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1 Introduction
Consider the following boundary value problem with integral boundary conditions on the

half-line of an infinite interval of the form

( OZ(0) +£(t,2(6),7() =0, te(0,00), 1.1)
p()

wal0) = by Jim pOZ0) - [ a(el0) v ds
t— 0

as tEIPoo z(t) + by tEI}loop(t)z’(t) = /ooogg (z(5)) ¥ (s) ds, (1.2)

where f € C((0,00) x [0,00) x R, [0,00)), f may be singular at £ = 0; g1, > : [0,00) — [0, c0)
are continuous, nondecreasing functions and for 0 < ¢ < 0o, z in a bounded set, g1(2),
g2(z) are bounded; v : [0,00) — (0,00) is a continuous function with fooo Y(s)ds < +00;
p € C[0,00) N CYH0, o0) with p(£) > 0 on (0, +00) and fowo ﬁ < +00; a; +ay >0, b; >0 for
i=1,2 with D = ayb; + a1by + a1a»,B(0,00) > 0 in which B(t,s) fts p‘fﬁ

Boundary value problems on an infinite interval appear often in applied mathematics
and physics. There are many papers concerning the existence of solutions on the half-line
for boundary value problems; see [1-5] and the references therein.

At the same time, boundary value problems with integral boundary conditions are of
great importance and are an interesting class of problems. They constitute two, three,
multi-point, and nonlocal boundary value problems as special cases. For an overview of
the literature on integral boundary value problems, see [6—11] and the references therein.
© 2012 Yoruk and Hamal; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


http://www.boundaryvalueproblems.com/content/2012/1/127
mailto:fulya.yoruk@ege.edu.tr
http://creativecommons.org/licenses/by/2.0

Yoruk and Hamal Boundary Value Problems 2012, 2012:127 Page 2 of 17
http://www.boundaryvalueproblems.com/content/2012/1/127

Yan Sun et al. [4] studied the existence of positive solutions for singular boundary value

problems on the half-line for the following Sturm-Liouville boundary value problem:

>0 (p(t)z ®) +uf(t.2(6),2 () =0, te(0,00),

a1z(0) — by lim+p(t)z/(t) =0,

as tl1m z(t) + bz hm p(t)z () =0,
where  is a positive parameter; f is a continuous, non-negative function and may be sin-
gularat ¢ = 0; p € C[0,00)NC'(0, 00) with p(£) > 0 on (0, +00) and [

for i = 1,2. Wang et al. [5] investigated the existence theorems for the boundary value

+00
ds < +00;a;, b; >0

problem given by

(p)Z @) + A (f(t,2(0)) = K2(t)) =0, t€(0,00),
12(0) — Jim p(H)Z(t) =0,

ay lim z(¢) + By lim p(t)Z'(¢) =0,
t—+00 t—>+00

where f is a continuous, non-negative function and may be singular at £ = 0; p € C[0,00) N
CY(0, 00) with p(t) > 0 on (0, +00) and f+°o ds < +00; o;3; > 0 for i = 1,2. Also, Feng [11]
considered the following boundary value problem with integral boundary conditions on
a finite interval:

(g7 ®) +we)f (t,2(t)) =0, t€(0,1),

1
az(0) — b lim g(t)Z'(¢) = / h(s)z(s) ds,
t—0* 0

1
az(1) - b lim g(¢)Z () :/ h(s)z(s) ds,
t—1 0

where a,b > 0; g € C1([0,1],[0,00)), w € L,[0,1],1 <p < 00,and & € 1,]0,1] are symmetric
functions; f : [0,1] x [0, 00) — [0, 00) is continuous. The author obtained the existence of
symmetric positive solutions by using the fixed point index theory in cones.

Motivated by the above works, we consider the existence of one and three positive so-
lutions for the BVP (1.1), (1.2). However, to our knowledge, although various existence
theorems are obtained for Sturm-Liouville boundary value problems with homogeneous
boundary conditions, problems with nonhomogeneous boundary conditions, especially
integral boundary conditions on an infinite interval have rarely been considered. There-
fore, our boundary conditions are more general.

The rest of the paper is organized as follows. In Section 2, we present some necessary
lemmas that will be used to prove our main results. In Section 3, we apply the Schauder
fixed point theorem to get the existence of at least one positive solution for the nonlinear
boundary value problem (1.1) and (1.2). In Section 4, we use the Leggett-Williams fixed
point theorem [12] to get the existence of at least three positive solutions for the nonlinear
boundary value problem (1.1) and (1.2).
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2 Preliminaries
In this section, we will employ several lemmas to prove the main results in this paper.
These lemmas are based on the following BVP for / € C((0, 00)):

L p0Z@) +he)=0, te(0,00), 1)
p(t)

a1z(0) — by li%1+p(t)z’(t) = /mgl(z(s))w(s) ds,
t—> 0

as tEl;noo z(t) + by tEI}loop(t)z'(t) = /0~<>Og2 (z(5)) ¥ (s) ds. (2.2)

Define ¢(¢) and 0(t) to be the solutions of the corresponding homogeneous equation

1

>0 (p(0)Z () =0, te(0,00), (2.3)

under the initial conditions,

00)=by;,  lim p(t)0' (t) =,
t—0*t
/ (2.4)
lim ¢(t) = by, lim p(t)p () = —a.
t—>+00 t—>+00
Using the initial conditions (2.4), we can deduce, from equation (2.3) for 6(¢) and ¢(t), the
following equations:

t
0)=b+a / ﬂ, (2.5)
o p(7)
® dt
o0 =brra [ 25 2.6)
¢ p(r)
Let G(t,s) be the Green function for (2.1), (2.2) is given by
1 |6(t , 0<t< ;
Gt.s) (De(s), 0<t<s<oo (2.7)

D o), 0<s<t<oo,
where 0(t) and ¢(¢) are given in (2.5) and (2.6) respectively.

Lemma 2.1 Suppose the conditions f0+°° 1% < +00 and D > 0 hold. Then for any h €

C((0,00),R), the BVP (2.1), (2.2) has the unique solution

z(t) = / G(t,s)p(s)h(s)ds + M a (z(s)) v(s)ds + @ J: (z(s)) v(s)ds,
0 D 0 D 0

where G(t,s) is given by (2.7).

Furthermore, it is easy to prove the following properties of G(Z, s):
(1) G(t,s) is continuous on [0, +00) x [0, +00).

(2) Foreachs € [0,+00), G(t,s) is continuously differentiable on [0, +00) except £ = s.

aG(t,s) 3G(t,3) _ 1
(3) 26|, — 6, -
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(4) |G(t,s)] < ﬁ)G(s, s), for t € [0,00), where

max{a,, a}

- mil’l{bl,bz} ' (28)

(5) For each s € [0,+00), G(t,s) satisfies the corresponding homogeneous BVP (i.e.,
h(t) =0 in the BVP (2.1)) on [0, +00) except t = s.
(6) 0 <Gl(t,s) < G(s,s) for t,s € [0,00) and
— . by
G(s):= lim G(t,s) = —=0(s) < G(s,5) < +00.
t—+00 D
(7) Foranyt € [a,b] C (0,00) and s € [0, +00), we have

G(t,s) > Y0 G(s,s),

where

b2 + dzB(b, OO) hl + ﬂlB(O,ﬂ) }

it mm{ by + a;B(0,00)” by + a1 B(0, 00)

Obviously, 0 < yp < 1.

It is convenient to list the following conditions which are to be used in our theorems:

(H1) f € C((0,00) x [0,00) x R) and also, u(t)h(x,y) < f(t,x,y) < v(t)h(x,y), 0 < t < 00,
where /1 € C([0,00) X R, (0,00)); and for 0 < ¢ < 00, %, y in a bounded set, /(x, y) is bounded
and u,v: (0,00) — (0, 00) is continuous and may be singular at ¢ = 0; and also, there exists
0 < ko <1 such that u(#) > kov(¢) for ¢ € (0, c0).

(H2) ¢1,4> : [0,00) — [0, 00) are continuous, nondecreasing functions, and for 0 < ¢ <
00, z in a bounded set, g1(z), g2(z) are bounded.

(H3) v : [0,00) — (0, 00) is a continuous function with fooo ¥ (s)ds < +00.

(H4) [;° G(s,s)p(s)v(s) ds < +o0 and [~ G(s, s)p(s)u(s) ds < +00.

Consider the Banach space

B= {z € CY0, +00) : tlim z(t) < 00, sup ’z’(t)’ < oo}
)

—>+00 te[0,00

with the norm ||z|| = max{sup;cq o) 12(£)], SUP;c(o,00) 12/ (B}
From the above assumptions, we can define an operator A : B — B by

Az(t) :/0 G(t,s)p(s)f(s,z(s),z’(S)) ds + ?/{; gl(z(s))l/f(s) ds

6 [
+ F/ &(2(s)) v (s)ds, te(0,00), (2.9)
0
where G(t,s) is given by (2.7).
Lemma 2.2 ([13]) Let B be defined as before and M C 5. Then M is relatively compact in

B if the following conditions hold:
(a) M is uniformly bounded in B;

Page 4 of 17
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(b) The functions belonging to M are equicontinuous on any compact interval of [0, 00);
(c) The functions from M are equiconvergent, that is, given € > 0, there corresponds a
T (€) > 0 such that |f(t) — f(+00)| < € forany t > T(€) and f € M.

Definition 2.1 An operator is called completely continuous if it is continuous and maps
bounded sets into relatively compact sets.

3 Existence of at least one positive solution
In this section, we will apply the following Schauder fixed point theorem to get an existence
of one positive solution.

Theorem 3.1 (Schauder fixed point theorem) Let B be a Banach space and S be a
nonempty bounded, convex, and closed subset of B. Assume A : B — B is a completely
continuous operator. If the operator A leaves the set S invariant, i.e., if A(S) C S, then A has
at least one fixed point in S.

For convenience, let us set

m := min{g(c0),6(0)},

M := max{g(0),6(c0)},
and
M [oe]
BR) = 7 [a(®) + 0(R)] /0 V(s)ds.

Theorem 3.2 Assume conditions (H1)-(H4) are satisfied. In addition, let there exist a
number R > 0 such that

c
max{l, sup —— } sup
tel0,00) P(8) J 2 ef0.Rzpe-RR

h(zl,zg)(/oo G(s,s)p(s)v(s) ds) +B(R) <R,
] 0

where c is defined by (2.8).
Then the BVP (1.1), (1.2) has at least one solution z with

0<z() <R, tel0,00).
Proof Let A : B — B be the operator defined by (2.9). We claim that A is a completely
continuous operator. To justify this, we first show that A : B — B is well defined. Let z € 3,

then there exists ry > 0 such that ||z|| < rg and from conditions (H1) and (H2), we have

Spo 1= sup{h(x,y) :0<x<ry, -ro<y< ro} < +00,

Ty i= sup{gl(x) 0<x< ro} < 400,
and

T;O = sup{gz(x) 0<x< ro} < +00.
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Let t1, 6 € [0, OO), t1 < £y, then

/W|G(t1,s) - Glty,s) |p(s)v(s) ds <2 /‘00 G(s,s)p(s)v(s) ds < +o0. (3.1)
0 0

Hence, by the Lebesgue dominated convergence theorem and the fact that G(z,s) is con-
tinuous on £, we have

(A1) - (AD)(®)| < / |Glts) - Gltr,)
0

p(s)f (s,2(5), 2 (s)) ds

e ) ECOICE

+ M/O &(zs) ¥ (s)ds

< / |G(t2,8) — G(t1,9)|p(s)v(s)h(2(s), 2 (s)) ds
0

" W(b)pﬂfo & (=(9)v (s) ds
. M / " () v (s) ds

< S,O/ |G t,$) tl,s)|p(s)v(s)ds

+ —max{
D

}
« [l + eo)veds
= Sn / |G(ta,5) — G(t1,5)|p(s)v(s) ds
0

1
+ —max{
D

WTy +T,,) / v (s)d
— 0 ast — b (3.2)
Also, by (H1) and (H2), we get

/ / a) 1 1
(A2) (1) - (42) (&2)| < D) 7o)

2 [ oo (50,2 0) ds

A 1 0(s)p(s)f (s,2(s), 2 (s)) ds

" Dplt) o

% ﬁ - / Oow(s)p(S)f(S,Z(S)»Z’(S)) ds
s / 6P (5,2(5),2'(5)) ds

@ ﬁ ‘;% /Ooogl(z(s))w(s)ds

@ ﬁ _ ﬁ | " 2 (e) v (5) ds
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= “2;’0 p(ltl) - p(ltz) /Otle(s)P(S)V(s) ds
;’pf) / o plsvis)ds
“ﬁro p(ltl) - p(1t2) /t zoow(S)p(s)v(s)ds
1% t:ZQ(S)p(S)v(S) ds
aﬁ%pé)‘ﬂz)ﬂ V(s)ds
- T / " y9ds

— 0 ast — .

So, Az € C1[0, c0).
We can show that Az € . Notice that

tEEnoo(Az)(t) = /(;00 G()p(s)f (s, 2(s), 2 (s)) ds + (;O)

9(00)/ gg s)ds < +00.

/o @ (29) ¥ (s) ds

In addition, we have

(A2) (1)] < /0 |G (t,9)|p(s)v(s)h(2(s), 2 (s)) ds

+ & /oogl (z(s))w(s) ds +

Dp(t) Jo /0 2(2(9) ¥ (s)ds

ay
Dp(t)
c o ,
< H/ G(S,s)p(s)v(s)h(z(s),z(s)) ds

o ) [ 1) ) ]y

< Srom/ G(s,s)p(s)v(s) ds

max{al as}
+ (T + Dy “Dp) / Y (s) ds.

Therefore, sup [(Az)'(£)| < oco.
Hence, A : B — B is well defined.

Next, for any positive integer m, we denote the operator A,, : B — B by

(A,2)(¢) = /1 G(t, S)p(s)f(s, z(s),z (S)) ds + % A a (Z(S))l/I(S) ds
o(t)

+77A @(z8)v(s)ds, te[0,00),

(3.3)

(3.4)

Page 7 of 17
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and prove that A,, : B — B is completely continuous for each m > 1. Let ||z, — z|| — 0 as
n — +00. We will show that ||A,,z, — Azl = 0 as n — oo in B. We know that

/1 G(t,s)p(s)[f(s, 24(5),2,(s)) = f (5,2(5), 2 (s)) | ds

m

* % /0 |g1(24(5)) — g1(2(s)) [ (s) ds

7] )
%%A’@@@F@MMW®m
< [ G696 (52602, + (5,209, 9) ) s
0 [ee}
+%¥A|@@®%&MmW@ﬁ
7] oo
+%?A|@%®%@MmW@ﬁ

< /1 G(s,9)p(s) (V(s)h(z4(s), 2,,(5)) + v($)h(2(s), 2 (5))) ds

m

+%A €1(24(5)) — &1(2(5)) [ ¥ (s) ds
Moo
+BA|@%®%@MMW@@

<2S,: ffo G(s,s)p(s)v(s)ds

m

M oo

+ Bfo |g1(24(5)) — g1(2(5)) | ¥ (s) ds
M o0

5 [ len(an) - (e v 01ds,

where 7* > 0 is a real number such that 7 > max,.en{||zll, ||z, |}, N is a natural number set,
S, = sup{h(x,9):0 <x <r,—r <y <r}<+oo.
Therefore, for any € > 0, there exists a sufficiently large Ky (Ko > %) such that

o 13
28, /KO G(s,s)p(s)v(s)ds < z (3.5)

From the fact that ||z, — z|| — 0 as » — 00, we can see that for the above ¢ > 0, there
exists a sufficiently large natural number Ny € N such that if n > Ny, for any s € [0, 00), we
have

e /M (Ko 1, e -1
&) =26 < lzn—2l < (2| Gk, kyp(k) dk d
9 20| = a2l < 5 (5 [, Stkprak) ([ veoras)

and

e (M (K0 Lo -1
() =7 Y — Y — Gk, k)p(k) dk d .
12,(5) - 2(5)| < Iz z||<4( i f% (k K)p(k) () (fo ¥ s)
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On the other hand, by the continuity of f(¢,x, y), for the above ¢ > 0, there exists a § > 0,
foranyt € [, Kol, %,%1 € [0,7'], y,31 € [-r,r'] such that if [x — x| < 8, |y — 31| < §, we have

-1

Ko
[f (& %,9) = f(&,51,01) | < 2(/1 G(k, k)p(k) dk) . (3.6)

From the fact that ||z, — z|| — 0 as n — 00, there exists a natural number N; > Ny such
that when 12 > Ny, forany s € [, Ko, z,(s), 2(s) € [0,7], 2,,(5), 2 (s) € [, 7] if |za(s) — 2(s)| <
8, |z, (s) — Z/(s)| < 8, we have

Ky -1
V(s, 24(8),2,,(5)) —f(s, z(s),z/(s))| < 2(/L G(k, k)p(k) dk) . (3.7)

In addition to this, by the continuity of g1(x) and g(x) on [0, 00), for the above ¢ > 0,
there exists a § > 0 for any ¢ € [0, 00), x,x; € [0,7 ], such that if |x — x;| < §, we have

00 -1
’gi(x) —g,'(xl)’ < Z(%fo w(s)ds> , fori=1,2. (3.8)

From ||z, — z|| = 0 as n — o0, there exists a natural number N, > N such that when
n > Ny, for any s € [0, 00), z,(s), z(s) € [0, 7] if |z,(s) — z(s)| < §, we have

M [ =
|g,-(zn(s)) - g (z(s))| < Z(B/ v(s) ds) , fori=1,2. (3.9)
0
Hence, if N = max{Ni, N>}, then

|(Amzn)(t)—(AmZ)(t)|:/1 G(t,5)p(s)f (5, 2n(5), 2 (5)) ds

m

_/1 G(t,s)p(s)f(s,z(s),z/(s)) ds

m

'J?ﬂ [€1(24(9)) — &1(2(5) ] W (s) dis

o) [
A

o | [&(29) - &(z6) ]y () ds
0

Ko
< /1 G(s,s)p(s)[f(s, 24(5),2,(s)) = f (5,2(5), 2 (s)) | ds
+ /1; G(s,5)p(8)(f (5, 2n(5), 2,,()) + £ (5,2(5), 2 (s5))) dis

+ %v/(; |g1(Zn(S)) —gl(z(s))‘w(s) dS

0 (00)

T /0 |22 (21 (5)) — £2(2(5)) | (s) ds

Ko
< /1 G(s,9)p(9)|f (5:2u(5), 2,(5)) = f (5,2(5), 2 (5)) | ds

m

+2S, /00 G(s,s)p(s)v(s) ds
Ko
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5 |g1(zn(s)) 1(2(5)) [ ¥ (s) ds

+ D /0 92(24() - g2(2(5)) [ (5) s

= €&.

Similarly, we can see that when ||z, — z|| = 0 as 1 — +00, [(Auz,) (t) — (Am2)'(£)] = 0 as
n — +oo. This implies that A, : B — B is a continuous operator for each natural num-
ber m.

Choose Py to be a bounded, convex, and closed set by

Pr = {z € B:|lz|| <R, z(t) > 0 for each ¢ € [0, oo)}.

We must show that there exists a positive constant R such that for each z € P, one has
lAz|| < R.

Let z € Pr. Then for each t € [0,00), we have G(¢,s) > 0. Since f, g1, g2 are positive
functions, A,,z(t) > 0, t € [0, 00). Furthermore, for ¢ € [0, 00)

A0 < sup h(zl,zZ)( / OOG(s,s>p(s>v<s>ds)

z1€[0,R],z2€[-R,R]

m

o0 0 00
[ aopeas L2 [T o)

< s haa)( [ Gopemo )

21€[0,R],z2€[-R.R]

m

e + 2@ /0 ¥(s)ds

< sup h(zl,zg)(/‘oO G(s,s)p(s)v(s) ds) + B(R)
0

z1€[0,R],z2€[-R.R]

<R (3.10)
and

|(Amz)’(t)| </ |G'(t s)|p s)v(s) (z(s),z’(s)) ds

a) &
t),/ alz S)dS+Dp(t)/0 2(2(9) v (s)ds

sup ]’I(Zl,Zz)/ G(s,s)p(s)v(s) ds
(t) 21€[0,R],z3€[-R.R]

max{ay, a,}

= tdw()[glmngz(ze) / () ds

o0
< sup L[ sup h(z1,22) / G(s,s)p(s)v(s) ds
te[0,00) P(E) Lz €[0,R], 20 [-R.R] 0

+ %/I[gl(Rng(R)]/o WY (s) ds}

<R (3.11)

Page 10 of 17
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Inequalities (3.10) and (3.11) yield that ||A,,z|| < R. Hence, A, is uniformly bounded. Using
the similar proof as (3.2) and (3.3), we can obtain that for any ¢, € [0,00), z € Pp,

||Amz(t) —Amz(tl)” —0 ast— 1.
Thus, A,,Pr is equicontinuous. It follows from

|(An2)(£) = (A2)(00)|

5/ |G( - G(s) |p $)V(s)h(z(s), 7 (s)) ds

wlt) - WO~ eleel / (2(5)) |y (5) ds

|9(t) 9(OO)|/ 2 (2(5)) ¥ (5) s

SSR/1 ’G(t,s)—@(s)‘p(s)v(s)ds

m

1 , o0
+ l—)max{|<p(t) - @(00)|, }(TR + TR)/(; Y(s)ds
—0 ast— o0 (3.12)
and
|(An2) (£) = (Amz) (00)|
1 /
gﬁ[ﬁ—p(m ‘/ PEVR(e(s), 7)) ds
1
‘p(t) 19()p()v(8)h(2(s), 2 (s)) ds
+ max{ay, ay}| — p(t S ’/ [21(2(5)) + g2(2(5)) ] ¥ (s) ds]
< I%H 1% - Iﬁ S /ﬁ 0(p(s)s)ds
; ‘ I, [ avepomed
+ max{ay,ay}| — L ‘ Tr + TR / ¥(s) ]
p(t)  p(oo)
(3.13)

— 0 ast— o0.

Therefore, A,,Pr is equiconvergent. Hence, by Lemma 2.2 and the above discussion, we

conclude that for each natural number m, A,, : P — P is completely continuous
Finally, observe that
1
[(A2)(t) - (A2)(8)| = ‘/ G(t,s)p(s)f (s,2(s), 2 (s)) ds
0

<5, / " G5, s)p(s)v(s) ds < 0o (3.14)
0
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and

|(42)/(8) - (A,2) ()] = ‘ /0 " G, 5)p(s)f (5,2(5),2(6)) ds

1

<S,, sup < mG(s,s)p(s)v(s)ds<oo. (3.15)
tefo,00) P(8) Jo

Hence, inequalities (3.14) and (3.15) imply that sup,c(y ) [(A2)(£) = (4,42)(¢)] < oo and
SUP,c[0,00) |(A2)(t) = (A1n2)'(£)| < 0o. Then by the assumption (H4) and the absolute con-
tinuity of the integral, we get

lim /Z G(t,s)p(s)v(s)ds = 0.
m— 00 0

Therefore, the operator A : B — B is completely continuous and maps the set Py into itself.
Hence, the Schauder fixed point theorem can be applied to obtain a solution of the BVP
(1.1), (1.2). The theorem is proved. O

Example 3.1 Consider the following boundary value problem:

é(e‘z/(t))/ +f(6,2(t),Z() =0, te(0,00), (3.16)
g [Tz(s) ds
20~ lim (0= [ 59055 6.17)

lim €'z (¢) = / T as) _ds
0

t=+00 24 1+

where f(t,z(¢),7' (t)) = 2+ (z+1Z)),a1=1,a3=0,b, =1, by =1, p(t) = €, Y(s) = =

124/t T+s2?
21(z(5) = g (2(s) = 2.
It is clear that f : (0,00) x [0, +00) x R — (0, +00) is continuous and singular at ¢ = 0.
Set v(t) = &ﬁ”) and h(z,7') = %zz/‘, it follows from a direct calculation that M =2, c=1,
and there exists R = 1 such that the following inequality holds:

max{l, sup lt} sup h(z1,27) (/“ G(s, s)p(s)v(s) ds) +B(1) <1
0

te[0,00) €} z1€[0,1],20€[-1,1]

Then by Theorem 3.2, the boundary value problem (3.16)-(3.17) has at least one positive

solution.

4 Existence of at least three positive solutions

Definition 4.1 Let B be a Banach space, P C B be a cone in 3. By a concave nonnegative

continuous functional ¢ on P, we mean a continuous functional ¢ : P — [0, c0) with
go(tx +(1- t)y) >tp(x) + (1-1t)e(y) forallx,y e Pandte[0,1].

For K, L, R > 0 being constants with P and ¢ as above, let

Px={xeP: x| <K}
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and
P, LK) = {x e P:L < o), |5l <K}.

Theorem 4.1 (Leggett-Williams fixed point theorem [12]) Let B be a Banach space, P C B
be a cone of B, and R > 0 be a constant. Suppose A : Pr — Py is a completely continuous
operator and ¢ is a nonnegative, continuous, concave functional on P with ¢(y) < ||y|| for
ally € Pg.Ifthere existr, L, and K with 0 < r < L < K < R such that the following conditions
hold:
(i) yePp,L,K): () >L}#0 and (Ay) > L for all y € P(ep, L, K);

(i) 1AVl < for all Iyl <7

(iii) @(Ay) > L forall y € P(p,L,R) with || Ay| > K.
Then A has at least three positive solutions yy, y,, and y3 in Py satisfying

Inll<r,  y2e{yePle,L,R):9() >L},

and
y3 € Pr—{P(p,L,R)UP,}.

Theorem 4.2 Assume that (H1)-(H4) are satisfied and there exists c¢; € (0,1) such that
m > ciM holds. Then the boundary value problem (1.1), (1.2) has at least three positive
solutions if the following conditions hold:

(H5) There exists a constant r > 0 such that

h(zl,zZ><mm{1, 1 } r—B(r)

SUPse(o,00) 57 ) Jo G(s,$)p(s)v(s) ds’

fort€[0,00) and z; € [0,r], z, € [-1,7];
(H6) There exist L > r and an interval [a, b] C [0, 00) such that

L
Yoko [3° G(s,s)p(s)v(s)ds’

h(z,25) >

fortela,bland z1 € [L,K], z; € [-K,K];

(H7) There exist 0 < r < L < K < yoko min{L, sup,( o) 75} [R — B(R)], N-L < max({l,

C
Z0)
SUDye[0,00) 75 K> where N = min{cy, yoko} such that

h(zl,zZ><min{1, 1 } R-B(R)

SUD, 10,00 507 ) Jo” G5, 5)p(s)v(s) ds”

fort€[0,00) and z; € [0,R], z, € [-R,R].

Proof The conditions of the Leggett-Williams fixed point theorem will be shown to be
satisfied. Define the cone P C Bby P = {z € B: z(t) > 0 for each t € [0,00)} and the non-
negative, continuous, concave functional ¢ : P — [0, 00) by ¢(2) = min;e(, ) 12(£)].
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Then we have ¢(z) < ||z|| for all z € P. If z € Pg, then ||z < R and from (H7) we have

|Az(1)| = ‘/0 G(t,9)p(s)f (s,2(s),2/(s)) ds + %/0 a1(z(s)) v (s) ds

. ? /0 (2() ¥ (5) ds

> / p(0) [
5/0 G(s,s)p(s)v(s)h(z(s), 2 (s)) dS+T/0 &1(z(s)) ¥ (s)ds

+

oo /0 ()Y () ds

o0 , M o0
< /0 G(s,s)p(s)v(s)h(z(s), 2 (s)) ds + B[gl(R)"’gZ(R)] /0 ¥ (s)ds

<R

Furthermore,

(A2'(1)| < /0 |G/ (6,5)|p(s) V() (2(s), 2 (5)) ds

ay o0 a 00
" w/o & (Z(S))w(s) ds + Dp(t) /0 & (Z(S))l/f(s) ds

4 o0 /
< M/O G(s,s)p(s)v(s)h(z(s), 2 (s)) ds

max{ai, a,)} o
R o) + ()] /0 V(s)ds

< tes[glgo) l% [/000 G(s, s)p(s)v(s)h(z(s),z’(s)) ds + B(R)]
<R. (4.1)

Therefore, we get ||Az|| < R, and this implies that A : Pr — Pr.

Now we show that condition (i) of Theorem 4.1 is satisfied. Let z(t) = LE—K for t € [0, 00).
By the definition of P(¢,L,K), z € P(p,L,K). Then {z € P(p,L,K): ¢(z) >L} #P.If z €
P(ep,L,K), then by (H6) we get

- * o) [
¢(Az) = min (/0 G(&,5)p(s)f (s,2(s), 2 (s)) ds + ?/. & (2() ¥ (s)ds

tela, 0

20 fo @) () ds)

> trerlligl (/000 G(t,s)p(s)f(s, z(s),z’(s)) ds)

> yo/o G(s,)p(s)u(s)h(z(s), 2 (s)) ds

> yoko /0 G(s,s)p(s)v(s)h(z(s), 2 (s)) ds

> L.

Therefore, condition (i) of Theorem 4.1 is satisfied.

Page 14 of 17
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If ||z|| < r, then by (H5) we have

|Az(t)| = ‘/0 G(t,8)p(s)f (s,2(s), 2 (s)) ds + ?/0 & (2(9) v (s)ds

. ? /0 (2() ¥ (s) ds

> / p(0) [
§A G(s,s)p(s)v(s)h(z(s), 2 (s)) ds+T/0 &1(2(s)) ¥ (s) ds

+

X0 " awpuas

o0 , M o0
< /0 G(s, s)p(s)v(s)h(z(s),z (S)) ds + B[gl(r) +g2(r)] /0 v(s)ds

<r.

In a similar way as (4.1), we can see that for each ¢ € [0, 00),

/ 4 *© /
’(Az) (t)’ < supm |:/o G(s,s)p(s)v(s)h(z(s),z (s)) ds + B(r)] <r.

Hence, condition (ii) of Theorem 4.1 holds.
Finally, we show that condition (iii) of Theorem 4.1 is also satisfied. If z € P(¢, L, R), we
get

|Az(t)| < /000 G(s,s)p(s)v(s)h(z(s), 2 (s)) ds + @ /Ooogl (z(s)) ¥ (s) ds
, 1) | etowod
< / G(s, )p(s)v(s)h(z(s), 7 (s)) ds + %/[ / [41(2(9)) + g2(2(9)) ] (s) ds
0 0

and

c
p(t)
M o0

o5 [ Teo) + o) o as]
0

|(A2)'(t)| < sup |:/(; G(s,s)p(s)v(s)h(z(s), 2 (s)) ds

Hence, we have

c o0 ,
|Az] < max{l, supm } [/o G(s,s)p(s)v(s)h(z(s),z (s)) ds

MOO

+ D [gl (z(s)) +9 (z(s))]t//(s) ds].
0

Therefore, for z € P(p, L, R) and ||Az|| > K, we have

0(Az) = trerlligl (/000 G(t,s)p(s)f(s, z(S),z’(S)) ds + % Ooogl (z(s))w(s) ds
+ ? /o oogz(Z(S))llf(S) dS)
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(e

> yO/O G(s,s)p(s)f(s,z(s),z'(s)) ds + )/0 gl(z(s))lp(s) ds

0 /0 &)Y () ds
> /0 G(s,)p(s)u(s)h(z(s), 7 (s)) ds + % fo [41(2(5)) + g2(2(5)) ] (s) ds

> yoko /0 Gl IplsIv{s)h(e(9, 2 6)) ds + /0 [61(2(9)) + &2 (2(5)) ] (5) s

> N|:/ G(s,s)p(s)v(s)h(z(s),z’(s)) ds + M / [gl (z(s)) +9 (z(s))]tp(s) ds]
0 D Jo

NK
lAz]| >

max {1, sup,c (o ~, ﬁ} max{1, sup, (o) ﬁ}

>L.

Therefore, condition (iii) is also satisfied. Then the Leggett-Williams fixed point theorem
implies that A has at least three positive solutions z;, z;, and z3 which are solutions to the
problem (1.1)-(1.2). Furthermore, we have

lall<r,  zel{zePle,L,R):p() >L},
and

z3 € Pr—{P(e,LR)UP,}. O
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