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Abstract

In this article, some new sufficient conditions are obtained by making use of fixed
point index theory in cone and constructing some available integral operators
together with approximating technique. They guarantee the existence of at least one
positive solution for nonlinear fourth-order semipositone multi-point boundary value
problems. The interesting point is that the nonlinear term f not only involve with the
first-order and the second-order derivatives explicitly, but also may be allowed to
change sign and may be singular at t = 0 and/or t = 1. Moreover, some stronger
conditions that common nonlinear term f ≥ 0 will be modified. Finally, two examples
are given to demonstrate the validity of our main results.
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1 Introduction
In this article, we consider the existence of positive solutions to the following non-

linear fourth-order semipositone multi-point boundary value problems with derivatives⎧⎨
⎩
y(4)(t) + λf (t, y(t), y′(t), y′′(t)) = 0, 0 < t < 1,

y(0) = y′(0) = 0, y′′(1) =
m−2∑
i=1

αiy′′(ξi), y′′′(0) =
m−2∑
i=1

βiy′′′(ξi),
(1:1)

where f Î C((0, 1) × R×R×R, R) satisfies f(t, y1 y2, y3) ≥ -p(t), p Î L1 ((0,1), (0, +∞)). l
> 0, ξi Î (0, 1) with 0 <ξ1 <ξ2 < ... <ξm-2 < 1, ai, bi Î [0, +∞), i = 1, 2,... , m-2, are given

constants satisfying 0 <
m−2∑
i=1

αi < 1, 0 <
m−2∑
i=1

βi < 1. Here, by a positive solution of the

problem (1.1) we mean a function y*(t) which is positive on (0, 1) and satisfies the pro-

blem (1.1).

The existence of positive solutions for multi-point boundary value problems has been

widely studied in recent years. For details, see [1-15] and references therein. We note

that the existence of n solutions and/or positive solutions to the following semiposi-

tone elastic beam equation boundary value problem{
u(4)(t) = f (t, u(t), u′′(t)), t ∈ (0, 1),
u(0) = u(1) = u′′(0) = u′′(1) = 0,
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was obtained by Yao [13] in a Banach space setting. Gupta [3] proved the existence

of positive solutions for more general multi-point boundary value problems

x′′(t) = g(t, x(t), x′(t)) + e(t), a. e. t ∈ (0, 1)

x(0) =
m−2∑
i=1

hix(τi), x′(1) =
m−2∑
i=1

kix′(ξi).

For further background information of multi-point boundary value problems we refer

the reader to [11,12,16]. However, in previous work, the positivity which imposed on

nonlinear term plays an important role for boundary value problems. Naturally, one is

interested in establishing the existence of positive solutions for multi-point boundary

value problems under the relaxed conditions.

Inspired and motivated greatly by the above mentioned works, the present work

may be viewed as a direct attempt to extend the results of [3,13] to a broader class

of nonlinear boundary value problems in a general Banach spaces. When the nonli-

nearity is negative, such kinds of the problems are called semipositone problems,

which occur in chemical rector theory, combustion and management of natural

resources, see [11,13-16]. To our best knowledge, few results were obtained for the

problem (1.1).

The purpose of the article is to establish some new criteria for the existence of

positive solutions to the problem (1.1). The nonlinear term f may take negative

values and the nonlinearity may be sign-changing. Firstly, we employ a exchange

technique and construct an integral operator for the corresponding second-order

multi-point boundary value problem. Then we establish a special cone associated

with concavity of functions. Finally, the existence of positive solutions for the pro-

blem (1.1) is obtained by applying fixed-point index theory. The common restriction

on f ≥ 0 is modified.

The plan of the article is as follows. Section 2 contains a number of lemmas useful to

the derivation of the main results. The proof of the main results will be stated in Sec-

tion 3. A class of examples are given to show that our main result is applicable to

many problems in Section 4.

2 Preliminaries and lemmas
In this section, we shall state some necessary definitions and preliminaries.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set K ⊂ E is

called a cone if it satisfies the following two conditions:

(1) x Î K, l >0 implies lx Î K;

(2) x Î K, -x Î K implies x = 0.

Definition 2.2. An operator T is called completely continuous if it is continuous and

maps bounded sets into precompact sets.

For convenience, we list the following assumptions:
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(H1) For i Î {1,2, ..., m - 2}, ξi Î (0, 1), 0 <ξ1 <ξ2 < ... <ξm-2 < 1 and ai, bi Î [0, +∞)

satisfying 0 <
m−2∑
i=1

αi < 1, 0 <
m−2∑
i=1

βi < 1 and 0 <
m−2∑
i=1

αiξi < 1.

(H2) f Î C((0, 1) × R × R × R, R) and there exist functions p, q Î L1((0, 1), (0, +∞)),

g Î C(R × R × R, (0, +∞)) such that

−p(t) ≤ f (t, x1, x2, x3) ≤ q(t)g(x1, x2, x3) for (t, x1, x2, x3) ∈ (0, 1) × R × R × R.

(H3) lim
(|x1|+|x2|+|x3|)→+∞

f (t, x1, x2, x3)
|x1| + |x2| + |x3| = +∞ for t uniformly on [0,1].

Remark 2.1. From (H2) we know that for given points t1, t2,..., tm on [0,1], the func-

tions p, q = (0, 1)\{ti, i = 1, 2,..., m} ® (0, +∞) are continuous and integrable, that is

0 <
∫ 1
0 (p(t) + q(t))dt < +∞. The condition (H2) also implies that f may have finitely

singularities at t1, t2,..., tm on [0,1].

Lemma 2.1. Suppose that (H1) and (H2) hold. Then the problem (1.1) has a positive

solution if and only if the following nonlinear second-order integro-differential equation⎧⎪⎪⎨
⎪⎪⎩
x′′(t) + λf

(
t,

t∫
0
(t − u)x(u)du,

t∫
0
x(u)du, x(t)

)
= 0, 0 < t < 1,

x′(0) =
m−2∑
i=1

βix′(ξi), x(1) =
m−2∑
i=1

αix(ξi)
(2:1)

has a positive solution.

Proof. Let y(t) be a positive solution of the problem (1.1) and let x(t) = y’’(t). Then it

follows from the problem (1.1) and combining with exchanging the integral sequence

we know that

y(t) =

t∫
0

(t − u)x(u)du, y′(t) =

t∫
0

x(u)du.

Thus x(t) = y’’(t) is a positive solution of the second-order integro-differential equa-

tion multi-point boundary value problem (2.1).

Conversely, let x(t) be a positive solution of the problem (2.1), then

y(t) =
∫ t
0 (t − u)x(u)du is a positive solution of the problem (1.1). In fact,

y′(t) =
∫ t
0 x(u)du, y

′′(t) = x(t), which implies that y(0) = 0, y’(0) = 0. The proof is

complete. □

Now, let X = C[0,1]. Then X is a real Banach space with norm ‖ x ‖= max
t∈[0,1]

|x(t)| for x
Î C[0, 1]. Let

C+[0, 1] = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}.

Lemma 2.2. Suppose that (H1) holds. In addition, assume that u(t) Î L1(0, 1) and u

(t) ≥ 0. Then the following problem⎧⎨
⎩
x′′(t) + u(t) = 0, 0 < t < 1,

x′(0) =
m−2∑
i=1

βix′(ξi), x(1) =
m−2∑
i=1

αix(ξi)
(2:2)
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has a unique positive solution

x(t) = −
t∫

0

(t − s)u(s)ds+

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

t +
1

1 −
m−2∑
i=1

αi

1∫
0

(1 − s)u(s)ds

− 1

1 −
m−2∑
i=1

αi

⎛
⎜⎜⎜⎝

m−2∑
i=1

αi

∫ ξi

0
(ξi − s)u(s)ds +

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

(
1 −

m−2∑
i=1

αiξi

)⎞⎟⎟⎟⎠
(2:3)

satisfies x(t) ≥ 0, t Î [0,1] and

min
t∈[0,1]

x(t) ≥ w ‖ x ‖, (2:4)

where

ω =

m−2∑
i=1

αi(1 − ξi)

1 −
m−2∑
i=1

αiξi

. (2:5)

Proof. From (2.2), we have x’’ (t) = -u(t), 0 <t < 1. For t Î [0,1], integrating from 0 to

t we get

x′(t) = x′(0) −
t∫

0

u(s)ds. (2:6)

Thus

x′(0) =
m−2∑
i=1

βix
′(ξi) =

m−2∑
i=1

βi

m−2∑
i=1

βi − 1

ξi∫
0

u(s)ds. (2:7)

For t Î [0, 1], integrating (2.6) from t to 1 yields

x(1) − x(t) =

m−2∑
i=1

βi(1 − t)

m−2∑
i=1

βi − 1

ξi∫
0

u(s)ds−
t∫

0

(s − t)u(s)ds−
1∫

0

(1 − s)u(s)ds, (2:8)

which means that

−x(t) = −
m−2∑
i=1

αix(ξi) +

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

−

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

t

+
∫ t

0
(t − s)u(s)ds −

1∫
0

(1 − s)u(s)ds.

(2:9)
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From (2.9), we have

x(ξi) =
1

1 −
m−2∑
i=1

αi

⎛
⎝ 1∫

0

(1 − s)u(s)ds−

m−2∑
i=1

βi(1 − ξi)
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

−
ξi∫

0

(ξi − s)u(s)ds

⎞
⎠ . (2:10)

It follows from (2.9) and (2.10) that

x(t) = −
t∫

0

(t − s)u(s)ds+

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

t +

1∫
0

(1 − s)u(s)ds

+
1

1 −
m−2∑
i=1

αi

⎛
⎝m−2∑

i=1

αi

1∫
0

(1 − s)u(s)ds

−
m−2∑
i=1

αi

ξi∫
0

(ξi − s)u(s)ds−

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

·
(
1 −

m−2∑
i=1

αiξi

))

= −
t∫

0

(t − s)u(s)ds+

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

t +
1

1 −
m−2∑
i=1

αi

1∫
0

(1 − s)u(s)ds

− 1

1 −
m−2∑
i=1

αi

⎛
⎝m−2∑

i=1

αi

ξi∫
0

(ξi − s)u(s)ds+

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

(
1 −

m−2∑
i=1

αiξi

))
.

(2:11)

Combining (2.11) with (H1) we know that

x(0) =
1

1 −
m−2∑
i=1

αi

⎛
⎝ 1∫

0

(1 − s)u(s)ds−
m−2∑
i=1

αi

ξi∫
0

(ξi − s)u(s)ds

−

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

(
1 −

m−2∑
i=1

αiξi

))

≥ 1

1 −
m−2∑
i=1

αi

⎛
⎝m−2∑

i=1

αi

1∫
0

(1 − s)u(s)ds−
m−2∑
i=1

αi

ξi∫
0

(ξi − s)u(s)ds

−

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

m−2∑
i=1

βi − 1

(
1 −

m−2∑
i=1

αiξi

))

≥

m−2∑
i=1

αi

1 −
m−2∑
i=1

αi

1∫
ξi

(1 − s)u(s)ds+

m−2∑
i=1

βi
∫ ξi
0 u(s)ds

(
1 −

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

βi

)(
1 −

m−2∑
i=1

αi

) ≥ 0.

(2:12)

From the fact that x’’ (t) = -u(t) ≤ 0, we know that the graph of x(t) is concave on

[0,1].
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Thus

If x(1) ≥ 0, we know that x(t) ≥ 0 for all t Î[0,1].
If x(1) <0, from the concavity of x once again we know that

x(ξi)
ξi

≥ x(1)
1

for i Î {1, 2, ..., m - 2}. This implies

x(1) =
m−2∑
i=1

αix(ξi) ≥
m−2∑
i=1

αiξix(1),

which contracts with the fact 0 <
m−2∑
i=1

αiξi < 1. Thus we know that (2.4) holds.

Again from x’’(t) = -u(t) ≤ 0, we see that x’(t) is non-increasing on (0, 1). Combining the

condition 0 <
m−2∑
i=1

βi < 1we have x’ (0) ≤ 0 and x′(t) = x′(0) − ∫ t
0 u(s)ds ≤ 0 for t Î (0,

1). Hence x(t) is non-increasing on (0, 1). By making use of the concavity of x(t) on (0, 1)

we get ||x|| = x(0) and min
t∈[0,1]

x(t) = x(1). Therefore, for all i = 1, 2, ..., m - 2, we obtain

‖ x ‖ = x(0) ≤ x(1) +
x(ξi) − x(1)

1 − ξi
(1 − 0) = x(1) +

x(ξi)
1 − ξi

− x(1)
1 − ξi

=
x(ξi) − x(1)ξi

1 − ξi
=

1 −
m−2∑
i=1

αiξi

m−2∑
i=1

αi(1 − ξi)

x(1),

which implies that

min
t∈[0,1]

x(t) ≥

m−2∑
i=1

αi(1 − ξi)

1 −
m−2∑
i=1

αiξi

‖ x ‖= ω ‖ x ‖

where ω is given by (2.5). This completes the proof. □
Lemma 2.3. Suppose that (H1) holds. In addition, assume that p Î L1((0, 1), (0, +∞)).

Then the following boundary value problem⎧⎨
⎩
x′′(t) + λp(t) = 0, 0 < t < 1,

x′(0) =
m−2∑
i=1

βix′(ξi), x(1) =
m−2∑
i=1

αix(ξi)
(2:13)

has a unique positive solution z satisfying z(t) ≥ 0, t Î [0,1], min
t∈[0,1]

z(t) ≥ ω ‖ z ‖and

z(t) ≤ λGω

1∫
0

p(s)ds, (2:14)

where

G =

⎛
⎜⎜⎜⎝ 1

1 −
m−2∑
i=1

αi

+

m−2∑
i=1

βi

(
1 −

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
⎞
⎟⎟⎟⎠ω−1,
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ω is given by (2.5).

Proof. From Lemma 2.2. we have z(t) ≥ 0 and min
t∈[0,1]

z(t) ≥ ω ‖ z ‖,t Î [0,1]. By mak-

ing use of (2.3) we get

z(t) ≤ λ

1 −
m−2∑
i=1

αi

⎛
⎝ 1∫

0

(1 − s)p(s)ds−
m−2∑
i=1

αi

ξi∫
0

(ξi − s)p(s)ds

+

m−2∑
i=1

βi
∫ ξi
0 p(s)ds

1 −
m−2∑
i=1

βi

) ·
(
1 −

m−2∑
i=1

αiξi

)

≤ λ

1 −
m−2∑
i=1

αi

⎛
⎜⎜⎜⎝

1∫
0

p(s)ds+

m−2∑
i=1

βi
∫ 1
0 p(s)ds

1 −
m−2∑
i=1

βi

(
1 −

m−2∑
i=1

αiξi

)⎞⎟⎟⎟⎠

= λ

1∫
0

p(s)ds

⎛
⎜⎜⎜⎝ 1

1 −
m−2∑
i=1

αi

+

m−2∑
i=1

βi

(
1 −

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
⎞
⎟⎟⎟⎠ = λGω

1∫
0

p(s)ds.

The proof is complete. □
Let

[v(t)]∗ =
{
v(t), v(t) ≥ 0,
0, v(t) < 0,

0 < t < 1.

and

F(t, [x(t) − z(t)]∗) = f

⎛
⎝t,

t∫
0

(t − u)[x(u) − z(u)]∗du ,

t∫
0

[x(u) − z(u)]∗du,

[x(t) − z(t)]∗) + p(t).

Lemma 2.4. Suppose that (H1) and (H2) hold. Then the following nonlinear second-

order integro-differential equation boundary value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′′(t) + λ
[
f (t,

t∫
0
(t − u)[x(u) − z(u)]∗du,

t∫
0
[x(u) − z(u)]∗du,

[x(t) − z(t)]∗
)
+p(t)

]
= 0, 0 < t < 1,

x′(0) =
m−2∑
i=1

βix′(ξi), x(1) =
m−2∑
i=1

αix(ξi)

(2:15)

has a positive solution x(t) with x(t) ≥ z(t) for t Î [0, 1] if and only if y(t) = x(t) - z(t)

is a nonnegative solution (positive on (0, 1)) of the problem (2.1).

Proof. Assume that y(t) = x(t) - z(t) is a nonnegative solution (positive on (0,1)) of

the problem (2.1). Then we know that x(t) ≥ z(t) and

y′′(t) + λf

⎛
⎝t,

t∫
0

(t − u)y(u)du,

t∫
0

y(u)du,y(t)

⎞
⎠ = 0.
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Noticing that z is a positive solution of the problem (2.13). Thus we get

−x′′(t) = λ

⎡
⎣f
⎛
⎝t,

t∫
0

(t − u)[x(u) − z(u)]∗du,

t∫
0

[x(u) − z(u)]∗du, [x(t) − z(t)]∗
⎞
⎠ + p(t)

⎤
⎦

Therefore x(t) is a positive solution of the problem (2.15) with x(t) ≥ z(t) for t Î [0,1].

Conversely, we assume that x(t) and z(t) are positive solutions of the problem (2.15)

and the problem (2.13), respectively, and it implies that the boundary conditions of the

problem (2.13) are also satisfied. Thus y(t) = x(t) - z(t) is a nonnegative solution (posi-

tive on (0, 1)) of the problem (2.1). The proof is complete. □
Remark 2.2. Combining Lemma 2.4. with Lemma 2.1. we know that if the problem

(2.15) has a positive solution, then the fourth-order multi-point boundary value pro-

blem (1.1) has a positive solution. So, we need only to study the problem (2.15).

Remark 2.3. For any fixed x Î C+[0,1], let L = max
t∈[0,1]

x(t). Noticing that [x(u) - z(u)]*

≤ x(u) ≤ L and
∣∣∫ s

0(s − u)[x(u) − z(u)]∗du
∣∣ ≤ ∫ 1

0 Ldu = L, by virtue of (H2), we obtain

1∫
0

F(s, [x(s) − z(s)]∗)ds ≤
1∫

0

[
q(s)g

⎛
⎝ s∫

0

(s − u)[x(u) − z(u)]∗ du,

s∫
0

[x(u) − z(u)]∗du, [x(s) − z(s)]∗
)
+ p(s)

]
ds

≤
1∫

0

(p(s) +Mq(s))ds

≤ M

1∫
0

(p(s) + q(s))ds < +∞,

(2:16)

where

M = max
(|u1|,|u2|,|u3|)∈[0,L]×[0,L]×[0,L]

g(|u1|, |u2|, |u3|) + 1. (2:17)

We introduce an integral mapping T : C+[0, 1] ® C+[0, 1] defined by

(Tx)(t) = −λ

⎛
⎝ t∫

0

(t − s)F(s, [x(s) − z(s)]∗)ds

−
t
m−2∑
i=1

βi

ξi∫
0
F(s, [x(s) − z(s)]∗)ds

1 −
m−2∑
i=1

βi

⎞
⎟⎟⎟⎠

+
λ

1 −
m−2∑
i=1

αi

⎛
⎝ 1∫

0

(1 − s)F(s, [x(s) − z(s)]∗)ds

−
m−2∑
i=1

αi

∫ ξi

0
(ξi − s)F(s, [x(s) − z(s)]∗)ds

+

m−2∑
i=1

βi
∫ ξi
0 F(s, [x(s) − z(s)]∗)ds

1 −
m−2∑
i=1

βi

(
1 −

m−2∑
i=1

αiξi

))
.

(2:18)
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Denote

K = {y ∈ C+[0, 1] : min
0≤t≤1

y(t) ≥ ω||y||},

where ω is given by the problem (2.5). It is obvious that K is a positive cone of C

[0,1].

Lemma 2.5. Suppose that (H1) - (H3) hold. Then T : K ®K is a completely continu-

ous operator.

Proof. It follows from Lemma 2.2. we see T (K) ⊂ K. Combining (H1) with (2.18) we

know that T (K) is equicontinuous and uniformly bounded. In fact, let D ⊂ C+[0,1] be

a bounded set. Then there exists M0 >0 such that ||x|| ≤ M0 for all x Î D. By virtue

of (H2) we obtain

|(Tx)(t)| =

∣∣∣∣∣∣−λ

t∫
0

(t − s)F(s, [x(s) − z(s)]∗)ds−
λ
m−2∑
i=1

βi
∫ ξi
0 F(s, [x(s) − z(s)]∗)ds

1 −
m−2∑
i=1

βi

t

+
λ

1 −
m−2∑
i=1

αi

⎛
⎝ 1∫

0

(1 − s)F(s, [x(s) − z(s)]∗)ds−
m−2∑
i=1

αi

ξi∫
0

(ξi − s)F(s, [x(s) − z(s)]∗)ds

−

m−2∑
i=1

βi
∫ ξi
0 F(s, [x(s) − z(s)]∗)ds

m−2∑
i=1

βi − 1

(
1 −

m−2∑
i=1

αiξi

))∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣
λ

1 −
m−2∑
i=1

αi

⎛
⎝ 1∫

0

F(s, [x(s) − z(s)]∗)ds

+

m−2∑
i=1

βi

(
1 −

m−2∑
i=1

αiξi

)

1 −
m−2∑
i=1

βi

1∫
0

F(s, [x(s) − z(s)]∗)ds
)∣∣

=
λ

1 −
m−2∑
i=1

αi

⎛
⎜⎜⎜⎝1 +

m−2∑
i=1

βi

(
1 −

m−2∑
i=1

αiξi

)

1 −
m−2∑
i=1

βi

⎞
⎟⎟⎟⎠
∫ 1

0
F(s, [x(s) − z(s)]∗)ds

≤
λM

(
1 −

m−2∑
i=1

βi

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
1∫

0

(q(s) + p(s))ds < +∞,

which implies that T (K) is uniformly bounded.

On the other hand, for all x Î D, once again from (H2) we have

0 ≤ |(Tx)′(t)| = λ

∣∣∣∣∣∣∣∣∣
−

t∫
0

F(s, [x(s) − z(s)]∗)ds−

m−2∑
i=1

βi
∫ ξi
0 F(s, [x(s) − z(s)]∗)ds

1 −
m−2∑
i=1

βi

∣∣∣∣∣∣∣∣∣

≤ λ

∣∣∣∣∣∣∣∣∣
1∫

0

F(s, [x(s) − z(s)]∗)ds+

m−2∑
i=1

βi

1 −
m−2∑
i=1

βi

1∫
0

F(s, [x(s) − z(s)]∗)ds

∣∣∣∣∣∣∣∣∣
=

λ

1 −
m−2∑
i=1

βi

1∫
0

F(s, [x(s) − z(s)]∗)ds

≤ λM

1 −
m−2∑
i=1

βi

1∫
0

[q(s) + p(s)]ds =
λMM∗

1 −
m−2∑
i=1

βi

< +∞,
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here M∗ =
∫ 1

0
[p(s) + q(s)]ds. So, for any 0 ≤ t1 <t2 ≤ 1, and for all x Î D, we get

|(Tx)(t1) − (Tx)(t2)| =

∣∣∣∣∣∣
t2∫

t1

(Tx)′(t)dt

∣∣∣∣∣∣ ≤
λMM∗

1 −
m−2∑
i=1

βi

|t2 − t1|.

By the absolutely continuous of integral, we know that T(K) is equicontinuous on

[0,1]. Thus, an application of the Ascoli-Arzela theorem we know that T(K) is a rela-

tively compact set.

Now we show that T is continuous. Let xn ® x* (n ® ∞), xn, x
* Î C+[0,1]. It follows

from the Lebesgue control convergence theorem that we obtain

‖ (Txn)(t) − (Tx∗)(t) ‖→ 0 (n → ∞), t ∈ [0, 1].

Therefore T : K ®K is a completely continuous operator. The proof is complete. □
Lemma 2.6. [17] Let X = (X, ||·||) be a Banach space and K ⊂ X be a cone. For r >0

define Kr = {u Î K : ||u|| < r}. Assume that T : Kr → K is a completely continuous

operator, such that Tu ≠ u for u Î ∂Kr = {u Î K : ||u|| = r}, and

(1) If ||Tu|| ≥ ||u|| for u Î ∂Kr, then i(T, Kr, K) = 0,

(2) If ||Tu|| ≤ ||u|| for u Î ∂Kr, then i(T, Kr, K) = 1.

3 Main results
In this section, we shall apply Lemma 2.6. to establish the existence of at least one

positive solutions of the problem (1.1).

Theorem 3.1. Suppose that (H1)-(H3) hold. Then there exists sufficiently small l* >0
such that the problem (1.1) has at least one positive solution for any l Î (0, l*).
Proof. Let r >1 and l Î (0, l*) be fixed, where

λ∗ = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
r

⎡
⎢⎢⎢⎣
M1
∫ 1
0 (p(s) + q(s))ds

(
1 −

m−2∑
i=1

βi

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
⎤
⎥⎥⎥⎦

−1

,
r

G
∫ 1
0 p(s)ds

, 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3:1)

here M1 = max
(|u1|,|u2|,|u3|)∈[0,r]×[0,r]×[0,r]

{g(|u1|, |u2|, |u3|)} + 1. Choose Ωr = {x Î C+ [0,1]:

||x|| <r}. If there is a fixed point on ∂Ωr, we complete the proof. Without loss of gen-

erality, we may assume that there is no fixed point on ∂Ωr. Thus, for any x Î K ∩∂Ωr,

from (3.1) we get

(Tx)(t) ≤ λ

1 −
m−2∑
i=1

αi

1∫
0

(1 − s)F(s, [x(s) − z(s)]∗)ds

+

λ
m−2∑
i=1

βi
∫ ξi
0 F(s, [x(s) − z(s)]∗)ds

(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
(
1 −

m−2∑
i=1

αiξi

)

≤
λM1

(
1 −

m−2∑
i=1

βi

m−2∑
i=1

αiξi

)∫ 1
0 (p(s) + q(s))ds

(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

) < r = ‖ x ‖ .
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So

‖ Tx ‖ < ||x ‖ for all x ∈ K ∩ ∂	r .

It follows from Lemma 2.6. we know that

i(T,	r ,	) = 1. (3:2)

Let d be a real number such that

1
2

λdw ≥ r. (3:3)

Choose R >max{r, ldω + 1} such that if ϕ > 1
r Rω, then

F(t,ϕ)
ϕ

≥ d for t ∈ [0, 1] (3:4)

and

1 − λGp(s)
R

1∫
0

p(s)ds ≥ 1
r
. (3:5)

Let z = p(s)z̃, where z̃ is the unique solution of the problem (2.13). Denote

	R = {x ∈ C+[0, 1] : ‖ x ‖< R}. (3:6)

From (2.14) we have

z(s) = p(s)z̃(s) ≤ λp(s)Gw

1∫
0

p(s)ds

≤ λp(s)G

1∫
0

p(s)ds
x(s)
‖ x ‖ ,∀x ∈ K ∩ ∂	R.

Thus

x(s) − z(s) ≥
(
1 − λGp(s)

∫ 1
0 p(s)ds

R

)
x(s). (3:7)

Combining (3.7) with (3.5) and by making use of Lemma 2.2. we know that

x(s) − z(s) ≥ 1
r
x(s) ≥ 1

r
min
s∈[0,1]

x(s) ≥ 1
r

‖ x ‖ w ≥ 1
r
Rw, s ∈ [0, 1], x ∈ K ∩ ∂	R. (3:8)

From (3.8) together with (3.4), we see that

F(s, (x − z)) ≥ d(x − z) ≥ Rdw
r

, s ∈ [0, 1].
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Then

s∫
0

(s − u)[x(u) − z(u)]∗du+
s∫

0

[x(u) − z(u)]∗du + [x(s) − z(s)]∗

=

s∫
0

(s − u)[x(u) − z(u)]du+

s∫
0

[x(u) − z(u)]du + [x(s) − z(s)]

> [x(s) − z(s)] ≥ 1
r
Rw, s ∈ [0, 1].

Thus, for any x Î K ∩ ∂ΩR, it follows from (H3) we know that

f

⎛
⎝s,

s∫
0

(s − u)[x(u) − z(u)]∗du,

s∫
0

[x(u) − z(u)]∗du , [x(s) − z(s)]∗
)

≥ d

⎛
⎝ s∫

0

(s − u)[x(u) − z(u)]∗du+
s∫

0

[x(u) − z(u)]∗du + [x(s) − z(s)]∗
)
+ p(s)

≥ d[x(s) − z(s)]∗ ≥ d[x(s) − z(s)] ≥ dRw
r

, s ∈ [0, 1].

(3:9)

Therefore, in view of (2.18) and (3.9) together with (3.3) we get

(Tx)(0) =
λ

1 −
m−2∑
i=1

αi

⎛
⎝ 1∫

0

(1 − s)F(s, [x(s) − z(s)]∗)ds

−
m−2∑
i=1

αi

ξi∫
0

(ξi − s)F(s, [x(s) − z(s)]∗)ds

−

m−2∑
i=1

βi
∫ ξi
0 F(s, [x(s) − z(s)]∗)ds

m−2∑
i=1

βi − 1

(
1 −

m−2∑
i=1

αiξi

))

≥ λ

1 −
m−2∑
i=1

αi

⎡
⎣ 1∫

0

(1 − s)F(s, [x(s) − z(s)]∗)ds

−
m−2∑
i=1

αi

1∫
0

(ξi − s)F(s, [x(s) − z(s)]∗)ds]

= λ

1∫
0

(1 − s)F(s, [x(s) − z(s)]∗)ds

= λ

1∫
0

(1 − s)
[
f (s,

s∫
0

(s − u)[x(u) − z(u)]∗du,

s∫
0

[x(u) − z(u)]∗du, [x(s) − z(s)]∗
)
+p(s)

]
ds ≥ λdRw

2r
≥ R
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which implies that ||Tx|| ≥ || x || for all x ÎK ∩ ∂ΩR. It follows from Lemma 2.6

that

i(T,K ∩ 	R,K) = 0. (3:10)

Combining (3.2) with (3.10) and the additivity of fixed point index, we know that

i(T,K ∩ (	R\	r),K) = i(T,K ∩ 	R,K) − i(T,K ∩ 	r ,K) = −1.

As a result, there exists x∗ ∈ K ∩ (	R\	r) satisfying Tx* = x* and r ≤ ||x*|| ≤ R. From

(3.1) we have

x∗(t) − z(t) ≥ w ‖ x∗ ‖ −λGw

1∫
0

p(s)ds ≥ w ‖ x∗ ‖ −rw > 0.

Let y(t) = x*(t) - z(t). Then y(t) is a positive solution of the problem (2.1). By virtue

of Lemma 2.1. we know that y(t) =
∫ t
0(t − s)x∗(s)ds is a positive solution of the fourth-

order multi-point boundary value problem (1.1). This completes the proof. □
Remark 3.1. In the case, when f = f(t, u) and f has lower bound i. e. f(t, u) + M ≥ 0

for some M >0, we can study the second-order multi-point boundary value problem

under suitable condition by making use of the similar method. In particular, if p(t) =

M, the conclusion of Theorem 3.1. is still valid.

Remark 3.2. The constant l in problem (1.1) is usually called the Thiele modulus, in

ap-plications, one is interested in showing the existence of positive solutions for semi-

positone problems for small enough l >0.

4 Examples
Example 4.1. Consider the following singular fourth-order semipositone boundary

value problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y(4)(t) +
4λ

3 3

√
(1 − t)2

[
sin8(|y(t)| + |y′(t)|) + e|y(t)|+|y′(t)|+|y′′(t)|

+ (|y(t)| + |y′(t)| + |y′′(t)|)
1
3 ] − 2√

t
= 0, t ∈ (0, 1)

y(0) = y′(0) = 0, y′′(1) =
1
3
y′′(

1
2
), y′′′(0) =

1
4
y′′′(

1
2
)

(4:1)

Proof. Let

f (t, u1, u2, u3) =
4

3 3

√
(1 − t)2

[
sin8(|u1| + |u2|) + e|u1|+|u2|+|u3| + (|u1| + |u2| + |u3|)

1
3

]
− 2√

t

Then

−p(t) ≤ f (t, u1, u2, u3) ≤ q(t)g(u1, u2, u3) and lim
(|u1|+|u2|+|u3|)→+∞

f (t, u1, u2, u3)
|u1| + |u2| + |u3| = +∞

where p(t) = 1√
t
, q(t) = 4

3 3
√

(1−t)2,

g(u1, u2, u3) = sin8(|u1| + |u2|) + e|u1|+|u2|+|u3| + (|u1| + |u2| + |u3|)
1
3, which implies that

(H1)-(H3) hold. Since α = 1
3 ,β = 1

4 , ξ = 1
2, then we know that
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1∫
0

(p(s) + q(s))ds =

1∫
0

⎛
⎜⎝ 2√

s
+

4

3 3

√
(1 − s)2

⎞
⎟⎠ ds = 8.

Take r = 2, then

M1 = max
(|u1|,|u2|,|u3|)∈[0,2]×[0,2]×[0,2]

{g(|u1|, |u2|, |u3|)} + 1

= max
(|u1|,|u2|,|u3|)∈[0,2]×[0,2]×[0,2]

{[
sin8(|u1| + |u2|) + e|u1|+|u2|+|u3| + (|u1| + |u2| + |u3|)

1
3

]}

+1 = 2 + e6 + 3
√
6.

G =

⎛
⎜⎜⎜⎝ 1

1 −
m−2∑
i=1

αi

+

m−2∑
i=1

βi

(
1 −

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
⎞
⎟⎟⎟⎠
(
1 −

m−2∑
i=1

αiξi

)
m−2∑
i=1

αi(1 − ξi)

=
115
12

.

r

G
∫ 1
0 p(s)ds

=
2

G
∫ 1
0

2√
s
ds

=
6
115

.

r

⎡
⎢⎢⎢⎣
M1
∫ 1
0 (p(s) + q(s))ds

(
1 −

m−2∑
i=1

βi

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
⎤
⎥⎥⎥⎦

−1

=
3

23(2 + e6 + 3
√
6)

.

It follows from Theorem 3.1 that the problem (4.1) has at least one positive solution

for any λ∗ ∈
(
0,

3

23(2 + e6 + 3
√
6)

)
. □

Example 4.2. Consider the following singular fourth-order semipositone boundary

value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(4)(t) +
8λ

π
√
t(1 − t)

[
sin19(|y(t)| + |y′(t)|) + 28 e|y(t)|+|y′(t)|+|y′′(t)| + (|y(t)|

+|y′(t)| + |y′′(t)|)
1
8 ] − 3√

1 − t
= 0, t ∈ (0, 1)

y(0) = y′(0) = 0, y′′(1) =
1
3
y′′(

1
2
) +

1
6
y′′(

2
3
) +

1
10

y′′(
5
6
),

y′′′(0) =
1
6
y′′′(

1
2
) +

1
4
y′′′(

2
3
) +

1
10

y′′′(
5
6
)

(4:2)

Proof. Let

f (t, u1, u2, u3) =
8

π
√
t(1 − t)

[
sin19(|u1| + |u2|) + 28e|u1|+|u2|+|u3| + (|u1| + |u2| + |u3|)

1
8

]

− 3√
1 − t

Then

−p(t) ≤ f (t, u1, u2, u3) ≤ q(t)g(u1, u2, u3) and lim
(|u1|+|u2|+|u3|)→+∞

f (t, u1, u2, u3)
|u1| + |u2| + |u3| = +∞
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where p(t) = 3√
1−t

, q(t) = 8
π
√

t(1−t),

g(u1, u2, u3) = sin19(|u1| + |u2|) + 28e|u1|+|u2|+|u3| + (|u1| + |u2| + |u3|)
1
8, which implies

that (H1)-(H3) hold. Since

α1 = 1
3 ,α2 = 1

2 ,α3 = 1
5 , ξ1 = 1

2 , ξ2 = 2
3 , ξ3 = 5

6 ,β1 = 1
6 ,β2 = 1

4 ,β3 = 1
10, then we know that

1∫
0

(p(s) + q(s))ds =

1∫
0

(
3√
1 − s

+
8

π
√
s(1 − s)

)
ds = 6 + 8 = 14.

Take r = 3, then

M1 = max
(|u1|,|u2|,|u3|)∈[0,3]×[0,3]×[0,3]

{g(|u1|, |u2|, |u3|)} + 1

= max
(|u1|,|u2|,|u3|)∈[0,3]×[0,3]×[0,3]

{[
sin19(|u1| + |u2|) + 28e|u1|+|u2|+|u3| + (|u1| + |u2| + |u3|)

1
8

]}

+1 = 2 + 28e9 + 4
√
3.

G =

⎛
⎜⎜⎜⎝ 1

1 −
m−2∑
i=1

αi

+

m−2∑
i=1

βi

(
1 −

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
⎞
⎟⎟⎟⎠
(
1 −

m−2∑
i=1

αiξi

)
m−2∑
i=1

αi(1 − ξi)

=

(
1
2
5

+
31
60 × 23

36
2
5 × 29

60

)
×

23
36
43
180

=
1010275
89784

.

r

G
∫ 1
0 p(s)ds

=
3

1010275
89784 × 6

=
44892
1010275

.

r

⎡
⎢⎢⎢⎣
M1
∫ 1
0 (p(s) + q(s))ds

(
1 −

m−2∑
i=1

βi

m−2∑
i=1

αiξi

)
(
1 −

m−2∑
i=1

αi

)(
1 −

m−2∑
i=1

βi

)
⎤
⎥⎥⎥⎦

−1

= 3 ×
[
(2 + 28e9 + 4

√
3) × 14

2
5

× 1 − 31
60 × 13

36
29
60

]−1

=
3132

61495(2 + 28e9 + 4
√
3)

.

It follows from Theorem 3.1 that the problem (4.2) has at least one positive solution

for any λ∗ ∈
(
0, 3132

61495(2+28e9+ 4√3)

)
. □
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