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Abstract

In this paper, we presents a reproducing kernel method for computing singular
second-order initial/boundary value problems (IBVPs). This method could deal with
much more general IBVPs than the ones could do, which are given by the previous
researchers. According to our work, in the first step, the analytical solution of IBVPs is
represented in the RKHS which we constructs. Then, the analytic approximation is
exhibited in this RKHS. Finally, the n-term approximation is proved to converge to
the analytical solution. Some numerical examples are displayed to demonstrate the
validity and applicability of the present method. The results obtained by using the
method indicate the method is simple and effective.
Mathematics Subject Classification (2000) 35A24, 46E20, 47B32.

1. Introduction
Initial and boundary value problems of ordinary differential equations play an impor-

tant role in many fields. Various applications of boundary to physical, biological, che-

mical, and other branches of applied mathematics are well documented in the

literature. The main idea of this paper is to present a new algorithm for computing the

solutions of singular second-order initial/boundary value problems (IBVPs) of the form:⎧⎨
⎩
p(x)u′′(x) + q(x)u′(x) + r(x)u(x) = F(x, u),
a1u(0) + b1u′(0) + c1u(1) = 0,
a2u(1) + b2u′(1) + c2u′(0) = 0,

(1:1)

where u(x) ∈ W3
2[0, 1] , for x Î [0, 1], p ≠ 0, p(x), q(x), r(x) Î C[0, 1]. a1, b1,c1, a2,

b2, c2 arc real constants and satisfy that a1 u(0) + b1 u’(0) + c1 u (1) and a2 u(1) +

b2u’(1) + c2u’(0) are linear independent. F(x, u) is continuous.

Remark 1.1. We find that if

b1 = c1 = b2 = c2 = 0, a1 �= 0, a2 �= 0, (1:2)

the problems are two-point BVPs; if

b1 = c1 = a2 = b2 = 0, a1 �= 0, c2 �= 0, (1:3)
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the problems are initial value problems; if

b1 = a2 = 0, a1 = c1 �= 0, b2 = c2 �= 0, (1:4)

the problems are periodic BVPs; if

b1 = a2 = 0, a1 = −c1 �= 0, b2 = −c2 �= 0, (1:5)

the problems are anti-periodic BVPs.

Such problems have been investigated in many researches. Specially, the existence

and uniqueness of the solution of (1.1) have been discussed in [1-5]. And in recent

years, there are also a large number of special-purpose methods are proposed to pro-

vide accurate numerical solutions of the special form of (1.1), such as collocation

methods [6], finite-element methods [7], Galerkin-wavelet methods [8], variational

iteration method [9], spectral methods [10], finite difference methods [11], etc.

On the other hands, reproducing kernel theory has important applications in numer-

ical analysis, differential equation, probability and statistics, machine learning and pre-

cessing image. Recently, using the reproducing kernel method, Cui and Geng [12-16]

have make much effort to solve some special boundary value problems.

According to our method, which is presented in this paper, some reproducing kernel

Hilbert spaces have been presented in the first step. And in the second step, the homo-

geneous IBVPs is deal with in the RKHS. Finally, one analytic approximation of the

solutions of the second-order BVPs is given by reproducing kernel method under the

assumption that the solution to (1.1) is unique.

2. Some RKHS

In this section, we will introduce the RKHS W1
2[0, 1] and W3

2[0, 1] . Then we will con-

struct a RKHS H3
2[0, 1] , in which every function satisfies the boundary condition of (1.1).

2.1. The RKHS W1
2[0, 1]

Inner space W1
2[0, 1] is defined as W1

2[0, 1] = {u(x)|u is absolutely continuous real

valued functions, u’ Î L2[0, 1]}. The inner product in W1
2[0, 1] is given by

(f , h)W1
2
= f (0)h(0) +

1∫
0

f ′(t)h′(t)dt, f , h ∈ W1
2[0, 1] (2:1)

and the norm ||u||W1
2
is denoted by ||u||W1

2
=

√
(u, u)W1

2
. From [17,18], W1

2[0, 1] is a

reproducing kernel Hilbert space and the reproducing kernel is

K1(t, s) = 1 + min{t, s} (2:2)

2.2. The RKHS W3
2[0, 1]

Inner space W3
2[0, 1] is defined as W3

2[0, 1] = {u(x)|u, u′, u′′ is absolutely continuous

real valued functions, u"’ Î L2[0, 1]}.

From [15,17-19], it is clear that W3
2[0, 1] become a reproducing kernel Hilbert space

if we endow it with suitable inner product.

Gao et al. Boundary Value Problems 2012, 2012:3
http://www.boundaryvalueproblems.com/content/2012/1/3

Page 2 of 11



Zhang and Lu [18] and Long and Zhang [19] give us a clue to relate the inner pro-

duct with the boundary conditions (1.1). Set L = D3, and⎧⎨
⎩

γ1f = a1f (0) + b1f ′(0) + c1f (1),
γ2f = a2f (1) + b2f ′(1) + c2f ′(0),
γ3f = a3f (0) + b3f ′(0) + c3f ′′(0),

(2:3)

where a3, b3, c3 is random but satisfying that g3 is linearly independent of g1 and g2.
It is easy to know that g1, g2, g3 are linearly independent in Ker L. Then from [18,19],

it is easy to know one of the inner products of W3
2[0, 1]

(f , h)W3
2
=

3∑
i=1

γifγih +

1∫
0

f ′′′(t)h′′′(t)dt, f , h ∈ W3
2[0, 1] (2:4)

and its corresponding reproducing kernel K2(t, s).

2.3. The RKHS H3
2[0, 1]

Inner space H3
2[0, 1] is defined as H3

2[0, 1] = {u(x)|u, u′, u′′ are absolutely continuous

real valued functions, u"’ Î L2[0, 1], and, a1 u(0) + b1 u’(0) + c1 u(1) = 0, a2 u(1) +

b2u’(1) + c2u’(0) = 0}.

It is clear that H3
2[0, 1] is the complete subspace of W3

2[0, 1] , so H3
2[0, 1] is a

RKHS. If P, which is the orthogonal projection from W3
2[0, 1] to H3

2[0, 1] , is found,

we can get the reproducing kernel of H3
2[0, 1] obviously. Under the assumptions of

Section 2, note

Pf (t) = (γ3f )e3(t) +

1∫
0

G(t, τ ) · f ′′′(τ )dτ , ∀f ∈ W3
2[0, 1] (2:5)

Theorem 2.1. Under the assumptions above, P is the orthogonal projection from

H3
2[0, 1] to H3

2[0, 1] .

Proof. For all f ∈ W3
2[0, 1] , We have

(γ1(Pf ))(t) = (γ2(Pf ))(t) = 0

That means Pf ∈ H3
2[0, 1] . At the same time, for any f , h ∈ W3

2[0, 1]

(Pf , h) =

⎛
⎝(γ3f )e3(t) +

1∫
0

G(t, τ ) · Lf (τ ) dτ , h

⎞
⎠

= (γ3f )(γ3h) +

1∫
0

⎛
⎝L

1∫
0

G(t, τ ) · Lf (τ )dτ
⎞
⎠ · Lh(t) dt

= (γ3f )(γ3h) +

1∫
0

Lf (t) · Lh(t) dt

(f ,Ph) =

⎛
⎝f , (γ3h)e3(t) +

1∫
0

G(t, τ ) · Lh(τ ) dτ

⎞
⎠

= (γ3f )(γ3h) +

1∫
0

Lf (t) · L
1∫

0

G(t, τ ) · Lh(τ ) dτ dt

= (γ3f )(γ3h) +

1∫
0

Lf (t) · Lh(t) dt
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P is self-conjugate. And

P(Pf ) = P

⎛
⎝(γ3f )e3(t) +

1∫
0

G(t, τ ) · Lf (τ )dτ

⎞
⎠

= (γ3f )e3(t) +

1∫
0

G(t, τ ) · L
⎛
⎝(γ3f )e3(τ ) +

1∫
0

G(τ , s) · Lf (s)ds
⎞
⎠ , dτ

= (γ3f )e3(t) +

1∫
0

G(t, τ ) · Lf (τ ) dτ

= Pf

P is idempotent.

So P is the orthogonal projection from W3
2[0, 1] to H3

2[0, 1] .

The proof of the Theorem 2.1 is complete.

Now, H3
2[0, 1] is a RKHS if endowed the inner product with the inner product

below

(f , h)H3
2
= γ3fγ3h +

1∫
0

f ′′′(t) · h′′′(t) dt (2:6)

and the corresponding reproducing kernel K3(t, s) is given in Appendix 4.

3. The reproducing kernel method
In this section, the representation of analytical solution of (1.1) is given in the reprodu-

cing kernel space H3
2[0, 1] .

Note Lu = p(x)u”(x) + q(x)u’(x) + r(x)u(x) in (1.1). It is clear that

L : H3
2[0, 1] → W1

2[0, 1] is a bounded linear operator.

Put �i(x) = K1(xi, x), Ψi(x) = L*�i(x), where L* is the adjoint operator of L. Then

�i(x) = (L ∗ ϕi(y),K3(x, y))

= (ϕi(y), LyK3(x, y))

= (LyK3(x, y),ϕi(x)) = LyK3(x, y)|y=xi
(3:1)

Lemma 3.1. Under the assumptions above, if {xi}∞i=1is dense on [0, 1] then

{�i(x)}∞i=1 is the complete basis H3
2[0, 1] .

The orthogonal system {�i(x)}∞i=1 of H3
2[0, 1] can be derived from Gram-Schmidt

orthogonalization process of {�i(x)}∞i=1 , and

�i(x) =
i∑

j=1

βij�j(x).

Then

Theorem 3.1. If {xi}∞i=1is dense on [0, 1] and the solution of (1.1) is unique, the solu-

tion can be expressed in the form

u(x) =
∞∑
i=1

i∑
k=1

βikF(xk, u(xk))�i(x) (3:2)
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Proof. From Lemma 3.1, {�i(x)}∞i=1 is the complete system of H3
2[0, 1] . Hence we have

u(x) =
∞∑
i=1

(u(x),� i(x))� i(x) =
∞∑
i=1

i∑
k=1

βik(u(x),�i(x))� i(x)

=
∞∑
i=1

i∑
k=1

βik(u(x), L ∗ ϕk(x))� i(x) =
∞∑
i=1

i∑
k=1

βik(Lu(x),ϕk(x))� i(x)

=
∞∑
i=1

i∑
k=1

βik(F(x, u(x)),ϕk(x))� i(x) =
∞∑
i=1

i∑
k=1

βikF(xk, u(xk))� i(x)

and the proof is complete.

The approximate solution of the (1.1) is

un(x) =
n∑
i=1

i∑
k=1

βikF(xk, u(xk))� i(x) (3:3)

If (1.1) is linear, that is F(x, u(x)) = F(x), then the approximate solution of (1.1) can

be obtained directly from (3.3). Else, the approximate process could be modified into

the following form:⎧⎨
⎩
u0(x) = 0

un+1(x) =
n+1∑
i=1

Bi� i(x)
(3:4)

where Bi =
i∑

k=1
βikF(xk, un(xk)) .

Next, the convergence of un(x) will be proved.

Lemma 3.2. There exists a constant M, satisfied |u(x)| ≤ M||u||H3
2
, for all

u(x) ∈ H3
2[0, 1] .

Proof. For all x Î [0, 1] and u ∈ H3
2[0, 1] , there are

|u(x)| = |(u(·),K3(·, x))| ≤ ||K3(·, x)||H3
2
· ||u||H3

2
.

Since K3(·, x) ∈ H3
2[0, 1] , note

M = max
x∈[0,1]

||K3(·, x)||H3
2
.

That is,

|u(x)| ≤ M||u||H3
2

.

By Lemma 3.2, it is easy to obtain the following lemma.

Lemma 3.3. If un
||·||→ ū(n → ∞) , ||un|| is bounded, xn ® y(n ® ∞) and F(x, u(x)) is

continuous, then F(xn, un−1(xn)) → F(y, ū(y)) .

Theorem 3.2. Suppose that ||un || is bounded in (3.3) and (1.1) has a unique

solution. If {xi}∞i=1is dense on [0, 1], then the n-term approximate solution un(x) derived

from the above method converges to the analytical solution u(x) of (1.1).

Proof. First, we will prove the convergence of un (x).
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From (3.4), we infer that

un+1(x) = un(x) + Bn+1�n+1(x).

The orthonormality of {�i}∞i=1 yield that

||un+1||2 = ||un||2 + (Bn+1)2 = · · · =
n+1∑
i=1

(Bi)
2.

That means ||un+1|| ≥ ||un||. Due to the condition that ||un|| is bounded, ||un|| is

convergent and there exists a constant ℓ such that

∞∑
i=1

(Bi)
2 = �.

If m >n, then

||um − un||2 = ||um − um−1 + um−1 − um−2 + · · · + un+1 − un||2.

In view of (um - um-1) ⊥ (um-1 - um-2) ⊥ ··· ⊥ (un+1 - un), it follows that

||um − un||2 = ||um − um−1||2 + ||um−1 − um−2||2 + · · · + ||un+1 − un||2

=
m∑

i=n+1

(Bi)
2 → 0 as n → ∞

The completeness of H3
2[0, 1] shows that un ® ū as n ® ∞ in the sense of || · ||H3

2
.

Secondly, we will prove that ū is the solution of (1.1).

Taking limits in (3.2), we get

ū(x) =
∞∑
i=1

Bi� i(x).

So

Lū(x) =
∞∑
i=1

BiL� i(x)

and

(Lū)(x) =
∞∑
i=1

Bi(L� i,ϕn) =
∞∑
i=1

Bi(� i, L ∗ ϕn) =
∞∑
i=1

Bi(� i,�n). (3:5)

Therefore,

n∑
i=1

βnj(Lῡ)(xn) =
∞∑
i=1

Bi

(
� i,

n∑
i=1

βnj�j

)
=

∞∑
i=1

Bi(� i,�n) = Bn.

If n = 1, then

Lū(x1) = F(x1, u0(x1)).

If n = 2, then

β21Lū(x1) + β22Lū(x2) = β21F(x1, u0(x1)) + β22F(x2, u1(x2)).
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It is clear that

(Lū)(x2) = F(x2, u1(x2)).

Moreover, it is easy to see by induction that

(Lū)(xj) = F(xj, uj−1(xj)), j = 1, 2, . . . (3:6)

Since {xi}∞i=1 is dense on [0, 1], for all Y Î [0, 1], there exists a subsequence {xnj}∞j=1
such that

xnj → Y as j → ∞. (3:7)

It is easy to see that (Lū)(xnj) = F(xnj, unj−1(xnj)) . Let j ® ∞, by the continuity of F(x,

u(x)) and Lemma 3.3, we have

(Lū)(Y) = F(Y, ū(Y)). (3:8)

At the same time, ū ∈ H3
2[0, 1] . Clearly, u satisfies the boundary conditions of (1.1).

That is, ū is the solution of (1.1).

The proof is complete.

In fact, un(x) is just the orthogonal projection of exact solution ū(x) onto the space

Span{�̄i}ni=1 .

4. Numerical example
In this section, some examples are studied to demonstrate the validity and applicability

of the present method. We compute them and compare the results with the exact

solution of each example.

Example 4.1. Consider the following IBVPs:⎧⎨
⎩
x2(1 − x)u′′(x) + 2u′(x) + 10xu(x) + x2(1 − x)(u(x) + 1)2 = f (x), 0 < x < 1,
u(0) + u′(0) + u(1) = 0,
u(1) + u′(1) + u′(0) = 1,

Where f (x) = 10xe10(x−x2)2+40e10(x−x2)2(1−2x)(x−x2)+x2(1−x)(e20(x−x2)2+20e10(x−x2)2(1 − 2x)2−
40e10(x−x2)2(x − x2) + 400e10(x−x2)2 (1 − 2x)2(x − x2)2)

.

The exact solution is u(x) = e10(x−x2)2 − 1 . Using our method, take a3 = 1, b3 = c3 = 0

and n = 21, 51, N = 5, xi =
i − 1
n − 1

. The numerical results are given in Tables 1 and 2.

Example 4.2. Consider the following IBVPs:⎧⎪⎨
⎪⎩
u′′(x) + u′(x) + x(1 − x)(u(x) − 1)3 = f (x), 0 ≤ x ≤ 1,

−π

2
u(0) + u′(0) − π

2
u(1) = 0,

πu(1) + 2u′(1) + 3u′(0) = 0,

where f(x) = π cos(πx) - sin(πx)(x2 + (-1 + x) * x * sin2(π* x)). The true solution is u

(x) = sin(πx) + 1. Using our method, take a3 = 1, b3 = c3 = 0, and N = 5, n = 21, 51,

xi =
i − 1
n − 1

. The numerical results are given in Figures 1, 2, 3, and 4.
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Table 1 Numerical results for Example 4.1 (n = 21, N = 5)

x True solution u(x) Approximate solution u11 Absolute error Relative error

0.08 0.05566 0.05530 3.6E-4 6.5E-3

0.16 0.19798 0.19765 3.3E-4 1.7E-3

0.24 0.39473 0.39443 3.0E-4 7.6E-4

0.32 0.60560 0.60526 3.4E-4 5.6E-4

0.40 0.77891 0.77839 5.2E-4 6.6E-4

0.48 0.86452 0.86385 6.7E-4 7.7E-4

0.56 0.83516 0.83457 5.9E-4 7.1E-4

0.64 0.70036 0.70009 2.7E-4 3.8E-4

0.72 0.50144 0.50146 1.8E-5 3.6E-4

0.80 0.29175 0.29175 3.2E-6 1.1E-5

0.88 0.11797 0.11771 2.6E-4 2.2E-3

0.96 0.01485 0.01453 3.3E-4 2.2E-3

Table 2 Numerical results for Example 4.1 (n = 51, N = 5)

x True solution u(x) Approximate solution u11 Absolute error Relative error

0.08 0.05566 0.05564 2.3E-5 4.IE-4

0.16 0.19798 0.19796 2.IE-5 1.1E-4

0.24 0.39473 0.39471 2.0E-5 4.9E-5

0.32 0.60560 0.60557 2.8E-5 4.6E-5

0.40 0.77891 0.77885 5.6E-5 7.IE-5

0.48 0.86452 0.86444 8.0E-5 9.3E-5

0.56 0.83516 0.83509 6.6E-5 7.9E-5

0.64 0.70036 0.70035 9.6E-6 1.4E-5

0.72 0.50144 0.50148 4.3E-5 8.6E-5

0.80 0.29175 0.29180 4.7E-5 1.6E-5

0.88 0.11797 0.11797 2.2E-6 1.9E-5

0.2 0.4 0.6 0.8 1.0

0.0015

0.0020

0.0025

0.0030

Figure 1 The absolute error of Example 4.2 (n = 21, N = 5).
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0.2 0.4 0.6 0.8 1.0

0.0010

0.0015

0.0020

0.0025

0.0030

Figure 2 The relative error of Example 4.2 (n = 21, N = 5).
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Figure 3 The absolute error of Example 4.2 (n = 51, N = 5).
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Figure 4 The relative error of Example 4.2 (n = 51, N = 5).
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Appendix A: The reproducing kernel of H3
2[0, 1]

The reproducing kernel of H3
2[0, 1] is

K3[t, s] =

1

120�
+


2

�2
+


3

120�
+


4

40�2
+


5

120�
+


6

120�
+


7

120�2

+

⎧⎪⎨
⎪⎩

1
120

(s5 − 5s4t + 10s3t2), t ≥ s,
1

120
(t5 − 5t4s + 10t3s2), t < s,

where

� = a3(2b1b2 + b2c1 − c1c2) + a2(a3b1 − a1b3 + 2a1c3 − 2b1c3)

− 2(a1 + c1)(b2b3 − b2c3 − c2c3),


1 = (c1(−2c2c3 + a3c2s
2 − a2(−1 + s)(b3 − 2c3 − a3s + b3s)

+ b2(2b3 − 2c3 + a3(−2 + s)s))t3(10 − 5t + t2)),


2 = (2b1b2 + b2c1 − c1c2 − 2a1b2s − 2b2c1s + a1b2s
2 + b2c1s

2)

+ a1c2s2 + c1c2s2 − a2(−1 + s)(b1 − a1s + b1s))

× (2b1b2 + b2c1 − c1c2 − 2a1b2t − 2b2c1t + a1b2t
2 + b2c1t

2

+ a1c2t2 + c1c2t3 − a2(−1 + t)(b1 − a1t + b1t)),


3 = c1s
3(10 − 5s + s2)(−a2(−1 + t)(b3 − 2c3 − a3t + b3t)

− 2c2c3 + a3c2t2 + b2(2b3 − 2c3 + a3(−2 + t)t),


4 = c1(2(c2c2(−2c3 + a3s
2) + a2(2b1c3 − 2a1c3s − a3b1s

2 + a1b3s
2))

+ b2(10b1c3 + 6c1c3 + a3c1s − 10a1c3s − 10c1c3s − 5a3b1s2

− 3a3c1s2 + b3(−c1 + 5a1s2 + 5c1s2)))(−2c2c3 + a3cst2

− a2(−1 + t)(b3 − 2c3 − a3t + b3t) + b2(2b3 − 2c3 + a3(−2 + t)t)),


5 = (2b1c3 + 2c1c3 + a3c1s − 2a1c3s − 2c1c3s − a3b1s2 − a3c1s2

+ b3(a1s2 + c1(−1 + s2)))t3(−5b2(−4 + t) + a2(10 − 5t + t2)),


6 = s3(−5b2(−4 + s) + a2(10 − 5s + s2))(2b1c3 + 2c1c3 + a3c1t

− 2a1c3t − 2c1c3t − a3b1t
3 − a3c1t

2 + b3(a1t2 + c1(−1 + t2))),


7 = (6a22(a1s(−2c3 + b3s) + b1(2c3 − a3s2)) + 3a2(2c1c2(−2c3 + a3s2)

+ b2(−b3c1 + 20b1c3 + 6c1c3 + a3c1s − 20a1c3s − 10c1c3s − 10a3b1s2

+ 10a1b3s2 − 3a3c1s2 + 5b3c1s2)) + 5b2(3c1c2(−2c3 + a3s2)

+ b2(−2b3c1 + 16b1c3 + 10c1c3 + 2a3c1s − 16a1c3s − 16c1c3s − 8a3b1s2

+ 8a1b3s2 − 5a3c1s2 + 8b3c1s2)))(2b1c3 + 2c1c3 + a3c1t − 2a1c3t

− 2c1c3t − a3b1t2 − a3c1t2 + b3(a1t2 + c1(−1 + t2))).
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