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Abstract

In this note, we study the oscillating global continua of the differential inclusion of
the form{−u′′ + qu ∈ λF(·, u),

u′(0) = 0, u′(1) = 0,

where F is a “set-valued representation” of a function with jump discontinuities along
the line segment [0, 1] × {0}, and l Î [0, ∞) is a parameter. The proof of our main
result relies on an approximation procedure.
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1 Introduction
In recent years, nonsmooth analysis has come to play an important role in functional

analysis [1], dynamical systems [2], control theory [3], optimization [4], mechanical sys-

tems [5], differential equation [6,7] etc. Since many mathematical and physical pro-

blems may be reduced to ODES or PDES with discontinuous nonlinearities, the

existence of multiple solutions for differential inclusion problems has been widely

investigated [8-19].

In this article, we are concerned with the following differential inclusion problem

which raises from a Budyko-North type energy balance climate models:{−u′′(x) + q(x)u(x) ∈ λF(x, u(x)), a.e.x ∈ (0, 1),
u′(0) = 0, u′(1) = 0

(1:1)

(see [20-25] and the references therein). In particular, the set-valued right hand side

arise from a jump discontinuity of the albedo at the ice-edge in these models. By filling

such a gap, one arrives at the set-valued problem (1.1). As in [25], we are here inter-

ested in a considerably simplify version as compared to the situation from climate

modeling, e.g. a one-dimensional regular Sturm-Liouville differential operator substi-

tutes for a two-dimensional Laplace-Beltrami operator or a singular Legendre-type

operator, and the jump discontinuity is transformed to u = 0 in a way, which resem-

bles only locally the climatological problem.
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We are concerned with the set-valued problem (1.1) under the following

assumptions

(H1) qÎC([0, 1],(0,+∞));
(H2) f+Î C ([0, 1] × [0,+∞), (0,+∞)),

inf
x∈[0,1]

f +(x, 0) > 0, lim
s→+∞

f +(x, s)
s

= b(x) ∈ C([0, 1], (0,∞)) .

Let the set-valued function F in (1.1) is given by

F(x, y) =
{ {f +(x, y)}, x ∈ [0, 1], y > 0,
[0, f +(x, 0)], x ∈ [0, 1].

Notice that if f+(x, 0) ≡ 0, x Î [0, 1], then the differential inclusion problem (1.1)

reduces to the BVP of differential equation{−u′′(x) + q(x)u(x) = λf +(x, u(x)), x ∈ (0, 1),
u′(0) = 0, u′(1) = 0.

(1:2)

In the last 20 years, the positive solutions of (1.2) have been studied by several

authors, see Jiang and Liu [26], Chu et al. [27] and Sun et al. [28].

The purpose of this article is to investigate the oscillating global continua of positive

solutions of the differential inclusion problem (1.1). The proof of our main result relies

on an approximation procedure. The rest of the article is organized as follows. In Sec-

tion 2, we state some notations and prove some preliminary results. In Section 3, we

state and prove our main result. In Section 4, an example is given to illustrate the

application of our main result.

2 Notations and preliminaries
Recall Kuratowski’s notion of lower and upper limits of sequence of sets.

Definition 2.1. [29]Let X be a metric space and {Zl}lÎNbe a sequence of subsets of X.

The set

lim sup
l→∞

Zl :=
{
x ∈ X : lim inf

l→∞
dist(x,Zl) = 0

}

is called the upper limit of the sequence {Zl}, whereas

lim inf
l→∞

Zl :=
{
x ∈ X : lim

l→∞
dist(x,Zl) = 0

}

is called the lower limit of the sequence {Zl}.

Definition 2.2. [29]A component of a set M is meant a maximal connected subset of

M.

Lemma 2.1. [29]Suppose that Y is a compact metric space, A and B are non-inter-

secting closed subsets of Y, and no component of Y intersects both A and B. Then there

exist two disjoint compact subsets YAand YB, such that Y = YA∪YB, A ⊂ YA, B ⊂ YB.

Using the above Whyburn Lemma, Ma and An [30] proved the following

Lemma 2.2. [30, Lemma 2.1] Let Z be a Banach space and let {An} be a family of

closed connected subsets of Z. Assume that

(i) there exist zn Î An, n = 1, 2, ..., and z* Î Z, such that zn ® z*;

(ii) rn = sup {∥x∥ | x Î An} = ∞;
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(iii) for every R > 0,
(⋃∞

n=1 An
) ∩ BR is a relatively compact set of Z, where BR= {x Î Z

| ∥x∥ ≤ R}. Then there exists an unbounded component C in lim sup
l→∞

Al and z∗ ∈ C .

Remark 2.1. The limiting processes for sets go back at least to the work of Kura-

towski [31]. Lemma 2.2 is a slight generalization of the following well-know result due

to Whyburn [29]:

Proposition 2.1. (Whyburn [29, p. 12]) Let Z be a Banach space and {An} be a family

of closed connected subsets of Z. Let lim inf
l→∞

Al �= ∅ and ∪lÎNAl is relatively compact.

Then lim sup
l→∞

Al is nonempty, compact and connected.

Next, we introduce the result of global solution behavior of the bifurcation branches

of the equation

x = μ(Lx +Nx), μ ∈ R, x ∈ X, (2:1)

to wit the following lemma.

Lemma 2.3. [32] (Dancer (1974)) Assume that

(C1) The operators L, N: X ® X are compact on the Banach space X over R. Further-

more, L is linear and ∥Nx∥/∥x∥ ® 0 as ∥x∥ ® 0;

(C2) The real number μ0is a characteristic number of L of odd algebraic multiplicity;

(C1+) The real Banach space X has an order cone K with X = K-K, i.e., every x Î X

can be represented as x = x1 - x2, where x1, x2 Î K. Furthermore, L + N is positive, i.e.,

L + N maps K into K;

(C2+) The spectral radius r(L) of L is positive. We set μ0 = (r(L))-1.

Then (μ0, 0) is a bifurcation point of equation (2.1) and

S+ := {(μ, x) ∈ R × X : (μ, x) is a solution of (2.1)withμ > 0, x > 0}

contains an unbounded solution component C+
1which passes through (μ0, 0).

If additionally

(C3+) The linear operator L is strongly positive, then (μ, x) ∈ C+
1and μ ≠ μ0always

implies x > 0 and μ > 0.

Remark 2.2. This result is often called the nonlinear Krein-Rutman theorem. It will

play an important role in the proof of our main result.

Let � and ψ be the unique solution of the problems{−u′′(x) + q(x)u(x) = 0, x ∈ (0, 1),
u′(0) = 0, u(0) = 1

and {−u′′(x) + q(x)u(x) = 0, x ∈ (0, 1),
u′(1) = 0, u(1) = 1

respectively. Then it is easy to check �(·) is nondecreasing on (0,1), ψ(·) is nonin-

creasing on (0,1), and the Green’s function G(x, s) of{−u′′(x) + q(x)u(x) = 0, x ∈ (0, 1),
u′(0) = 0, u′(1) = 0
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is explicitly given by

G(x, s) = − 1
ψ ′(0)

{
ψ(x)ϕ(s), 0 ≤ s ≤ x ≤ 1,
ϕ(x)ψ(s), 0 ≤ x ≤ s ≤ 1.

(2:2)

Moreover, we have that

0 < G(x, s) ≤ G(s, s), (x, s) ∈ [0, 1] × [0, 1];

σG(s, s) ≤ G(x, s), (x, s) ∈ [0, 1] × [0, 1]
(2:3)

with σ := min
{

1
ψ(0)

,
1

ϕ(1)

}
. .

3 The main result
Let Σ be the closure of the set of positive solutions of (1.1) in [0, ∞) × C1[0, 1], and N*

:= {1, 2,..., N}. The main result of this article is the following theorem.

Theorem 3.1. Assume that (H1)-(H2) hold. If

(H3) there is an increasing sequence of positive numbers
{
ξj

}N
1
and a small enough

constant δ such that ξ1 <s(ξ2- δ) and

�(ξ2j−1) <
1
2

⎛
⎝ 1∫

0

G(s, s)ds

⎞
⎠

−1

(ξ2j−1 − δ), j ∈ N
∗;

	(ξ2j) > 2

⎛
⎝ 1∫

0

G
(
1
2
, s

)
ds

⎞
⎠

−1

(ξ2j + δ), j ∈ N
∗,

where

�(l) := max{f +(t, c) : 0 ≤ t ≤ 1, 0 ≤ c ≤ l + δ},
	(l) := min{f +(t, c) : 0 ≤ t ≤ 1, σ (l − δ) ≤ c ≤ l + δ},

then there exits an unbounded component C+
1in Σ with (0, 0) ∈ C+

1 . Moreover,

(i) (λ, u) ∈ C+
1with ∥u∥∞ = ξ2j-1for some j Î N* implies that l ≥ 2;

(ii) (λ, u) ∈ C+
1with ∥u∥∞ = ξ2jfor some j Î N* implies that λ ≤ 1

2
.

Actually, such continua C+
1 can be obtained as upper limits in the sense of Kura-

towski of sequence of solution continua from associated continuous problems. To this

end one sets

dg := inf{f +(x, 0) : x ∈ [0, 1]}, (3:1)

fixes l0 Î N such that
dg
l0

< ξ1 , and selects an approximation sequence {fl} ⊂ C ([0,

1] × ℝ, ℝ) (l >l0) of F satisfying:

(A1) fl (x, y) = ly for x Î [0, 1] and y ∈
[
0,

dg
2l

]
;

(A2)
dg
2

≤ fl(x, y) ≤ f +(x, y) for x Î [0, 1] and y ∈
[
dg
2l
,
dg
l

]
;
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(A3) fl(x,y) = f+(x, y) for x Î [0, 1] and y ≥ dg
l
;

(A4) {fl (x, y)}lÎN is nondecreasing in l for (x, y) Î [0, 1] × (0,∞).

Next, we show that the continuous problem{−v′′(x) + q(x)v(x) = λfl(x, v(x)), x ∈ (0, 1),
v′(0) = 0, v′(1) = 0

(3:2l)

has an unbounded closed subsets C+
1,l of the positive solutions set of (3.2l) with

(a)
(

λ1

l
, 0

)
is the bifurcation point contained in C+

1,l ;

(b) If (μ,ϑ) ∈ C+
1,l and ϑ ≢ 0, then ϑ is positive on (0,1).

It is easy to see that (3.2l) equivalent to

v(x) = λ

1∫
0

G(x, s)fl(s, v(s))ds. (3:3)

Let

(Lv)(x) : = l

1∫
0

G(x, s)v(s)ds,

(Nv)(x) : =

1∫
0

G(x, s)(fl(s, v(s)) − lv(s))ds, v ∈ C[0, 1].

Then according to (3.3), (3.2l) can be written as the following operator equation

v = λ(Lv +Nv).

Clearly, the operators L, N : C[0, 1] ® C[0, 1] are compact on the Banach space

C[0, 1]. Furthermore, L is linear and thanks to (2.3)(A1) that

‖Nv‖∞
‖v‖∞

=

∥∥∥∥∥∥
1∫

0

G(x, s)
fl(s, v(s)) − lv(s)

‖v‖∞
ds

∥∥∥∥∥∥
∞

≤
1∫

0

G(s, s)

∣∣fl(s, v(s)) − lv(s)
∣∣

‖v‖∞
ds → 0, as‖v‖∞ → 0,

which implies that the condition (C1) of Lemma 2.3 is satisfied.

Denote the principal eigenvalue of{−ω′′(x) + q(x)ω(x) = λω(x), x ∈ (0, 1),
ω′(0) = 0, ω′(1) = 0,

(3:4)

by l1, then we know that l1>0 (see [33]). Since (3.4) is equivalent to operator equa-

tion

ω =
λ

l
Lω,
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we have that (r(L))−1 =
λ1

l
. Therefore, the conditions (C2)(C2+) of Lemma 2.3 are

satisfied.

Let the cone K in C[0, 1] is given by

K =
{
u ∈ C[0, 1]

∣∣u(x) ≥ 0, 0 ≤ x ≤ 1
}
.

It is easy to see thanks to (A1)-(A4) and (2.3) that the (C1+)(C3+) conditions of

Lemma 2.3 are satisfied.

According to Lemma 2.3, we obtain that
(

λ1

l
, 0

)
is a bifurcation point of the posi-

tive solutions set of (3.2l) for every l Î {l0 + 1, l0 + 2, ...} =: N0, and for each l Î N0

there exits an unbounded closed subsets C+
1,l of the positive solutions set of (3.2l) with

(a) and (b).

Combining the above with the fact

lim
l→∞

(
λ1

l
, 0

)
= (0, 0)

and utilizing Lemma 2.2, it concludes that there exits an unbounded component C+
1

with

(0,0) ∈ C+
1 (3:5)

and

C+
1 ⊂ lim sup

l→∞
C+
1,l. (3:6)

Denote the cone P in C[0, 1] by

P =
{
u ∈ C[0, 1]

∣∣ min
0≤x≤1

u(x) ≥ σ‖u‖∞

}
.

Define an operator Tl : P ® C[0, 1] by

(Tλu) (x) = λ

1∫
0

G(x, s)fl(s, u(s))ds, x ∈ [0, 1].

It is easy to get the following lemma.

Lemma 3.1. Assume that (H1), (H2) and (A1)-(A4) hold. Then Tl: P ® P is comple-

tely continuous.

Lemma 3.2. Assume that (H1), (H2) and (A1)-(A4) hold. If 0 ≤ u(x) ≤ r, r > 0, for x Î
[0, 1], then

‖Tλu‖∞ ≤ λMr

1∫
0

G(s, s)ds,

where Mr = max
0≤x≤1,0≤s≤r

{fl(x, s)}.
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Proof. Since fl(x, u(x)) ≤ Mr for x Î [0, 1], it follows from (2.3) that

‖Tλu‖∞ =

∥∥∥∥∥∥λ

1∫
0

G(x, s)fl(s, u(s))ds

∥∥∥∥∥∥
∞

≤ λ

1∫
0

G(s, s)fl(s, u(s))ds

≤ λMr

1∫
0

G(s, s)ds.

Lemma 3.3. Assume that (H1), (H2) and (A1)-(A4) hold. If s(r - δ) ≤ u(x) ≤ r + δ, r

>δ, for x Î [0, 1], then

‖Tλu‖∞ ≥ λmr

1∫
0

G
(
1
2
, s

)
ds,

where mr = min
0≤x≤1, σ (r−δ)≤s≤r+δ

{fl(x, s)} .
Proof. Since fl(x, u(x)) ≥ mr for x Î [0, 1], it follows that

‖Tλu‖∞ ≥ λ

1∫
0

G
(
1
2
, s

)
fl(s, u(s))ds

≥ λmr

1∫
0

G
(
1
2
, s

)
ds.

Lemma 3.4. Assume that (H1), (H2), (H3) and (A1)-(A4) hold. then

(i) (λ, u) ∈ C+
1,lwith ∥u∥∞ Î (ξ2j-1 - δ,ξ2j-1 + δ) for some j Î N* implies that l > 2;

(ii) (λ, u) ∈ C+
1,l , with ∥u∥∞ Î ( ξ2j- δ,ξ2j + δ) for some j Î N* implies that λ <

1
2
.

Proof. (i) Assume that (λ, u) ∈ C+
1,l with ∥u∥∞ Î (ξ2j-1 - δ, ξ2j-1 + δ) for some j Î N*,

then u = Tlu and

0 ≤ u(x) ≤ ξ2j−1 + δ for x ∈ [0, 1].

By Lemma 3.2 and (H3), it follows that

‖u‖∞ = ‖Tλu‖∞

≤ λMξ2j−1+δ

1∫
0

G(s, s)ds

= λ max
0≤x≤1,0≤s≤ξ2j−1+δ

{fl(x, s)}
1∫

0

G(s, s)ds

≤ λ�(ξ2j−1)

1∫
0

G(s, s)ds

< λ

⎡
⎢⎣1
2

⎛
⎝ 1∫

0

G(s, s)ds

⎞
⎠

−1

(ξ2j−1 − δ)

⎤
⎥⎦

1∫
0

G(s, s)ds.

=
1
2

λ(ξ2j−1 − δ).
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Thus l > 2.

(ii) Assume that (λ, u) ∈ C+
1,l with ∥u∥∞ Î (ξ2j - δ, ξ2j + δ) for some j Î N*, then u =

Tlu and

σ (ξ2j − δ) ≤ u(x) ≤ ξ2j + δ for x ∈ [0, 1].

By Lemma 3.3 and the assumption (H3), it follows that

‖u‖∞ = ‖Tλu‖∞

≥ λmξ2j

1∫
0

G
(
1
2
, s

)
ds

= λ min
0≤x≤1, σ (ξ2j−δ)≤s≤ξ2j+δ

{fl(x, s)}
1∫

0

G
(
1
2
, s

)
ds

= λ	(ξ2j)

1∫
0

G
(
1
2
, s

)
ds

> λ

⎡
⎢⎣2

⎛
⎝ 1∫

0

G
(
1
2
, s

)
ds

⎞
⎠

−1

(ξ2j + δ)

⎤
⎥⎦

1∫
0

G
(
1
2
, s

)
ds.

= 2λ(ξ2j + δ).

Thus λ <
1
2
.

Lemma 3.5. If (λ, u) ∈ C+
1 , then (l, u) is a solution of (1.1) and u Î W2,∞(0, 1).

Proof. Let (λ, u) ∈ C+
1 . By the definition of C+

1 there exists a sequence {lk} Î N0

strictly increasing, and (λlk , vlk) ∈ [0,∞) × C1[0, 1] with (λlk , vlk) ∈ C+
1,lk for k Î N and

(λlk , vlk) → (λ, u).

Since {flk(·, vlk(·))} is uniformly bounded, i.e.∥∥flk∥∥L2 ≤ M, (3:7)

we can assume after passing to a subsequence, if necessary, that it converges weekly

in L2(0, 1) to some j. We claim that j(x) Î F(x, u(x)) a.e. on (0, 1).

Let x0 Î (0, 1) with u(x0) > 0. Then there exist r > 0 and τ Î (0, min{x0, 1-x0}) with

u(x) >r for all x Î (x0 - τ, x0 + τ), hence there is a k0 Î N with vlk(x) >
ρ

2 for all k >k0

and x Î (x0 - τ, x0 + τ). Choose k1 >k0 with
dg
lk1

< ρ

2 . Then flk(x, vlk(x)) = f +(x, vlk(x))

for all k ≥ k1 and x Î (x0 - τ, x0 + τ), which yields j(x) = f+(x, u(x)) for x Î (x0 - τ, x0
+ τ) a.e.

Next, if u ≡ 0, let K: = {x Î (0, 1) : j(x) >f+(x, 0)}. We claim that meas(K) = 0. Sup-

pose that meas(K) > 0. Then ε := ∫K [j(x) - f+(x, 0)] dx > 0, and one finds h Î (0, ∞)

with meas(K)
∣∣f +(x, y) − f +(x, 0)

∣∣ ≤ ε
2 for x Î [0, 1] and y Î [0, h]. Choosing k2 Î N

with
∥∥vlk − u

∥∥
∞ < η for k ≥ k2. One obtains for k ≥ k2:
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∫
K

[φ(x) − flk(x, vlk(x))]dx

=
∫
K

[φ(x) − f +(x, 0)]dx+
∫
K

[f +(x, 0) − flk(x, vlk(x))]dx

= ε +
∫
K

[f +(x, 0) − f +(x, vlk(x))]dx

≥ ε

2
,

which contradicts flk(·, vlk(·)) ⇀ φ . Thus, meas(K) = 0.

Now, let A be the closed linear operator in L2(0, 1) defined by

dom(A) := {ϕ ∈ W2,2[0, 1] : ϕ′(0) = 0 = ϕ′(1)}
and A� := -�” + q�. Clearly,

flk(x, vlk(x)) ⇀ φ(x), (3:8)

hence vlk → u and the fact that A is weakly closed yields

Au = λφ, (3:9)

i.e.

Au ∈ λF(·, u(·)) a.e.

Finally, we show that u Î W2,∞(0,1). In fact, from (3.9) we have

u′′(x) = q(x)u(x) − λφ(x). (3:10)

According to (H1) and the boundedness of u we have

qu ∈ L∞(0, 1). (3:11)

We claim that j Î L∞(0,1). Suppose on the contrary that there exists a set E ⊂ [0, 1],

meas(E) >0 such that |j| is unbounded on E. Without loss of generality, we assume that

∣∣φ(s)∣∣ >
M‖w‖L2 + 1 − ∫

[0,1]\E
∣∣φ(x)∣∣ ∣∣w(x)∣∣dx∫

E

∣∣w(x)∣∣dx , s ∈ E, (3:12)

where M is given by (3.7) and w Î L2(0,1). On the one hand, for k larger enough

from (3.7), (3.8) and (H2) we have

1∫
0

∣∣φ(x)∣∣ ∣∣w(x)∣∣dx ≤
1∫

0

∣∣flk(x, vlk(x))w(x)∣∣dx + 1 ≤ M‖w‖L2 + 1. (3:13)

On the other hand, from (3.12) we have

1∫
0

∣∣φ(x)∣∣ ∣∣w(x)∣∣dx
=

∫
E

∣∣φ(x)∣∣ ∣∣w(x)∣∣dx + ∫
[0,1]\E

∣∣φ(x)∣∣ ∣∣w(x)∣∣dx

>
M‖v‖L2 + 1 − ∫

[0,1]\E
∣∣φ(x)∣∣ ∣∣w(x)∣∣dx∫

E

∣∣w(x)∣∣dx
∫
E

∣∣w(x)∣∣dx + ∫
[0,1]\E

∣∣φ(x)∣∣ ∣∣w(x)∣∣dx
= M‖w‖L2 + 1,
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which contradicts (3.13). Thus,

φ ∈ L∞(0, 1). (3:14)

Therefore, from (3.10), (3.11) and (3.14) we obtain u Î W2,∞(0,1).

Now we are in the position to prove Theorem 3.1.

Proof of Theorem 3.1.

Assume that (λ, u) ∈ C+
1 . We divide the proof into two cases.

Case l. If ∥u∥∞ = ξ2j-1 for some j Î N*, then l ≥ 2.

Since (λ, u) ∈ C+
1 , there exists a sequence (λki , zki) ∈ C+

1,ki , such that

lim
i→∞

λki = λ, lim
i→∞

zki = u.

Hence, for δ >0 there exists i0 Î N, such that∥∥zki − u
∥∥

∞ < δ, i > i0,

i.e.

ξ2j−1 − δ <
∥∥zki∥∥∞ < ξ2j−1 + δ, i > i0.

By using Lemma 3.4, we obtain that

λki > 2, i > i0.

Hence, we get

λ = lim
i→∞

λki ≥ 2.

Case 2. If ∥u∥∞ = ξ2j for some j Î N*, then λ ≤ 1
2
.

Since (λ, u) ∈ C+
1 , there exists a sequence (λki , zki) ∈ C+

1,ki , such that

lim
i→∞

λki = λ, lim
i→∞

zki = u.

Hence, for δ >0 there exists i0 Î N, such that∥∥zki − u
∥∥

∞ < δ, i > i0,

i.e.

ξ2j − δ <
∥∥zki∥∥∞ < ξ2j + δ, i > i0.

By using lemma 3.4, we obtain that

λki <
1
2
, i > i0.

Hence, we get

λ = lim
i→∞

λki ≤ 1
2
.

Corollary 3.1. Assume that (H1)-(H3) hold. Then

(i) for each λ ∈ (0, 12 ) , (1.1) has at least one positive solution: u0 ∈ C+
1 ;
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(ii) for each λ ∈ [ 12 , 2], (1.1) has N positive solutions:

uk, k = 1, 2, . . . , N,

which satisfy that uk ∈ C+
1, k = 1, 2, . . . , N .

Proof. According to Theorem 3.1, the boundary value problem (1.1) has an

unbounded component C+
1 in Σ with (0,0) ∈ C+

1 . Moreover,

(ĩ) (λ, u) ∈ C+
1 with ∥u∥∞ = ξ2j-1 for some j Î N* implies that l ≥ 2;

(̃ii) (λ, u) ∈ C+
1 with ∥u∥∞ = ξ2j for some j Î N* implies that λ ≤ 1

2
.

From the facts (0,0) ∈ C+
1 , and (λ, u) ∈ C+

1 with ∥u∥∞= ξ1 implies that l ≥ 2 and the

connectivity of C+
1 , we obtain

C+
1 ∩ λ × C1[0, 1] �= ∅, ∀λ ∈

(
0,

1
2

)
,

which implies for each λ ∈ (0, 12 ) , (1.1) has at least one positive solution: u0 ∈ C+
1 .

Let

C+,k
1 := {(λ, u) ∈ C+

1|ξk−1 ≤ ‖u‖ < ξk}, k = 1, 2, . . . ,N,

where ξ0 = 0, ξk (k = 1, 2,..., N) is given by (H3). Then according to (ĩ)(̃ii) and the

connectivity of C+
1 , we obtain

C+,k
1 ∩ λ × C1[0, 1] �= ∅, ∀λ ∈

(
1
2
, 2

)
, k = 1, 2, . . . ,N,

which implies for each λ ∈ ( 12 , 2) , (1.1) has N positive solutions:

uk, k = 1, 2, . . . , N,

and uk ∈ C+,k
1 ⊂ C+

1, k = 1, 2, . . . , N .

4 Example
In this section, an example is given to illustrate the application of our main result

(Theorem 3.1). Consider second order Neumann differential inclusion problem{−u′′(x) + u(x) ∈ λF(u(x)), a.e. x ∈ (0, 1),
u′(0) = 0, u′(1) = 0,

(4:1)

where the set-valued function F in (4.1) is given by

F(y) =

⎧⎨
⎩

49
2 y − 195

2 , y ≥ 4,
1
16y +

1
4 , 0 < y < 4,

[0, 1
4 ], y = 0.

Obviously, (H1), (H2) conditions of Theorem 3.1 are satisfied. Moreover, Green’s

function of the associated linear problem{−u′′ + u = 0,
u′(0) = 0, u′(1) = 0,
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can be explicitly expressed by

G(x, s) =
1

2(e − e−1)

{
(ex−1 + e1−x)(es + e−s), 0 ≤ s ≤ x ≤ 1,
(ex + e−x)(es−1 + e1−s), 0 ≤ x ≤ s ≤ 1.

By calculation we can get
∫ 1
0 G(s, s)ds = e

e−e−1 ,
∫ 1
0 G

( 1
2 , s

)
ds = 1 and σ = 2

e+e−1 .

Let ξ1 = 3, ξ2 = 11, δ = 1, then we can check that ξ1 = 3 <5 < s(ξ2- δ), and

�(ξ1) =
1
2

<
3
4

< 1 − e−2 =
1
2

⎛
⎝ 1∫

0

G(s, s)ds

⎞
⎠

−1

(ξ1 − δ),

	(ξ2) ≥ 25 > 24 = 2

⎛
⎝ 1∫

0

G
(
1
2
, s

)
ds

⎞
⎠

−1

(ξ2 + δ).

So that (H3) condition of Theorem 3.1 is satisfied. Therefore, according to Theorem

3.1 the differential inclusion problem (4.1) has an unbounded component C+
1 in Σ with

(0,0) ∈ C+
1 . Moreover,

(i) (λ, u) ∈ C+
1 with ∥u∥∞ = 3 implies that l ≥ 2;

(ii) (λ, u) ∈ C+
1 with ∥u∥∞ = 11 implies that λ ≤ 1

2
.
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