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Abstract
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1. Introduction
The understanding of the asymptotic behavior of dynamical systems is one of the most

important problems of modern mathematical physics. One way to attack the problem

for a dissipative dynamical system is to consider its attractor. The existence of the

attractor has been derived for a large class of PDEs (see e.g., [1,2] and references

therein) for both autonomous and non-autonomous equations. However, these

researches may not be applied to a wide class of problems, in which solutions may not

be unique. Good examples of such systems are differential inclusions, variational

inequalities, control infinite dimensional systems and also some partial differential

equations for which solutions may not be known unique as, for example, some certain

semilinear wave equations with high power nonlinearities, the incompressible Navier-

Stokes equation in three space dimension, the Ginzburg-Landau equation, etc. For the

qualitative analysis of the above mentioned systems from the point of view of the the-

ory of dynamical systems, it is necessary to develop a corresponding theory for multi-

valued semigroups.

In the last years, there have been some theories for which one can treat multi-valued

semi-flows and their asymptotic behavior, including the generalized semiflows theory

of Ball [3], theory of trajectory attractors of Chepyzhov and Vishik [4] and theories of

multi-valued semiflows and semiprocesses of Melnik and Valero [5-7]. Thanks to these

theories, several results concerning attractors in the case of equations without unique-

ness have been obtained recently for differential inclusion [5,6], parabolic equations

[8-10], the phase-field equation [11], the wave equation [12], the three-dimensional

Navier-Stokes equation [3,13], etc. Although the existence of attractors has been
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derived for many classes of partial differential equations without uniqueness, to the

best of our knowledge, little seems to be known for singular/degenerate equations,

expecially in the quasilinear case.

Let Ω be a bounded domain in ℝN(N ≥ 2) containing the origin with boundary ∂Ω.

In this paper we consider the following quasilinear parabolic equation

∂u
∂t

− div
(|x|−pγ |∇u|p−2∇u

)
+ f (t, u) = g(x, t), x ∈ �, t > τ ,

u|t=τ = uτ (x), x ∈ �,

u|∂� = 0,

(1:1)

where τ Î ℝ, uτ Î L2(Ω) are given, the nonlinearity f, the external force g, and the

numbers p, g satisfy the following conditions:

(H1) f: ℝ × ℝ ® ℝ is a continuous function satisfying∣∣f (t, u)∣∣ ≤ C1|u|q−1 + k1, (1:2)

uf (t, u) ≥ C2|u|q − k2, (1:3)

for some q ≥ 2, where C1, C2, k1, k2 are positive constants;

(H2) g ∈ L2c (R; L
2(�)) , where L2c (R; L

2(�)) is the set of all translation compact

functions in L2loc(R; L
2(�)) whose definition is given in Definition 1.1 below.

(H3) 2N
N+2 ≤ p ≤ 2 and N

p − N
2 ≤ γ + 1 < N

p .

Let us give some comments about assumptions (H1)-(H3). The nonlinearity f is

assumed to have a polynomial growth and to satisfy a standard dissipative condition. A

typical example of functions satisfying conditions (H1) is f (t, u) = |u|q-2u. arctan t, q ≥ 2.

We refer the reader to [[1], Chapter 5, Propositions 3.3 and 3.5] for translation compact

criterions in L2loc(R; L
2(�)). While (H3) is a technical condition ensuring that D1,p

0,γ (�)

is embedded compactly into L2(Ω), where D1,p
0,γ (�) is the natural energy space related

to problem (1.1), which is defined later in this section. This is essential for proving the

existence of a weak solution to problem (1.1) using the compactness method.

Problem (1.1), which is related to some Caffarelli-Kohn-Nirenberg inequalities [14],

contains some important classes of parabolic equations, such as the semilinear heat

equations (when g = 0, p = 2), semilinear singular/degenerate parabolic equations

(when p = 2), the p-Laplacian equations (when g = 0, p ≠ 2), etc. The existence and

properties of solutions to problem type (1.1) have attracted interest in recent years

[15-19]. However, to the best of our knowledge, little seems to be known for the long-

time behavior of solutions to problem (1.1).

In this article we study the long-time behavior of solutions to problem (1.1) via the

concept of uniform global attractors for multi-valued semiprocesses. Here there is no

restrictions on the growth of the nonlinearity f and the conditions imposed on f pro-

vide the global existence of a weak solution to problem (1.1), but not uniqueness.

Thus, when studying the long-time behavior of solutions, in order to handle
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nonuniqueness of solutions, we need use the theory of attractors for multi-valued

semiprocesses. Following the general lines of the approach used in [8-10,20] for non-

degenerate parabolic equations, we prove the existence of a global compact attractor in

the autonomous case, and of a uniform global compact attractor in the non-autono-

mous case. Noting that when the nonlinearity f does not depend on time t, the exis-

tence of an attractor for problem (1.1) in the semilinear non-degenerate case, namely

when g = 0 and p = 2, was studied in [8,9]. Thus, our results extend some known

results on the existence and long-time behavior of solutions of nondegenerate semi-

linear parabolic equations.

It is worth noticing that under some additional conditions on f, for example,

f ′
u(t, u) ≥ −C3 for all t >τ, u Î ℝ, or a weaker assumption

(
f (t, u) − f (t, v)

)
(u − v) ≥ −C|u − v|2 for all t > τ , u, v ∈ R,

one can prove that the weak solution of problem (1.1) is unique. Then the multiva-

lued semiprocess turns to be a single-valued one and the uniform compact global

attractor is exactly the usual uniform attractor for the family of single-valued semipro-

cesses [1].

In the rest of this section, for convenience of the reader, we recall some results on

function spaces related to Caffarelli-Kohn-Nirenberg inequalities and translation com-

pact functions.

For 1 <p < ∞ and γ <
N−p
p , we define the weighted space

Lpγ (�) =
{
u : � → R is measurable such that|x|−γ u(x) ∈ Lp(�)

}
,

equipped with the norm

‖u‖Lpγ (�) =

⎛
⎝∫

�

|x|−pγ
∣∣u(x)∣∣p

⎞
⎠

1/p

.

It is easy to check that the dual space (Lpγ (�))′ of Lpγ (�) is the space Lp
′

−γ (�) ,

where p’ is defined by 1
p +

1
p′ = 1. Moreover, we define the weighted Sobolev space

D1,p
0,γ (�) as the closure of C∞

0 (�) in the norm

‖u‖D1,p
0,γ (�) = ‖∇u‖Lpγ (�) =

⎛
⎝∫

�

|x|−pγ
∣∣∇u(x)

∣∣pdx
⎞
⎠

1
p

. (1:4)

As 1 <p < ∞, D1,p
0,γ (�) is reflexive, and the dual space of D1,p

0,γ (�) will be denoted by

D−1,p′
−γ (�) .

We now state some results which we will use later. The first is the Caffarelli-Kohn-

Nirenberg inequality.

Proposition 1.1. [14]Assume that 1 <p <N. Then there exists a positive constant CN,p,

g,q such that for every u ∈ C∞
0 (RN) ,
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⎛
⎝∫
RN

|x|−δq
∣∣u(x)∣∣qdx

⎞
⎠

p/q

≤ CN,p,γ ,q

∫
RN

|x|−pγ
∣∣∇u(x)

∣∣pdx, (1:5)

where p, q, g, δ are related by

1
q

− δ

N
=
1
p

− γ + 1
N

, γ ≤ δ ≤ γ + 1, (1:6)

and δq <N, gp <N.

The inequality (1.5) implies that the embedding

D1,p
0,γ (�) ⊂ Lqδ(�) is continuous for p, q, γ , δ satisfying (1.6).

This implies, by duality,

Lq
′

−δ(�) ⊂ D−1,p′
−γ (�) for p, q, γ , δ satisfying (1.6).

It is pointed out in [19] that

D1,p
0,γ (�) ⊂ Lqδ(�) compactly (1:7)

for every p, q, g, δ satisfying
1
q

− δ

N
>

1
p

− γ + 1
N

with g ≤ δ ≤ g + 1 and δq <N, g p

<N.

From assumption (H3), it is easy to check that there exists a positive number δ such

that D1,p
0,γ (�) ⊂ L2δ (�) compactly. Since the embedding L2δ (�) ⊂ L2(�) is continuous,

it is seen that D1,p
0,γ (�) ⊂⊂ L2(�) ⊂ D−1,p′

−γ (�)) is an evolution triplet.

We now define the following “evolution” spaces which will be useful in what follows.

Lp(τ ,T;D1,p
0,γ (�)) =

{
u(., .) : � × (τ ,T) → R measurable:

u(., t) ∈ D1,p
0,γ (�) for a.e. t ∈ (τ ,T),

∥∥u(., t)∥∥D1,p
0,γ (�) ∈ Lp(τ ,T)

}
,

endowed with the norm

‖u‖
Lp

(
τ ,T;D1,p

0,γ (�)
) =

⎛
⎝ T∫

τ

∥∥u(., t)∥∥pD1,p
0,γ (�)

dt

⎞
⎠

1/p

=

⎛
⎝ T∫

τ

∫
�

|x|−pγ |∇u|pdxdt
⎞
⎠

1/p

.

The dual space of Lp(τ ,T;D1,p
0,γ (�)) is Lp

′
(τ ,T;D−1,p′

−γ (�)) .

Putting

−�p,γ u = −div(|x|−pγ |∇u|p−2∇u), u ∈ D1,p
0,γ (�)

The following proposition, which is easily proved by using similar arguments as in

[[21], Chapter 2], gives some important properties of the operator -Δp,g.

Proposition 1.2. The operator -Δp,g maps D1,p
0,γ (�) into its dual D−1,p′

−γ (�) . More-

over,
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(1) -Δp,g is hemicontinuous, i.e., for all u, v,w ∈ D1,p
0,γ (�) , the map l ↦ 〈-Δ p,g(u +

lv), w〉 is continuous from ℝ to ℝ.

(2) -Δp,g is monotone, i.e., 〈-Δp,gu + Δp,gv,u - v〉 ≥ 0, for all u, v ∈ D1,p
0,γ (�) .

Definition 1.1. Assume that ℰ is a reflexive Banach space.

(1) A function ϕ ∈ L2loc(R;E) is said to be translation bounded if

‖ϕ‖2L2b = ‖ϕ‖L2b (R;E) = sup
t∈R

t+1∫
t

‖ϕ‖2E ds < ∞.

(2) A function ϕ ∈ L2loc(R;E) is said to be translation compact if the closure of {�(⋅

+ h)|h Î ℝ} is compact in L2loc(R;E) .

Denote by L2b (R;E) and L2c (R;E) the sets of all translation bounded functions and of

all translation compact functions in L2loc(R;E) , respectively. It is well-known (see [4])

that L2c (R;E) ⊂ L2b(R;E) .
Let H(g) be the closure of the set {g(· + h)|h Î ℝ} in L2b (R; L

2(�)) . The following

results were proved in [[1], Chapter 5, Proposition 3.4].

Lemma 1.3. (1) H(g) is compact.

(2) For all σ ∈ H(g), ‖σ‖2L2b ≤ ∥∥g∥∥2
L2b
;

(3) The translation group {T(h)}, which is defined by T(h)s(s) = s(h + s), s, h Î ℝ, is

continuous on H(g) ;

(4) T(h)H(g) = H(g) for h ≥ 0 ;

The rest of the article is organized as follows. In Section 2, we prove the global exis-

tence of a weak solution to problem (1.1) by using the monotonicity and compactness

methods. In Section 3, the existence of global attractors for problem (1.1) is proved in

both the autonomous and non-autonomous cases.

2. Existence of a weak solution
We denote

Qτ ,T = � × (τ ,T),

V = Lp(τ ,T;D1,p
0,γ (�)) ∩ Lq(τ ,T; Lq(�)),

V ′ = Lp
′
(τ ,T;D−1,p′

−γ (�)) + Lq
′
(τ ,T; Lq

′
(�)),

where p’, q’ are the conjugate indexes of p, q, respectively.
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Definition 2.1. A function u(x, t) is called a weak solution of (1.1) on (τ, T) iff

u ∈ V,
du
dt

∈ V ′,

u|t=τ = uτ a.e. in �,

and

T∫
τ

〈ut,ϕ〉 dt +
T∫

τ

∫
�

|x|−pγ |∇u|p−2|∇u∇ϕdxdt +

T∫
τ

〈
f (t, u),ϕ

〉
dt =

T∫
τ

(g(t),ϕ)dt,

for all test functions � Î V.

It is known (see [[1], Theorem 1.8, p. 33]) that if u Î V and
du
dt

∈ V ′ , then u Î C([τ,

T];L2(Ω)). This makes the initial condition in problem (1.1) meaningful.

Theorem 2.1. For any τ, T Î ℝ, T >τ and uτ Î L2(Ω) given, problem (1.1) has at

least one weak solution u on (τ, T). Moreover, the solution u can be extended to the

whole interval (τ, +∞).

Proof. We split the proof into three steps.

Step 1: A Galerkin scheme. Consider the approximating solution un(t) in the form

un(t) =
n∑

k=1

unk(t)ek,

where {ek}∞k=1 is a basis of D1,p
0,γ (�)) ∩ Lq(�) , which is orthonormal in L2(Ω). We get

un from solving the problem〈
dun
dt

, ek

〉
+

〈−�p,γ un, ek
〉
+

〈
f (t, un), ek

〉
= (g(t), ek),

(un(τ ), ek) = (uτ , ek), k = 1, . . . ,n.

Using the Peano theorem in the theory of ODEs, we get the local existence of un.

Step 2: A priori estimates. We have

1
2
d
dt

‖un‖2L2(�) + ‖un‖pD1,p
0,γ (�)

+
∫
�

f (t, un)undx =
∫
�

g(t)undx.

By assumption (H3), we can choose δ > 0 such that
1
2

− δ

N
>

1
p

− γ + 1
N

, then

D1,p
0,γ (�) ⊂⊂ L2δ (�) ⊂ L2(�) and therefore there exists l > 0 such that

‖u‖pD1,p
0,γ (�)

≥ C ‖u‖p
L2δ (�)

≥ λ̂ ‖u‖pL2(�) ≥ λ ‖u‖2L2(�) − λ, (2:1)

where the last inequality follows from the Young inequality. Using (1.3) and the Cau-

chy inequality, we get

1
2
d
dt

‖un‖2L2(�) + ‖un‖pD1,p
0,γ (�)

+ C2 ‖un‖qLq(�) − k2 |�| ≤ 1
2λ

∥∥g(t)∥∥2L2(�) +
λ

2
‖un‖2L2(�) .

Binh and Anh Boundary Value Problems 2012, 2012:35
http://www.boundaryvalueproblems.com/content/2012/1/35

Page 6 of 19



Hence

d
dt

‖un‖2L2(�) + ‖un‖pD1,p
0,γ (�)

+ 2C2 ‖un‖qLq(�) ≤ 1
λ

∥∥g(t)∥∥2L2(�) + 2k2 |�| + λ. (2:2)

We show that the local solution un can be extended to the interval [τ, ∞). Indeed,

from (2.2) we have

d
dt

‖un‖2L2(�) + λ ‖un‖2L2(�) ≤ 1
λ

∥∥g(t)∥∥2L2(�) + 2k2 |�| + 2λ.

By the Gronwall inequality, we obtain

∥∥un(t)∥∥2
L2(�) ≤ ∥∥un(τ )∥∥2L2(�) e

−λ(t−τ) +
1
λ

t∫
τ

e−λ(t−s)
∥∥g(s)∥∥2L2� ds

+ (2k2 |�| + 2λ)

t∫
τ

e−λ(t−s)ds

≤ ‖uτ‖2L2(�) e
−λ(t−τ) +

1
λ(1 − e−λ)

∥∥g∥∥2
L2b
+
2k2 |�|

λ
+ 2,

(2:3)

where we have used the facts that
∥∥un(τ )∥∥L2(�) ≤ ‖uτ‖L2(�) and

t∫
τ

e−λ(t−s)
∥∥g(s)∥∥2L2(�) ds ≤

t∫
t−1

e−λ(t−s)
∥∥g(s)∥∥2L2(�) ds +

t−1∫
t−2

e−λ(t−s)
∥∥g(s)∥∥2

L2(�) ds + · · ·

≤
t∫

t−1

∥∥g(s)∥∥2L2(�) ds + e−λ

t−1∫
t−2

∥∥g(s)∥∥2L2(�) ds+ · · ·

≤ (1 + e−λ + e−2λ + · · · ) ∥∥g∥∥2L2b = 1
1 − e−λ

∥∥g∥∥2
L2b
.

We now establish some a priori estimates for un. Integrating (2.2) on [τ, T], τ <t ≤ T,

and using the fact that
∥∥un(τ )∥∥L2(�) ≤ ‖uτ‖L2(�) , we have

∥∥un(t)∥∥2L2(�) +

T∫
τ

∥∥un(s)∥∥pD1,p
0,γ (�)

ds + 2C2

T∫
τ

∥∥un(s)∥∥qLq(�)ds

≤ ‖uτ‖2L2(�) +
1
λ

T∫
τ

∥∥g(s)∥∥2
L2� ds + (2k2 |�| + 2λ)(T − τ ).

(2:4)

The last inequality implies that

{un} is bounded in L∞(τ ,T; L2(�)), (2:5)

{un} is bounded in Lp(τ ,T;D1,p
0,γ (�)), (2:6)

{un} is bounded in Lq(τ ,T; Lq(�)). (2:7)
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Using hypothesis (1.2), we get

T∫
τ

∥∥f (t, un)∥∥q′Lq′(�)dt ≤
T∫

τ

∫
�

(C1|un|q−1 + k1)q′dxdt ≤
T∫

τ

∫
�

C
(|un|q + 1

)
dxdt.

Hence, we can conclude that {f(t, un)} is bounded in Lq
′
(τ ,T; Lq

′
(�)) and thus,

f (t, un) ⇀ η in Lq
′
(τ ,T; Lq

′
(�)). (2:8)

We have∣∣〈−�p,γ un, v
〉∣∣ = ∣∣〈−div(|x|−pγ |∇u|p−2∇u), v

〉∣∣
=

∣∣∣∣∣∣
T∫

τ

∫
�

|x|−pγ |∇un|p−2∇un∇vdxdt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T∫

τ

∫
�

|x|−(p−1)γ |∇un|p−2∇un(|x|−γ ∇v)dxdt

∣∣∣∣∣∣
≤ ‖un‖p/p′Lp(τ ,T;D1,p

0,γ (�))
‖v‖Lp(τ ,T;D1,p

0,γ (�))

for all v ∈ Lp(τ ,T;D1,p
0,γ (�)) , where we have used the Hölder inequality. Because of

the boundedness of {un} in Lp(τ ,T;D1,p
0,γ (�)) , we infer that {-Δp,g un} is bounded in

Lp
′
(τ ,T;D−1,p′

−γ (�)) .

Step 3: Passing limits. From the above estimates, there exists a subsequence {uμ} ⊂
{un} such that

uμ ⇀ u in Lp(τ ,T;D1,p
0,γ (�)), (2:9)

f (t, uμ) ⇀ η in Lq
′
(τ ,T; Lq

′
�)), (2:10)

−�p,γ uμ ⇀ ψ in Lp
′
(τ ,T;D−1,p′

−γ (�)), (2:11)

up to a subsequence.

To prove that h(t) = f(t, u(t)), we argue similarly to [22,23] to deduce that

lim
a→0

sup
μ

T−a∫
τ

∥∥uμ(t + a) − uμ(t)
∥∥2
L2(�) dt = 0, (2:12)

for all T >τ. In particular, we obtain from (2.5) that

lim
a→0

sup
μ

⎛
⎝ T+a∫

τ

∥∥uμ(t)
∥∥2
L2(�) dt +

T∫
T−a

∥∥uμ(t)
∥∥2
L2(�) dt

⎞
⎠ = 0. (2:13)

Then, by Theorem 13.3 and Remark 13.1 in [24], we obtain that uμ ® u strongly in

L2(τ, T; L2(Ω)), up to a subsequence. Hence, we can assume that uμ ® u a.e. in Qτ,T.

Therefore, f(t, uμ) ® f(t, u) a.e. in Qτ,T since f is continuous. By Lemma 1.3 in [[21],
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Chapter 1], one has

f (t, uμ) ⇀ f (t, u) in Lq
′
(τ ,T; Lq

′
(�)).

Thus, we have

du
dt

= ψ − f (t, u) + g(t) in V ′. (2:14)

We now show that ψ = -Δp, g u. Since -Δp, g is monotone, we have

Xn =

T∫
τ

〈−�p,γ un + �p,γ v, un − v
〉
dt ≥ 0, for all v ∈ V.

Note that {un(T)} is bounded in L2(Ω), so by arguments as in [[21], pp. 159-160], we

have that un(T) ⇀ u(T) in L2(Ω). Because

T∫
τ

〈−�p,γ un, un
〉
dt = −

T∫
τ

∫
�

(f (t, un)un − g(t)un)dxdt

+
1
2

∥∥un(τ )∥∥2
L2(�) − 1

2

∥∥un(T)∥∥2L2(�) ,

(2:15)

we obtain

lim sup
n→∞

Xn ≤ −
T∫

τ

(f (t, u)udt +
1
2

∥∥u(τ )∥∥2L2(�) − 1
2

∥∥u(T)∥∥2L2(�)

−
T∫

τ

(ψ , v)dt+

T∫
τ

(�p,γ v, u − v)dt+

T∫
τ

(g(t), u)dt,

(2:16)

where we have used the facts that un(τ) ® uτ in

L2(�),
∥∥u(T)∥∥2L2(�) ≤ lim inf

n→∞
∥∥un(T)∥∥2L2(�) . On the other hand, by integrating by parts,

from (2.14) we have

−
T∫

τ

(f , u)dt +
1
2

∥∥u(τ )∥∥2L2(�) − 1
2

∥∥u(T)∥∥2L2(�) +

T∫
τ

(g(t), u)dt =

T∫
τ

(ψ , u)dt,

and therefore thanks to (2.15) and (2.16) one gets

T∫
τ

(ψ + �p,γ v, u − v)dt ≥ 0, ∀v ∈ V.

We now use the hemicontinuity of the operator Δp,g to show that ψ = -Δp,g u. Taking

v = u - lw, where l > 0 and w ∈ V := Lp(τ ,T;D1,p
0,γ (�)) , we obtain

λ

T∫
τ

(ψ + �p,γ (u − λw),w)dt ≥ 0,
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hence

T∫
τ

(ψ + �p,γ (u − λw),w)dt ≥ 0, (2:17)

leting l ® 0 in (2.17), we conclude that

T∫
τ

(ψ + �p,γ u,w)dt ≥ 0, for all w ∈ V.

So ψ = -Δp,g u. Thus,

u′ = �p,γ u − f (t, u) + g(t) in V ′.

We now show that u(τ) = uτ. Choosing some ϕ ∈ C1([τ ,T];D1,p
0,γ (�) ∩ Lq(�)) with

�(T) = 0, observe that � Î V, by the Lebesgue dominated theorem, one can check that

−
T∫

τ

(u,ϕ′)dt +

T∫
τ

∫
�

|x|−pγ |∇u|p−2∇u∇ϕdxdt +

T∫
τ

∫
�

f (t, u)ϕdxdt

= (u(τ ),ϕ(τ )) +

T∫
τ

∫
�

gϕdxdt.

Doing the same in the Galerkin approximations yields

−
T∫

τ

(un,ϕ′)dt +

T∫
τ

∫
�

|x|−pγ |∇un|p−2∇un∇ϕdxdt +

T∫
τ

∫
�

f (t, un)ϕdxdt

= (un(τ ),ϕ(τ )) +

T∫
τ

∫
�

gϕdxdt.

Passing to the limit as n ® ∞, we have

−
T∫

τ

(u,ϕ′)dt +

T∫
τ

∫
�

|x|−pγ |∇u|p−2∇u∇ϕdxdt +

T∫
τ

∫
�

f (t, u)ϕdxdt

= (uτ ,ϕ(τ )) +

T∫
τ

∫
�

gϕdxdt.

Therefore, u(τ) = uτ and u is a weak solution of (1.1) on (τ, T).

Finally, it is easy to check that the solution u satisfies the inequality similar to (2.3),

and this implies that the solution u exists globally on the interval (τ, +∞).

3. Existence of global attractors
3.1. The autonomous case

Consider the case where f and g do not depend on the time t, and let us recall the defi-

nition of multi-valued semiflows.
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Definition 3.1. [5]Let E be a Banach space. The mapping

G : [0, +∞) × E → 2E

is called a multi-valued semiflow if the following conditions are satisfied:

(1) G(0,w) = w for arbitrary w Î E;

(2) G(t1 + t2,w) ⊂ G(t1,G(t2,w)) for all w Î E, t1, t2 Î ℝ+, where G (t, B) = ∪xÎB
G (t, x), B ⊂ E.

It is called a strict multi-valued semiflow if G(t1 + t2,w) = G(t1,G(t2,w)) , for all w Î
E, t1, t2 Î ℝ+.

We now consider problem (1.1) with τ = 0. By Theorem 2.1, we construct a multi-

valued mapping as follows

G(t, u0) = {u(t)|u(·) is a global weak solution of (1.1) such that u(0) = u0}.

Lemma 3.1. G is a strict multi-valued semiflow in the sense of Definition 3.1.

Proof. Assume that ξ ∈ G(t1 + t2, u0) , then ξ = u(t1 + t2), where u(t) is a solution of (1.1).

Denoting v (t) = u(t + t2), we see that v(.) is also in the set of solutions of (1.1) with respect

to initial condition v(0) = u(t2). Therefore, ξ = v(t1) ∈ G(t1, u(t2)) ⊂ G(t2,G(t2, u0)) . It
remains to show that G(t1,G(t2, u0)) ⊂ G(t1 + t2, u0) . If ξ ∈ G(t1,G(t2, u0)) then ξ = v

(t1), where v(0) ∈ G(t2, u0) . One can suppose that v(0) = u(t2), where u(0) = u0. Set

w(τ ) =
{
u(τ ), 0 ≤ τ < t2,
v(τ − t2), τ ≥ t2.

Since u and v are two solutions of (1.1), we obtain that w is a solution of (1.1) with

w(0) = u(0) = u0. In addition, since ξ = v(t1) = w(t1 + t2), we have ξ ∈ G(t1 + t2, u0) .

Definition 3.2. [5]A set A is said to be a global attractor of the multi-valued semi-

flow G if the following conditions hold:

• A is an attracting, i.e., dist(G(t,B),A) → 0 as t ® ∞ for all bounded subsets B

⊂ E,

• A is negatively semi-invariant: A ⊂ G(t,A) for arbitrary t ≥ 0,

• If ℬ is an attracting of G then A ⊂ B̄ ,

where dist(C,A) = sup
c∈C

inf
a∈A

‖c − a‖ is the Hausdorff semi-distance.

The following theorem gives the sufficient conditions for the existence of a global

attractor for the multi-valued semiflow G .

Theorem 3.2. [5,7]Suppose that the strict multi-valued semiflow G has the following

properties:

(1) G is pointwise dissipative, i.e., there exists K > 0 such that for

u0 ∈ E, u(t) ∈ G(t, u0) one has ∥u(t)∥E ≤ K if t ≥ t0 (∥u0∥E);
(2) G(t, .) is a closed map for any t ≥ 0, i.e., if ξn ® ξ, hn ® h, ξn ∈ G(t, ηn) then

ξ ∈ G(t, η);
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(3) G is asymptotically upper semicompact, i.e., if B is a bounded set in E such that

for some T(B), γ +
T(B)(B) :=

⋃
t≥T(B) G(t,B) is bounded, any sequence ξn ∈ G(tn,B)

with tn ® ∞ is precompact in E.

Then G has a compact global attractor A in E. Moreover, A is invariant, i.e.,

G(t,A) = A for any t ≥ 0.

Lemma 3.3. G(t∗, .) is a compact mapping for each t* Î (0, T].

Proof. This lemma is a direct consequence of Lemma 3.8 in Section 3.2 below.

We now can prove the existence of a global attractor.

Theorem 3.4. Under conditions (H1)-(H3), where f andg are assumed to be indepen-

dent of time t, the strict multi-valued semiflow G generated by problem (1.1) has an

invariant compact global attractor in L2(Ω).

Proof. We will check hypotheses (1)-(3) of Theorem 3.2. First, assume

u(t) ∈ G(t, u0) , we have

1
2
d
dt

∥∥u(t)∥∥2L2(�) +
∫
�

|x|−pγ |∇u|p + C2 ‖u‖qLq(�) ≤ k2 |�| +
∫
�

ugdx

≤ k2 |�| + ε ‖u‖2L2(�) + Cε

∥∥g∥∥2
L2(�) .

Noting that

C2 ‖u‖qLq(�) ≥ λ ‖u‖2L2(�) − C, C = C
(
q, |�|) > 0,

we have

1
2
d
dt

‖u‖2L2(�) + λ ‖u‖2L2(�) ≤ C
(
q, |�| , ∥∥g∥∥L2(�)

)
. (3:1)

Therefore

∥∥u(t)∥∥2L2(�) ≤ ∥∥u(0)∥∥2L2(�) e
−2λt + C

(
q, |�| , ∥∥g∥∥L2(�)

)
,

Hence one can deduce that G is pointwise dissipative.

We now check hypothesis (2) of Theorem 3.2. Assume that

ξn ∈ G(t, ηn), ξn → ξ , ηn → η in L2(Ω). Then there exists a sequence {un} such that

un(t) = ξn, un(0) = ηn.

Using the same arguments as in the proof of Theorem 2.1, we have

• un ® u in L2(Q0,T),

• un(t) ⇀ u(t) in L2(Ω) for arbitrary t Î [0, T] (and then u(0) = h),

• f(un)⇀ f(u) in Lq
′
(Q0,T),

•
dun
dt

⇀
du
dt

in V,

• -Δp,g un ⇀ -Δp,g u in Lp
′
(
0,T;D−1,p′

−γ (�)
)
,

up to a subsequence. Hence, passing to the limit in the equality
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T∫
0

〈
u′

n, v
〉
+

T∫
0

dt
∫
�

|x|−pγ |∇un|p−2∇un∇v +

T∫
0

dt
∫
�

f (un)v =

T∫
0

dt
∫
�

gv

we conclude that u(t) is a weak solution of (1.1) with the initial condition u(0) = h.
Thus, ξ ∈ G(t, η) .
For hypothesis (3), one observes that for n large enough,

G(tn,B) = G(t∗ + tn − t∗,B) ⊂ G(t∗,G(tn − t∗B)) ⊂ G(t∗,B∗),

where t* > 0 and B* is a bounded set in L2(Ω). Using Lemma 3.3, we conclude that,

if ξn ∈ G(tn,B) , then {ξn} is precompact in L2(Ω).

3.2. The non-autonomous case

Let us recall some definitions and related results. The pair of functions (f(s,⋅),g(⋅,s)) = s
(s) is called a symbol of (1.1). We consider (1.1) with a family of symbols including the

shifted forms s(s + h) = (f(s + h,⋅), g (⋅, s + h)) and the limits of some sequence {s(s +
hn)}nÎN in an appropriate topological space Σ. The family of such symbols is said to be

the hull of s in Σ and is denoted by H(σ ) , i.e.,

H(σ ) = cl∑{σ (· + h) |h ∈ R }.

If the hull H(σ ) is a compact set in Σ, we say that s is translation compact in Σ.

Denote ℝd = {(t, τ) Î ℝ2 | τ ≤ t}. Let X be a complete metric space, P(X) and B(X)
be the set of all nonempty subsets and the set of all nonempty bounded subsets of the

space X, respectively and let Σ be a subspace of Σ.

Denote

Z = {ϕ ∈ C(R;R) :
∣∣ϕ(u)∣∣ ≤ Cϕ(1 + |u|q−1), for some Cϕ > 0},

‖ϕ‖Z = sup
u∈R

∣∣ϕ(u)∣∣
1 + |u|q−1 .

Then Z is a Banach space. We say that fn ® f in the space C(ℝ; Z) if

lim
n→∞ sup

s∈[t,t+r]

∥∥fn(s, ·) − f (s, ·)∥∥Z = 0 (3:2)

for all t Î ℝ, r > 0.

Let f0 ∈ C(R;Z), g0 ∈ L2,wloc (R; L
2(�)) , and

H(f0) = clC(R;Z){f0(· + h) |h ∈ R },
H(g0) = clL2,wloc (R;L

2(�)){g0(· + h) |h ∈ R},

where the topology in L2,wloc (R; L
2(�)) is equipped by the local weak convergence, i.e.,

gn ® g in L2,wloc (R; L
2(�)) if

lim
n→∞

t+r∫
t

∫
�

(gn(s, x) − g(s, x))φ(x, s)dsdx = 0

for all t Î ℝ, r > 0 and j Î L2 (Qt,t+r). We define
∑

= H(f0) × H(g0).
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In order to deal with a uniform attractor with respect to the family of symbols, one

usually requires the translation compact property. Let us recall some discussions on

this requirement. It is known that hypothesis (H2) ensures that g is translation com-

pact in L2,wloc (R; L
2(�)) (see [4] for details). In addition, the following statement gives a

sufficient condition for the translation compact property in C (ℝ; Z).

Proposition 3.5. [4]The function f Î C(ℝ; Z) is translation compact if and only if for

all R > 0 one has

(1) |f(t, v)| ≤ C(R) for all t Î ℝ, v Î [-R, R],

(2) |f(t1, v1)-f(t2, v2)| ≤ a(|t1-t2| + |v1-v2|,R), ∀t1, t2 Î ℝ, v1, v2 Î [-R, R], here C(R)

> 0 and a(.,.) is a function such that a(s, R) ® 0 as s ® 0+.

From now on, we suppose that f is translation compact. Together with the fact that g

is translation compact in L2,wloc (R; L
2(�)) , one sees that Σ is a compact set in

L2,wloc (R; L
2(�)) . Then it follows from [4] that T(h) : Σ ® Σ is continuous and T(h)Σ ⊂

Σ for all h Î ℝ.

Definition 3.3. [6]The map U : Rd × X → P(X) is called an multi-valued semipro-

cess (MSP) if

(1)U (τ, τ,.) = Id (the identity map),

(2)U (t, τ, x) ⊂ U(t, s, U(s, τ, x)), for all x Î X, t, s, τ Î ℝ,τ ≤ s ≤ t.

It is called a strict multi-valued semiprocess if U(t, τ, x) = U(t, s, U(s, τ, x)).

We denote by Dτ ,σ (uτ ) the set of all global weak solutions (defined for all t ≥ τ) of

the problem (1.1) with data (fs, gs) instead of (f, g) such that u(τ) = uτ. For each s = (f,

g) Î Σ, we consider the family of MSP {Us : s Î Σ} defined by

Uσ (t, τ , uτ ) = {u = u(t)
∣∣u(·) ∈ Dτ ,σ (uτ ) }.

Lemma 3.6. Us (t, τ, uτ) is a multi-valued semiprocess. Moreover,

Uσ (t + s, τ + s, uτ ) = UT(s)σ (t, τ , uτ ) for all uτ ∈ L2(�), (t, τ ) ∈ Rd, s ∈ R.

Proof. Given z Î Us(t, τ, uτ)) we have to prove that z Î Us(t, s, Us(s, τ, uτ)). Take

y(.) ∈ Dτ ,σ (uτ ) such that y(τ) = uτ and y(t) = z. Clearly, y(s) Î Us(s, τ, uτ). Then if we

define z(t) = y(t) for t ≥ s we have that z(s) = y(s) and obviously z(.) ∈ Ds,σ (y(s)) . Con-

sequently, z(t) Î Us(t, s, Us(s, τ, uτ)).

Let z Î Us(t + s, τ + s, uτ). Then there exists u(·) ∈ Dτ+s,σ (uτ ) such that z = u(t + s)

and v(·) = u(· + s) ∈ Dτ ,T(s)σ (uτ ) , so that z = v(t) Î uτ,T (s)s (uτ).

Conversely, if z Î Uτ,T(s)s (uτ), then there is z ∈ Dτ ,T(s)σ (uτ ) such that z = u(t) and

v(·) = u(−s + ·) ∈ Dτ+s,σ (uτ ) so that z = v(t + s) Î Us(t + s, τ + s, uτ).

Denote by

U∑(t, τ , x) =
⋃
σ∈∑Uσ (t, τ , x).
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Definition 3.4. [6]A set A is called a uniform global attractor for the family of

multi-valued semiprocesses UΣ if:

(1) it is negatively semiinvariant, i.e., A ⊂ U∑(t, τ ,A) for all t ≥ τ;

(2) it is uniformly attracting, i.e., dist(U∑(t, τ ,B),A) → 0 , as t ® ∞ , for all

B ∈ B(X) and τ Î ℝ;

(3) for any closed uniformly attracting set Y, we have A ⊂ Y (minimality).

Theorem 3.7. [[6], Theorem 2] Suppose that the family of multi-valued semiprocesses

UΣ satisfies the following conditions:

(1) On Σ is defined the continuous shift operator T(s)s(t) = s(t + s), s Î ℝ such that

T(h)Σ ⊂ Σ, and for any (t, τ) Î ℝd, s Î Σ, s Î ℝ, x Î X, we have

Uσ (t + s, τ + s, x) = UT(s)σ (t, τ , x);

(2) Us is uniformly asymtopically upper semicompact;

(3) Us is pointwise dissipative;

(4) The map (x, s) ↦ Us(t, 0, x) has closed values and is w-upper semicontinuous.

Then the family of multi-valued semiprocesses UΣ has a uniform global compact

attractor A .

The following is the key point of this subsection.

Lemma 3.8. Let conditions (H1)-(H3) hold and let {un}nÎN is a sequence of weak

solutions of (1.1) with respect to the sequence of symbols {sn} ⊂ Σ such that

(1) un(τ ) → uτ in L2(�),

(2) σn → σ in
∑

.

Then there exists a solution u of (1.1) with respect to the symbol s such that u(τ) = uT
and un(t*) ® u(t*) in L2(Ω) for any t* >τ, up to a subsequence.

Proof. Let sn = (fn, gn). Since f satisfies (H1) for all t Î ℝ and fn ∈ H(f ) , one sees

that fn also satisfies (H1). On the other hand, noting that {un(τ)} is bounded in L2(Ω)

and
∥∥gn∥∥L2b ≤ ∥∥g∥∥L2b

. Thus, repeating the arguments in the proof of Theorem 2.1, we

obtain that

{un} is bounded in V = Lp
(
τ ,T;D1,p

0,γ (�)
)

∩ Lq(τ ,T; Lq(�)),

{u′
n} is bounded in V ′ = Lp

′ (
τ ,T;D−1,p′

−γ (�)
)
+ Lq

′ (
τ ,T; Lq

′
(�)

)
,

{un} is bounded in C([τ ,T]; L2(�)),

{fn(t, un)} is bounded in Lq
′
(Qτ ,T),

{−�p,γ un} is bounded in Lp
′ (

τ ,T;D−1,p′
−γ (�)

)
.
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In particular, we have

un(t) ⇀ u(t) in L2(�) for all t ∈ [τ ,T], (3:3)

up to a subsequence. Let σn → σ = (f , g) in Σ, to show that u is a solution of (1.1)

with respect to the symbol s such that u(τ) = uT, we need to pass to the limits in the

following relation

T∫
τ

∫
�

(
u′

nv + |x|−pγ |∇un|p−2∇un∇v + fn(t, un)v
)
dxdt =

T∫
τ

∫
�

gnvdxdt

for all v Î V. Since gn ⇀ ḡ in L2(τ,T; L2(Ω)), it remains to prove that

fn(t, un) ⇀ f̄ (t, u) in Lq
′
(Qτ ,T). We first show that fn(t, un) → f̄ (t, un) in Lq

′
(Qτ ,T).

Indeed,

T∫
τ

∫
�

∣∣∣fn(t, un) − f̄ (t, un)
∣∣∣q′

dxdt

=

T∫
τ

∫
�

∣∣∣fn(t, un) − f̄ (t, un)
∣∣∣q′

(1 + |un|q−1)
q′ (1 + |un|q−1)

q′
dxdt

≤
(
sup
[τ ,T]

∥∥∥fn − f̄
∥∥∥
Z

)q′ T∫
τ

∫
�

(1 + |un|q)dxdt → 0

because fn → f̄ in Z and {un} is bounded in Lq(Qτ,T). On the other hand, since

{f̄ (t, un)} is bounded in Lq
′
(Qτ ,T), by using Lemma 1.3 in [[21], Chapter 1] and the

continuity of f̄ as in the proof of Theorem 2.1, we can conclude that

f̄ (t, un) → f̄ (t, u) weakly in Lq
′
(Qτ ,T). Hence, we have

fn(t, un)− f̄ (t, u) = (fn(t, un)− f̄ (t, un)) + (f̄ (t, un)− f̄ (t, u)) → 0 weakly in Lq
′
(Qτ ,T).

We now have to show that un(t*) ® u(t*) in L2(Ω) for any t* >τ. Taking into account

of (3.3), we have to check that
∥∥un(t∗)∥∥L2(�) → ∥∥u(t∗)∥∥L2(�).

Putting

Jn(t) =
∥∥un(t)∥∥2L2(�) − 2

t∫
τ

(gn(s), un(s))ds − (2k2 |�| + 2λ)(t − τ ),

J(t) =
∥∥u(t)∥∥2L2(�) − 2

t∫
τ

(g(s), u(s))ds − (2k2 |�| + 2λ)(t − τ ).

It is easy to check that the functions Jn(t), J(t) are continuous and non-increasing on

[τ, T]. We first show that

Jn(t) → J(t) for a.e. t ∈ [τ ,T]. (3:4)
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Indeed,

∣∣Jn(t) − J(t)
∣∣ ≤

∣∣∣∥∥un(t)∥∥2L2(�) − ∥∥u(y)∥∥2L2(�)

∣∣∣
+ 2

∣∣∣∣∣∣
t∫

τ

[(gn(s), un(s)) − (g(s), u(s))]ds

∣∣∣∣∣∣
≤ ∥∥un(t) − u(t)

∥∥
L2(�)

(∥∥un(t)∥∥L2(�) +
∥∥u(t)∥∥L2(�)

)

+ 2

∣∣∣∣∣∣
t∫

τ

[(gn(s), un(s) − u(s))ds

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣
t∫

τ

[(gn(s) − g(s), u(s))ds

∣∣∣∣∣∣ ,
and ∣∣∣∣∣∣

t∫
τ

[(gn(s), un(s) − u(s))ds

∣∣∣∣∣∣ ≤ ∥∥gn∥∥L2(Qτ ,t)

∥∥un(t) − u(t)
∥∥
L2(�) → 0

as n ® ∞ since un ® u strongly in L2(Qτ,t) and {gn} is bounded in L2(Qτ,t). In addi-

tion,

t∫
τ

(gn(s) − g(s), u(s))ds → 0

as n ® ∞ since gn ⇀ g in L2(Qτ,t). Then (3.4) is proved due to the fact that un(t) ® u

(t) in L2(Ω) for a.e. t Î [τ, T].

We choose an increasing sequence {tm} ⊂ [τ, T], tm ® t* such that Jn(tm) ⇀ J(tm) as n

® ∞. Then, by the continuity,

Jn(tm) ⇀ Jn(t∗), as m → ∞.

So

Jn(t∗) − J(t∗) ≤ Jn(tm) − J(t∗) = Jn(tm) − J(tm) + J(tm) − J(t∗) < ε

for n ≥ n0(ε) and any ε > 0. Hence, lim sup Jn(t*) ≤ J(t*) and then lim sup ∥un(t*)∥ ≤

∥u(t*)∥. From the weak convergence un(t*) ⇀ u(t*) we have then ∥un(t*)∥ ® ∥u(t*)∥, so
un(t*) ® u(t*) strongly in L2(Ω) as n ® ∞. This completes the proof.

Theorem 3.9. Let conditions (H1)-(H3) hold. Then the family of multi-valued semi-

pro-cesses {Us (t, τ)} has a uniform global compact attractor A .

Proof. We know that each symbol sn = (fn, gn) Î Σ satisfies the same conditions as in

(H1)-(H2). Furthermore, since gn ∈ H(g) , we have
∥∥gn∥∥L2b ≤ ∥∥g∥∥L2b

. Hence if un is a

weak solution of (1.1) with respect to the symbol sn, one has

∥∥un(t)∥∥2L2(�) ≤ ∥∥un(τ )∥∥2L2(�) e
−λ(t−τ) +

1
λ(1 − e−λ)

∥∥g∥∥2L2b + 2k2 |�|
λ

+ 2. (3:5)
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The last inequality ensures the existence of a positive number R0 such that if un(τ) Î
BR, the ball in L2(Ω) centered at 0 with radius R, then there exists T0 = T0(τ, R) such

that

un(t) ∈ BR0 for all t ≥ T0,

that is, U∑(t, τ ,BR) ⊂ BR0 , for all t ≥ T0(τ, R). Thus, {Us(t, τ)} fulfills condition (3) in

Theorem 3.7.

We now define the set K = U∑(1, 0,BR0 ) . Lemma 3.8 implies that K is compact.

Moreover, since BR0 is an absorbing set, we have

Uσn(t, τ ,BR) = Uσn(t, t − 1,Uσn(t − 1, τ ,BR)

= UT(t−1)σn(1, 0,UT(τ)σn(t − 1 − τ , 0,BR))

⊂ U∑(1, 0,BR0 ) ⊂ K

for all σn ∈ ∑
,BR ∈ B(L2(�)) , and t ≥ T0(τ, BR). It follows that any sequence {ξn}

such that {ξn} ∈ Uσn(tn, τ ,BR0), σn ∈ ∑
, tn → +∞,BR ∈ B(L2(�)) , is precompact in L2

(Ω). It is a consequence of Lemma 3.8 that the map Us has compact values for any s
Î Σ.

Finally, let us prove that the map (s, x) ↦ Us(t, τ, x) is upper semicontinuous for

each fixed t ≥ τ. Suppose that it is not true, that is, there exist

ū ∈ L2(�), t ≥ τ , σ̄ ∈ ∑
, ε > 0, δn → 0, un ∈ Bδn(ū), σn → σ̄ , and ξn ∈ Uσn(t, τ , un)

such that {ξn} /∈ Bε(Uσ̄ (t, τ , ū) . But Lemma 3.8 implies (up to a subsequence) that

ξn → ξ ∈ Uσ̄ (t, τ , ū) , which is a contracdition. Thus, the existence of the uniform glo-

bal compact attractor follows then from Theorem 3.7.
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