.6 Letf :[0,1] x R — R be a jointly continuous function satisfying the assump-

tion (A3). In addition we assume that:
(Aq) If(t,%)] < (), Y(t,x) € [0,1] x R, and n € C([0,1],R¥).
Then the problem (1.1) has at least one solution on [0,1] if

laalfta  n® ™ + fialyalo |Bal 2

Ta+1) T'(2a) Ta-p+1)

201
<1

Proof Letting sup,o ) |14(£)| = || 4[|, we choose a real number 7 satisfying the inequality

L+laglia  n®™ ™ + fialyzlo |B2lidz
fl el + + )
Mo +1) I'2a) MNoa-p+1)
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and consider By = {x € C : ||x|| <7}. We define the operators P and Q on By as

() = /(t s)“1 6.2()) ds,

r (a)
(71 _ S)za—z (G _ )Za -2
(Qmm=uﬂﬂﬂ ?agjﬁf@x@»%+uﬂﬂcof T (et ds

1 (1 _ S)a—p—l 1 (1 _ S)a—l
— '32/0 F(T_p)f(s,x(s)) ds — O(z‘/(; Wf(s,x(s)) dS)

For x,y € By, we find that

Px + Qyll

<l L+ oalfta  n®*™ + falyalo ! |Bal 2 <7
- M(a+1) r'2a) Fa-p+1) |~

Thus, Px + Qy € By. It follows from the assumption (Asz) together with (3.4) that Q is a
contraction mapping. Continuity of f implies that the operator P is continuous. Also, P
is uniformly bounded on By as

ll ]

IPH= 5 g

Now, we prove the compactness of the operator P.
In view of (A1), we define sup(, (0,15, f (£, )] = f, and consequently, for #;,£, € [0,1],
we have

|(Px)(11) - (Px)(8)]

'%q) /0 1[(152 -t (4 —s)q_l]f(s,x(s)) ds

+ /tz(tz - S)q_lf(s,x(s)) ds

< r el + -

2|1

which is independent of x. Thus, P is equicontinuous. Hence, by the Arzeld-Ascoli theo-
rem, P is compact on By. Thus, all the assumptions of Theorem 3.5 are satisfied. So, the
conclusion of Theorem 3.5 implies that the boundary value problem (1.1) has at least one
solution on [0, 1]. O

4 Examples
Example 4.1 Consider the following boundary value problem:

D32x(¢) = 12 j sin(27x) + al +aglxl +£2+2, te[0,1],

) 1+\x\
2(0) + 3(D3x(0)) = [/ WaI T x(5) s, (4.1)
x(1) + 2(DV3x(1)) =3 [ G o(s) dis.

Here,a =3/2,p=1/3, 01 =1, =3, 1=1,,n=1/4,a5=1, B2 =2, y» =3, 0 =3/4, and
L+ |aalits  un® ™+ o] yalo |Bal itz

- ~ 3.578386.
Ta+1) T'(2a) "Ta-p+1)

35
36
37
38
39
40
a0
42
43
44
45
46
47

Page 8 of 10


http://www.boundaryvalueproblems.com/content/2012/1/124

«BVP 13661 layout: Onecolumn v.1.0  file: bvp_64.tex (Siga) class: bmc-onecol-v1 v.2012/11/12  Prn:2012/11/26;15:32  p. 9/10»
« reference style: mathphys»

Ahmad and Alsaedi Boundary Value Problems 2012, 2012:124
http://www.boundaryvalueproblems.com/content/2012/1/124

Clearly,

. || 1 ) 1
V(t,x)| = Sin(2rx) + —— + — x| + 7 + 2| < —|x| + 4.
(12) 1+]x] 30 5

Clearly, N = 4 and

1 1
K==<— ==,
5 o 3578386

Thus, all the conditions of Corollary 3.3 are satisfied and consequently the problem (4.1)

has at least one solution.

Example 4.2 Consider the following fractional boundary value problem:

D2x(t) = L(x +tan~" ) + Y peo,1],

442 7
2(0) + 3(Dx(0)) = [/ WhI T x(5) s, 4.2)
x(1) + 2(DV3x(1)) =3 [/ G (s) dis,

where «, p, @), Bi, Vi, (i =1,2) n, o are the same as given in (4.1) and f (¢, x) = (x +tanlx) +
Vt4‘++23 Clearly, |[f(¢,x) —f(¢,y)| < L|x—y| and thus, for L < 1/w =1/3.578386, all the condi-
tions of Theorem 3.4 are satisfied. Hence, the boundary value problem (4.2) has a unique

solution on [0, 1].
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