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1 Introduction
In this paper, we consider the fractional boundary value problem (BVP for short) for the

following differential inclusion:

4 (LoD (t) + 1D (1) € F(t, u(t)), ace.te0,T],
u(0) =u(T) =0,

(1.1)

where T > 0, OD;ﬁ and tD}ﬁ are the left and right Riemann-Liouville fractional integrals
of order 0 < 8 <1 respectively, F: [0, T] x RN — R satisfies the following assumptions:
(A) FE(t,x) is measurable in ¢ for every x € RN and locally Lipschitz in x for a.e. t € [0, T,
F(t,0) € L(0, T) and there exist f,g € L>(0, T;R*) and v € [0, 00) such that

€dF(tx) = [Cl=fO)lxl"+g()

fora.e. t€[0,7T] and all x € RV,

Differential equations with fractional order are generalization of ordinary differential
equations to non-integer order. Fractional differential equations have received increasing
attention during recent years, since the behavior of physical systems can be properly de-
scribed by using fractional order system theory. So fractional differential equations got
the attention of many researchers and considerable work has been done in this regard, see
the monographs and articles of Kilbas et al. [1], Miller and Ross [2], Podlubny [3], Samko
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et al. [4], Agarwal [5], Lakshmikantham [6] and Vasundhara Devi [7] and the references
therein.

Recently, fractional differential equations have been of great interest, and boundary
value problems for fractional differential equations have been considered by the use of
techniques of nonlinear analysis (fixed-point theorems [8—10], Leray-Schauder theory
[11, 12], lower and upper solution method, monotone iterative method [13-15]).

Variational methods have turned out to be a very effective analytical tool in the study of
nonlinear problems. The classical critical point theory for C* functional was developed in
the sixties and seventies (see [16, 17]). The celebrated and important result in the last 30
years was the mountain pass theorem due to Ambrosetti and Rabinowitz [18] in 1973. The
needs of specific applications (such as nonsmooth mechanics, nonsmooth gradient sys-
tems, etc.) and the impressive progress in nonsmooth analysis and multivalued analysis
led to extensions of the critical point theory to nondifferentiable functions, locally Lip-
schitz functions in particular. The nonsmooth critical point theory for locally Lipschitz
functions started with the work of Chang (see [19]). The theory of Chang was based on
the subdifferential of locally Lipschitz functionals due to Clarke (see [20]). Using this sub-
differential, Chang proposed a generalization of the well-known Palais-Smale condition
and obtained various minimax principles concerning the existence and characterization
of critical points for locally Lipschitz functions. Chang used his theory to study semilin-
ear elliptic boundary value problems with a discontinuous nonlinearity. Later, in 2000,
Kourogenis and Papageorgiou (see [21]) extended the theory of Chang and obtained some
nonsmooth critical point theories and applied these to nonlinear elliptic equations at res-
onance, involving the p-Laplacian with discontinuous nonlinearities. Subsequently, many
authors also studied the nonsmooth critical point theory (see [22-26]), then the non-
smooth critical point theory is also widely used to deal with nonlinear boundary value
problems (see [27-31]). A good survey for nonsmooth critical point theory and nonlinear
boundary value problems is the book of Gasinski and Papageorgiou [32].

There are some papers which are devoted to the boundary value problems for fractional
differential inclusions (see [33—35]), and the main tools they use are fixed point theory
for multi-valued contractions. However, to the best of the authors’ knowledge, there are
few results on the solutions to fractional BVP which were established by the nonsmooth
critical point theory, since it is often very difficult to establish a suitable space and varia-
tional functional for fractional differential equations with boundary conditions. Recently,
Jiao and Zhou [36] introduced some appropriate function spaces as their working space
and set up a variational functional for the following system:

~4 oD () + 1D (W (1) = VE(t,u(t)), ae.tel0,T],
u(0) =u(T) =0,

(1.2)

where T > 0, th_ﬂ and tD_Tﬂ are the left and right Riemann-Liouville fractional integrals
of order 0 < B <1 respectively, and F is continuously differentiable.

They give two existence results of solutions for the above system by using the least action
principle and mountain pass theorem in critical point theory. It is easy to see that system
(1.1) is a generalization to system (1.2), and it is interesting to ask whether the results in
[36] hold true when the potential F is just locally Lipschitz. But the main difficulty is the
variational structure given in [36] cannot be applied to system (1.1) directly. So we have to
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find a new approach to solve this problem, and the main idea of the new approach comes
from the inspiration of Theorem 2.7.3 and Theorem 2.7.5 in [20].

The structure of the paper is as follows. In the next section, for the convenience of read-
ers, we present the mathematical background needed and the corresponding variational
structure for system (1.1). In Section 3, using variational methods, we prove two existence
theorems for the solutions of problem (1.1) which generalize the results in [36]. Finally, in
Section 4, two examples are presented to illustrate our results.

2 Preliminaries

Definition 2.1 (Left and right Riemann-Liouville fractional integrals) Let f be a function
defined on [a, b]. The left and right Riemann-Liouville fractional integrals of order y for
function f, denoted by ,D;” () and D" f (¢) respectively, are defined by

e _L ' _ -1
D7f0) = 1 / (-5 &) ds, telably >0,

and

. 1 [P o
D, (t):m/t (s—=t)""f(s)ds, telabl,y>0,

provided the right-hand sides are pointwise defined on [4, b], where T" is the gamma func-

tion.

Definition 2.2 (Left and right Riemann-Liouville fractional derivatives) Let f be a func-
tion defined on [a, b]. The left and right Riemann-Liouville fractional derivatives of order
y for function f, denoted by ,D; f(¢) and D, f (¢) respectively, are defined by

n n-y-1
D)= Gt F0 = o s 1ds),

and

—V n y—n _ # nﬁ b n-y-1 )
DO = (U D 0 = o (1 ( [ -0 as),

where t € [a,b],n—-1<y <nandneN.
Definition 2.3 (Left and right Caputo fractional derivatives) Let y >0 and n € N.
(i) Ify € (n—1,n) and f € AC"([a, b],RN), then the left and right Caputo fractional

derivatives of order y for function f, denoted by ¢ D} f(¢) and fDZf(t) respectively,
exist almost everywhere on [a, b]. <D} f(t) and iDZf(t) are represented by

SDYF(E) = DL FO) = ( / (£ = syrr-1p (s)ds)

and

cryY n Y —ng(n) (_l)n b n-y—1,¢(n)
Dy f(t) = (-1)".Dy " f"(t) = m(/ (=" f (S)d5>
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respectively, where ¢ € [a, b]. In particular, if 0 < y < 1, then

<y - pVlere = ! ' QT F >
DI f(6) = D! () r(l—w( [@-97r0a), tetwb

and

c _ -1z _ 1 b —y g7
Dy f(t) = (-1),D,” f'(2) “TTaoy) (/t (s=0)77f (s)ds), t €la,bl.

(i) If y =n-1andf € AC"([a, b],RN), then ¢ D/'f(¢) and (D} *f (¢) are represented
by

DI Vf(6) =f" V(@) and D) = (D)D), t e [a,bl.
In particular, $DOf () = <DYf (¢) = f(¢), t € [a, b].

Property 2.1 ([36]) The left and right Riemann-Liouville fractional integral operators
have the property of a semigroup, i.e.,

DD Pf () = oD TS (8)  and (D, (oD, f(0) =D, (), Yy ya >0

at any point ¢ € [a, b] for a continuous function f and for almost every point in [a, b] if the
function f € L!([a, b],RN).

Definition 2.4 ([36]) Define 0 <« <1and 1< p < 0. The fractional derivative space Ey”
is defined by the closure of C{°([0, T],RN) with respect to the norm

T T 1/p
llt4]]a,p = ( /0 lu®)|” dt + /0 \ngu(z)\”dt) Vu € Ey”?,

where C°([0, T],RN) denotes the set of all functions u € C*®([0, T],RN) with u(0) =
u(T) = 0. It is obvious that the fractional derivative space Ey” is the space of functions
u € L7(0, T;RN) having an «-order Caputo fractional derivative {D%u € LF(0, T; RV) and
u(0) = u(T) = 0.

Proposition 2.1 ([36]) Let 0 <o <1and1 < p < oco. The fractional derivative space Eg’p is
a reflexive and separable Banach space.

Proposition 2.2 ([36]) Let 0 <a <1and 1< p < oco. For all u € Ey*, we have

il < =~ [5DFu . 1)
T T(a+1) "0
Moreover, ifa >1/p and 1/p + 1/q =1, then
a-1/p
0 < cDY . 2.2
”M” = F(a)((a_l)q+1)1/q HO tu”Lp ( )
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According to (2.1), we can consider E,” with respect to the norm

T 1/p
lutllap = 5D 1], = </ |gD;'u(t)|"dt> ) (2.3)
0

Proposition 2.3 ([36]) Define 0 <a <1 and 1< p < co. Assume that o > 1/p and the se-
quence {uy} converges weakly to u in Eg’p, ie, ux — u. Then uy — u in C([0, T],RN), i.e.,

[l = tg|loo — O, as k — oo.

In this paper, we treat BVP (1.1) in the Hilbert space E* := Eg'z with the equivalent norm
defined in (2.3).

Proposition 2.4 ([36]) If1/2 <« <1, then for any u € E*, we have

T
o o 1
eostman il <= [ (5000 {0 de <

In order to establish the variational structure for system (1.1), it is necessary to construct
some appropriate function spaces. The Cartesian product space L}, defined by

L5([0, T1,RY) = £#([0, T, RN) x L?([0, T],RY)

is also a reflexive and separable Banach space with respect to the norm

2 1/p
IVl = (Z ||vi||‘zp> , (2.4)
i=1

where v = (v1,1,) € I5([0, T],RN).

The space Eyy, = {(,5D?u) : Vu € Ey*} is a closed subset of L5([0, T], RN) under the
norm (2.4) as Ey? is closed by Definition 2.4.

In this paper, we use the norm defined in (2.3), which is an equivalent norm in E, ., with
norm (2.4).

Definition 2.5 Let L=([0, T],RN x RY) denote the space of essentially bounded measur-
able functions from [0, 7] into RN x RY under the norm

G4, v)| ;o := esssup{|u(®)| + |v(2)| : £ € [0, T} (2.5)
It is obvious that L>®([0, T'], RN x RN) is a Banach space under the norm (2.5).

Remark 2.5 We use Eo, and ||(, V)| £, to denote L>=([0, T], RN x RN) and ||(u, v)|| o re-
spectively.

Definition 2.6 ([13]) Let f be Lipschitz near a given point x in a Banach space X, and v
be any other vector in X. The generalized directional derivative of f at x in the direction v,
denoted by f O(x;v), is defined as follows:

fOx;v) = lim supw’

YA L0 A
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where y is also a vector in X and A is a positive scalar, and we denote by

af (x) := {x eX :foxv) > (x*,v), for all vin X}

the generalized gradient of f at «x (the Clarke subdifferential).

Lemma 2.1([20]) Letx andy be points in a Banach space X, and suppose that f is Lipschitz

on an open set containing the line segment [x,y]. Then there exists a point u in (x,y) such

that

FO) £ () € (3£ 0),y ).

Definition 2.7 ([32]) A point u € X is said to be a critical point of a locally Lipschitz f if

6 € 3f (u), namely f°(u;v) > O for every v € X. A real number c is called a critical value of
f if there is a critical point # € X such that f(u) = c.

Definition 2.8 ([32]) If f is a locally Lipschitz function, we say that f satisfies the

nonsmooth (P.S.) condition if each sequence (x,) in X such that f(x,) is bounded and

lim,,, o A(x,,) = 0 has a convergent subsequence, where A(x) := min,¢yf( el

Clarke considered the following abstract framework in [20]:

let (S, T, ) be a o -finite positive measure space, and let Y be a separable Banach
space;

let Z be a closed subspace of L>(S,Y), where L*(S, Y) denotes the space of measure
essentially bounded functions mapping S to Y, equipped with the usual supremum
norm;

define a functional f on Z via

)= /5 F(x(0)) ),

where Z is a closed subspace of L>(S,Y) and f; : Y — R(t € S) is a given family of
functions;

suppose that the mapping ¢ — f;(v) is measurable for each v in Y, and that x is a point
at which f(x) is defined (finitely);

suppose that there exist £ > 0 and a function k(¢) in L!(S, R) such that

i) = £i(v2)| < k(@®)lIv1 = vally (2.6)

for all £ € S and all v; and v, in x(£) + By.

Under the conditions described above, f is Lipschitz in a neighborhood of x and one has

of (x) C /S of, ((£)) e(do). 2.7)

Further, if each f; is regular at x(¢) for each ¢, then f is regular at x and the equality holds.

Page 6 of 21
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Remark 2.6 The interpretation of (2.7) is as follows: To every ¢ € 9f (x), there is a corre-
sponding mapping t — ¢; from S to Y~ with

&€ ofs (x(t)) for a.e. t € relative to the measure pu,

and having the property that for every v in Z, one has
(€)= [le vt
s
Thus, every ¢ in the left-hand side of (2.7) is an element of Z that can be written

)= [t niar)
where t — ¢, is a measurable selection of 9f;(x(£)).

Lemma 2.2 Let F satisfy the condition (A) and L :[0,T] x RN x RN — R be given by
L(t,x,y) = —F(t, x), then define a functional f on Eyy by

T T
S (6D u) = /0 L(t, u(t), {DY u(?)) dt = /0 —F(t,u(t)) dt.

Then f is Lipschitz on Ey o, and one has

T
f (u, ;DY u) C /0 {0(-F(t,u(2)))} x {0} dt. (2.8)

Proof Take an arbitrary element (10, { D 1) in E 2, then it suffices to prove f is Lipschitz
on (ug, 6D% up).
When || (u;, § D5 u;) — (100, §DS t0) | gy, < € (i = 1,2), we conclude

llu; — uolloo < Cre (2.9)
by Proposition 2.2, where C; := % In view of Lemma 2.1 and (A), one has
|=F(t,ua () + F(t, ua(t)) | < K'(0)|ar (£) — ua(2) | (2.10)

for a.e. t € [0, T], where k'(¢) € L1(0, T; R*).
By (2.9) and (2.10), we have

T
(00,5 D) — (12, 5D )| = / CF(t () + F(t, () dt’
0

T
< ( /0 k/(t)dt) s =t

T
<G [ Kde) 50 0) - (12,5510 .,
0

so f is also Lipschitz on (i, §Df uo).
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For any ¢ in 9f (uo, {D%u), one has

T
f (=F)° (&, uo(£); v(8)) dt = £ (0, §D% uo); (v, §DYV)) = (¢, (v, §Df'v)) (2.11)
0
for any (v,{D¢v) in Ey, by Fatou’s lemma, and it is obvious that
LO (& u0(8), §Df o (£);v1,v2) = (=F)° (¢, uo(£); v1) (212)

fora.e. t € [0, T] and all (v, v5) in RN x RN, Then we conclude

T
/ LO(t,uo(2), D uo (£); v(t), ;DY v(t)) dit
0
Zfo((uo,f)D‘t"uo); (v,D5v)) = (¢, (v §DEV)), (2.13)

by (2.12) for any (v, §D{'v) in E» 4, and (2.13) remains true if we restrict (v, §D¢v) to Exxy N
E, which is a closed subspace of E, by Definition 2.4. The bounded linear functional
¢ on E,,» restricted to Eyxy N Eo is also a bounded linear functional, and we use ¢’ to
denote the functional restricted on Ejyy N Exe.

We interpret (2.13) by saying that ¢’ belongs to the subgradient at (0, 0) of the convex
functional

T
F(r, D) = /0 Fi(v(2),5D2v(t)) dt, (2.14)

which is defined in Eyy 9 N Ex, whereﬁ(vl,vz) i= LY(t, uo (), §D%uo (£); v, vo) for all (vi, vy)
in RN x RN, In view of condition (A) and (2.12), we have

|LS (2, uo(8), § D o ()3 v1, v2) — LY (£, 1o (£), § D% 1o (£); 3, va ) |
= [(=P)° (6, uo();v1) = (=F)° (¢, uo(); v3) |
< (f@|uo(®)]” + g(®) 11 - vs]
< (FO]uo®]" +g®) (Ivi = v3| + [v2 — v4]) (2.15)

for a.e. t € [0, T] and all (vi,3), (v3,vs) in RN x RV,

Now we can apply Clarke’s abstract framework to f with the following cast of characters:

e (T,T,u):= [0, T] with the Lebesgue measure, and let ¥ := RN x R, which is a
separable Banach space with the norm |- | + | - |;

e let Z:= Ey«y N Ey, which is a closed subspace of E.,, and E., denotes the space of
measure essentially bounded functions mapping T to Y, equipped with the usual
supremum norm by Definition 2.5;

e define a functional f on Z by (2.14);

e the mapping £ — LO(¢, ug(¢£), §D% uo(¢); v1, v2) is measurable for each (v1,v3) in
RN x RN (see [20]), and that (0, 0) is a point at which f is defined (finitely);

e the condition (2.6) in Clarke’s abstract framework is satisfied by (2.15).

By (2.12), we get

8£,(0,0) = AL(t, uo (£), 5D uo (1)) C 8 (=F(t,uo(t))) x {0},
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thus, every ¢’ € af(0,0) can be written as
T
(¢, (w5 D)) = / (a(0), (D)) + (0,5D%(0)) dt
0
T
= / (q(0), v(2)) dt (2.16)
0
for any (v, {D}v) to Eyxo N Es, where g(t) € 9(—F(¢, uo(2))) for a.e. t € [0, T.
When v e CZ([0, T],RY), it is obvious that (v,5D?%v) € Ezxy N Ex and (v, §D%) is dense
in E»x5 by Definition 2.4. So for each (v, §D{'v) € Esy3, we can choose (v, 6D v,,) € Ezxa N
E, such that

| (v 6D va) = (0,605 V)|, , — 0 and (&, (va gD va)) = (¢, (v §DE V). (217)

Combining (2.16) and (2.17), we have

T
(¢, (v 5DEv)) = / (a0, 1(0)) dt

for all (v,{D}v) € Eyx2. Then we conclude

T
Of (110, D% o) C / (3(=E(t, u0(0))) ) x (0},
0
and this completes the proof. d

Remark 2.7 The interpretation of expression (2.8) is as follows: If (o, 5Df uo) is an el-
ement in Eyy, and ¢ € 9f (uo, {DY uo), we deduce the existence of a measurable function
(r(¢),s(t)) such that

r(t) € 8(—F(t, uo(t))) and s(¢)=0 (2.18)

for a.e. t € [0, T] and one has
T
(¢, (v,§DSv)) = f (r(@),v(®)) + (0, D5 v(t)) dt
0
and for any (v,{D{v) in Esx».
Define a functional ¢ on E“ by
T
o) = - / F(t,u(?)) dt, (2.19)
0

if n € 8f (uo, DY ug) on Ez», then we can define n’ on E* by

n'(u) := n(u, SD‘;‘u),

for all u € E¥, it is easy to verify ' € d¢(up).
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Similarly, if & € 9¢(uo) on E%, then we can define £ on Eyy; by
&' (u, §Df u) = £ (u),
for all (u, {DYu) € Esx», and it is easy to verify &' € 8f (ug, DY uo).

Lemma 2.3 The corresponding functionals ¢, and ¢, on E* are given by

1 /7
o1(u) = -3 /0 (BD‘;‘u(t),;D‘j’iu(t)) dt,

and
T
0o (u) = / —F(t, u(t)) dt,
0
where F satisfies the condition (A) and 1/2 < « < 1, then the functional defined by

o) = o1(u) + 2 (u)

T
= /0 [—%(ng‘u(t),fD‘;u(t))—F(t,u(t)):| dt, (2.20)

is Lipschitz on E%, and VYu,v € E¥, we have
Tq T
(¢c,v)=— /0 3 [(6DF u(0), sD5v(R)) + ((DGu(t), §DSv(r)) ] dt + /0 (q(0),v(2)) dt, (2.21)

where ¢ € d0¢(u) and q(t) € d(—F(t, u(t))).

Proof By direct computation, it is obvious that

T
((p{(u), V> = _./o %[((C)D‘t"u(t),fD"}v(t)) + (ﬁD"}u(t),BD‘;‘V(t))] dt. (2.22)

In view of Lemma 2.2 and Remark 2.7, if t € d¢,(u), then we have

T
(r,v) = /0 (a(0),v(0)) d, (2.23)

where ¢q(t) € d(—F (¢, u(t))).
Since d¢(u) C 31 (u) + 392 (u), (2.21) holds by (2.22) and (2.23), and this completes the
proof. O

Making use of Property 2.1 and Definition 2.3, for any u € AC([0, T],RY), BVP (1.1) is
equivalent to the following problem:

—% %on‘l(ng‘u(t)) + %tD”}’l(ﬁD‘;u(t))) € dF(t,u(t)), ae.tel0,T],
u(0) =u(T) =0,

(2.24)


http://www.boundaryvalueproblems.com/content/2012/1/82

Zhang and Gong Boundary Value Problems 2012, 2012:82 Page 11 of 21
http://www.boundaryvalueproblems.com/content/2012/1/82

where a =1 - B/2 € (1/2,1]. Therefore, we seek a solution # of BVP (2.24), which corre-
sponds to the solution « of BVP (1.1) provided that u € AC([a, b],RN).
Let us denote D*(u(t)) by

1 1
D* (u(?)) = ioD‘f‘l (6D u()) + EtD‘;‘l (DGu(®)), (2.25)

then we are in a position to give the definition of the solution of BVP (2.24).
Definition 2.9 A function u € AC([0, T],RY) is called a solution of BVP (2.24) if

(i) D*(u(t)) is differentiable for almost every ¢ € [0, T'].

(ii) u satisfies (2.24).
Lemma 2.4 Let1/2 <« <1, and ¢ is defined by (2.20). If assumption (A) is satisfied and
u € E* is a solution of the corresponding Euler equation 0 € d¢(u), then u is a solution of

BVP (2.24) which, of course, corresponds to the solution of BVP (1.1).

Proof By Lemma 2.3, we have
1
0= —f 5[(8D‘;‘u(t),§D‘§v(t)) + ($D5u(t), 4D v(2)) | dt
0
T
- fo (q(0), (1)) dt

T
- [ 6D DtV ) - 5 (D (Do), v )

T
- [ o) (226)

where for all v € E¥ and ¢(t) € 0F (¢, u(t)).
Let us define w € C([0, T], RN) by

t
w(t) = / a)ds, te[0,T],
0
so that

T T t
/0 (w(®), V() dt = /0 [ /0 (q(t),v/(t))ds} dt.

By the Fubini theorem and noting that v(T') = 0, we obtain

T T T
V() dt = V() dt | d
/0 (w(t),V (1)) dt /0 [ /s (q(0),v'(®)) t] s

T
= /0 (q(s), W(T) — v(s)) ds

T
= _A (q(s), (T) - v(s)) dis.


http://www.boundaryvalueproblems.com/content/2012/1/82

Zhang and Gong Boundary Value Problems 2012, 2012:82
http://www.boundaryvalueproblems.com/content/2012/1/82

Hence, by (2.26) we have, for every v € E%,

T
f (;ODgl(gD;'u(t)) - %tD"fl (sDGu(r)) + a)(t),v/(t)> dt = 0. (2.27)
0

If (¢;) denotes the Canonical basis of R, we can choose v € E* such that

2k 2k
v(t):sinTej or v(t):e/—cosTe,', k=1,...andj=1,...,N.

The theory of Fourier series and (2.27) imply that

1 1
EOD‘;‘-I (D% u(t)) - EtD‘;‘l(iD‘;u(t)) +o)=C

a.e. on [0, T] for some C € RY. According to the definition of w € C([0, T],RY), we have

1 1 ¢
EOD‘}’I (6D5u(®)) - EtD';’l(iD"}u(t)) =— /0 q(s)ds+C (2.28)
a.e. on [0, T] for some C € RV,

In view of ¢(t) € L([0, T],RY), we shall identify the equivalence class D*(u(t)) given by
its continuous representant

D (u(t)) = %OD‘;‘_I (BD‘;‘u(t)) — %tDO}_l (gD‘}u(t)) = —/0 q(s)ds+ C (2.29)

fort [0, T].

Therefore, it follows from (2.28) and the classical result of the Lebesgue theory that g(t)
is the classical derivative of D*(u(t)) a.e. on [0, T] which means that (i) in Definition 2.9 is
verified.

Since u € E¥ implies that u € AC([0, T],RYN), it remains to show that u satisfies (2.24).
In fact, according to (2.29), we can get that

2 D) i(

1 1
2 = 2 oD (6Drut) - 505 (ED‘%u(t))) = —q().

2
Moreover, u € E* implies that #(0) = u(T) = 0. O

Lemma 2.5 ([32]) Let X be a real reflexive Banach space. If the functional : H — R
is weakly lower semi-continuous and coercive, i.e., limy ) _ oo ¥ (2) = +00, then there exists
2o € H such that ¥ (zg) = inf,cy ¥ (2). Moreover, then 6 € 3y (zg).

Lemma 2.6 ([32]) Let X be a real reflexive Banach space, and v : X — R is a locally
Lipschitz function. If there exist x, € X and r > 0 such that ||x1||x > 1,

max{y(0), ¥ (1)} < inf ¥ (@) (2.30)
x| x=r
and ) satisfies the nonsmooth (P.S.) condition with

c:=inf sup ¥ (y(¥)),
Vel tefo,1] ( )

Page 12 of 21
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where
I:={y e C([0,1;X) : ¥(0) = 0,y (1) = x1}.
Then ¢ > infy, = ¥ (x) and c is a critical value of .

Definition 2.10 ([37]) Assume that the compact group G acts diagonally on V¥, that is,

g, Vi) == (gvi, ..., 80),s

where V is a finite dimensional space. The action of G is admissible if every continuous
equivariant map a1 — VX! has a zero, where U is an open bounded invariant neighbor-
hood of 0 in V¥, k > 2.

Example 2.1 The antipodal action of G := Z; on V := R is admissible.

We consider the following situation:
(A1) The compact group G acts isometrically on the Banach space P,y X;, the space
X; is invariant and there exists a finite dimensional space V' such that for each

j €N, X;~V and the action of G on V' is admissible.

Lemma 2.7 ([27]) Suppose ¢ : X — R is an invariant locally Lipschitz functional. If, for
every k € N, there exist pi > ry > 0 such that

(A2) aj:=maXyey,, |ul-p, ¢(4) <0, where Yy := EB;(:o Xj;

(A3) by :=infyez, ju)-r, ¢(4) = 00, as k — oo, where Zj := @;ka;

(A4) ¢ satisfies the nonsmooth (PS.). condition for every ¢ > 0.

Then ¢ has an unbounded sequence of critical values.

Remark 2.8 The condition (Al) is needed for the proof of Lemma 2.7, see details in [27]

and the references therein.

3 Main results and proofs of the theorems
Theorem 3.1 Let « € (1/2,1] and F satisfy the condition (A), and suppose the following
conditions hold:

(B1) there exist B > 2 and r, > 0 such that

FO(t,x;,—x) < —BF(t,x)

fora.e t€[0,T] and all |x| > ry in RY;
(B2) [,/ F(t,0)dt =0 and

. F(t,x) T2(a+1)
lim sup 5 < 5
x>0 1] 27

uniformly for a.e. t € [0, T);
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(B3) there exist i >2 and Q > 0 such that

fF(t,x)

lxl>00  |x|H

>Q

uniformly for a.e. t € [0, T].
Then system (1.1) has at least one solution on E“.

Proof Let {u,} C E* such that ¢(u,) is bounded and A(u,) — 0 as n — oo. First, we prove
{u,} is a bounded sequence. Take u, € d¢(u,) such that A(u,) = ||u,||, then there exists
qn(t) € O(=F(t, u,(t))) such that

. T T
(un, u,,) = —/ (D5 un(t), (D51 (2)) dit + / (gn (), un(t)) dt (3.1)
0 0

for all v € E*. It follows from (3.1) that
(g - 1> |cos(rer)|[[all2
T
< ‘/0 <1 - g) (ng‘un(t), fD"}un(t)) dt
) T
= Bo(u,) - (un, un) + /0 [ﬁF(t, un(t)) + (q,,(t), u,,(t))] dt

= Bo(un) — (1, tn) +/

Q1

[BE(t (D) + (@u(0), 10a(0))] dt + / [BE(t, (1))

Q2
+ (qn(8), un(2)) ) dt
S /3¢(Mn) - <M;, un) + /

Q1

[BE(t,n(0) + (@u(0), 1a(0))] dt + / [BE(t, un(0))

2

+ (_F)O (t’ u,(t); un(t))] dt

= B (ttn) — (14, 1) +/

Q

[BE(t, un(t)) + (qa(2), un(2)) | dt + /Q [BE(t, un(t))

+ FO (8, un(£); —un(t))] dt

< Bot) — {16 1) + / [BE(t,un(0)) + (gu(t), un(0))] dt, (3.2)

1

where Qi :={t € [0, T]; |u,(t)] < ri} and Q, := [0, T] \ Q.
By (A) and the nonsmooth (P.S.) condition, we have

Bo(u,) +/Q [,BF(L‘, un(t)) + (qn(t),u,,(t))] dt

is bounded, which combined with (3.2) implies that {u,} is bounded in E* since 8 > 2.
By Proposition 2.3, the sequence {u,} has a subsequence, also denoted by {u,}, such that

u, ~u weaklyin E* and u,—u stronglyin C([0, T];R") (3.3)

and ||u, || < C; is bounded, where C, is a positive constant.
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Therefore, we have u, € d¢(u,), where u, is the function from the nonsmooth (P.S.)
condition, and #~ € d¢(u) such that

(t, — 'ty — 1) > 0 (3.4)
as n — 00, SO

(4, — ', 14y, — 1)

T
‘/0 (6D (n(t) — u(t)), {DG (un(2) — u(2))) dt

T
+ / (q”(t) - Q(t): un(t) - M(t)) dt
0

v

T
|cos(wa)|lluy — ull? + / (gn() = q(8), un(t) — u(t)) dt, (3.5)
0
where gq,,(t) € 9(—F(t, u,(t))) and q(¢) € 3(—F (¢, u(t))).
By (3.4) and (3.5), it is easy to verify that ||u, — u|l, — 0 as n — 0o, and hence that
u, — u in E¥. Thus, {u,} admits a convergent subsequence.
In view of (B3), there exist two positive constants M’ and r, such that
F(t,x) = M'|x|* (3.6)
fora.e. t € [0, T] and |x| > ry. It follows from (A) that
F(t,x) > —Clx|**! = Colx| — E(¢,0)
for all |x| <r, and a.e. t € [0, T]. Therefore, we obtain

F(t,x) > M'|x|" = M'r}} — Crs™ = Cory — F(t,0) (3.7)

forallx e RN and a.e. ¢ € [0, T].
For any u € E* with u # 0, A > 0, we have

1 (7 ;
(p()\,l/i) = —5/(; (BD(:u(t)yng;u(t)) dt—A F(t,u(t)) dt
2 ) T }
= STeasgra 4~ [ Do) s

<—" ul®2 -Mru@|, +rsT 3.8
< STcosteay; 1l |u@) ||} + 73 (3.8)

by (3.6), where r3 is a positive constant. Then there exists a sufficiently large Ao such that

@(hou) < 0.
By (B2), there exists € € (0, | cos(w)|) and § > 0 such that

E(t,x) < ([cos(ra)| — €) (T (o + 1)/2T%) |x|?

fora.e.t €[0,T] and |x| <.
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I'(o)(2—1)1/2

Let p := =257 —8 and o = €p*/2 > 0. Then it follows from (2.2) that

a-1/2

e = R @ D2 s D2

llaello =8

for all # € E* with | u«||, = p. Therefore, we have

17 '
o) = —5/0 (607 u(t), . DFu(e)) dt _/0 Fliut) d
cotra) Plavy 7
- cos(ma [costwa)l, “2 (|cos(7105)|—5)2(;*722/0 |u(t)|2dt
. |cos(770l)|“ 1?2 - (’Cos(na)‘—e)ﬂuni
_ %enuni
=0

for all u € E* with |||, = p. This implies all the conditions in Lemma 2.6 are satisfied, so

there exists a critical point u, for ¢ and ¢(uy) > o, and this completes the proof. O

Theorem 3.2 Let F satisfy (A), (BL), (B3) and the following conditions:
(B4) there exist i’ >2 and Q' > 0 such that

F(t,x)
lim sup

|x|— +00 |x|#

<Q

uniformly for a.e. t € [0, T];
(B5) F(t,x) = F(t,—x) for t € [0, T] and all x in RN,
Then system (1.1) has an infinite number of solutions uy on E* for every positive integer k
such that || ug||co — +00, as k — oc.

Proof The proof that the functional ¢ satisfies the nonsmooth (P.S.) condition is the
same as that of Theorem 3.1, so we omit it. We only need to verify other conditions in
Lemma 2.7.

Since E“ is a separable and reflexive Banach space, there exist (see [38]) {e,}52; C E* and
{fi}22, C (E*)" such that

1, n=m,
ﬁl(em) = (Sn,m =

0, n#m,

w

E* =span{e,:n=1,2,...} and (E"‘)* =span{f,:n=12,...}

Fork=1,2,..., denote

k o0
Xy = spanfex}, e=Px, z=-Px.
j-1 ‘
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For any u € Y%, let

T 1/
nun*::(/o \um\"dt) , (3.9)

and it is easy to verify that || - ||- defined by (3.9) is a norm of Y;. Since all the norms of a
finite dimensional normed space are equivalent, there exists a positive constant Cs such
that

Cillull < llull-  for u € Yi. (3.10)
In view of (B3), there exist two positive constants M; and C, such that
F(t, %) = M |x|" (3.11)

fora.e. t € [0, T] and |x| > C,. It follows from (3.10) and (3.11) that

1

T T
3 /0 (6D u(®), {DFu(®)) dt — /0 F(t,u(t)) dt

1 2
2cos(ra)) e~ /QBF(% u(®)) dt - /Q F(tuo)d

=y [ Jut|“ e~ [ F(eut)ae

@(u)

2| cos(rar)|

T
—_— Z—M/ o) dt
ooy 1~ | Juto)

+M; |u(t)|”/dt—f F(t,u(t))dt
Q24

Q4

2 w
< ——ull; - C; My||u||* + Cs,
_2|cos(7m)|” Iz — C1 Mi|lul 3

where Q3 := {t € [0, T]; |u(£)| = Cy}, Q4 :=[0,T] \ Q3. Since u > 2, there exists a positive
constant dj such that

ou) <0 forallue Yy and |u| > di. (3.12)

For any u € Zy, let

T , s
||u||u:=</ |u(t)|” dt> and Br:i= sup |ullw, (3.13)
0

u€Zp,||lull=1

then we conclude By — 0 as k — 00. In fact, it is obvious that 8; > Bis1 > 0,50 B > o >0
as k — oo. For every k € N, there exists u; € Z; such that

lull =1 and |lugll > Br/2. (3.14)

As E* is reflexive, {ux} has a weakly convergent subsequence, still denoted by {u}, such
that ux — u. We claim & = 0. In fact, forany f,, € {f, : n = 1,2,...}, we have f,,, (x) = 0, when
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k > m, so
fm(ux) > 0, ask— oo
for any f,, € {f, : n=1,2,...}, therefore u = 0.

By Proposition 2.3, when u,, — 0 in E*, then u; — 0 strongly in C([O, T);RY). So we
conclude « = 0 by (3.14). In view of (B4), there exist two positive constants M, and Cy
such that

F(t,x) < Ma|x|" (3.15)

fora.e. t € [0, T] and |x| > C4. We conclude

1 T T
——/ (6D5 u(t), ;DGu(t)) dt—/ F(tu(t))
2 Jo 0

_ lcos(ma)| |cos(7m)| a2 f (¢, u(t)) dt - f F(t,u())d

LT f Ju(e)| de
0

@(u)

+ M, / |u(e)| dt - / F(tu(t)) dt
o o

ICOS( o)l _—
> ———llull = Mo llull" - Co,

by (3.15), where Q5 := {t € [0, T]; |u(t)| = Cs}, Q6 :=[0,T] \ Q5.
Choosing ry =1/, it is obvious that

rr — 00, ask— oo,
then

br:= inf  @(u) > o0, ask— oo, (3.16)
ueZ,|lull=ri
that is, condition (A3) in Lemma 2.7 is satisfied. In view of (3.12), let p; := max{dy, ry + 1},
then

ar:= max o¢(u) <0,
U€ Y llull=px
and this shows condition (A2) in Lemma 2.7 is satisfied.

We have proved the functional ¢ satisfies all the conditions of Lemma 2.7, then ¢ has
an unbounded sequence of critical values ¢x = ¢(u;) by Lemma 2.7; we only need to show
|tk |l oo — 00 as k — oo.

In fact, since uy is a critical point of the functional ¢, that is, 0 € d¢(ux), by Lemma 2.3
and Remark 2.7, we have

T T .
- f (605 un(t), i D5 un(t)) dt + / (1 (8), u(2)) dt = 0,
0 0
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where u;(t) € 0(—F(t, ur(t))). Hence, we have

cx = @(uz) (3.17)
T

1 T
-5 /0 (5D u(t), SD%u(t)) dt — fo F(t,u(t)) dt

T T
% /0 (1 (8), i () dlt /0 F(t, u(t)) dt

T
<27 (Clml" + Collule) - [ Fe0) (318)
0
since ¢ — o0, it is obvious that
[[#k]loc = 0O ask — oo

by (3.14). This completes the proof of Theorem 3.2. d

Theorem 3.3 Let F(t,x) satisfy the condition (A) with v € [0,1). Then BVP (1.1) has at least

one solution which minimizes ¢ on E°.

Proof By (3.1), we obtain

T

T
/[F(t,u(t))—F(t,O)]dt+/ F(t,0)dt
0 0
T 1 T
:/ /(8F(t,su(t)),u(t))dsdt+/ F(t,0)dt
0 0 0
T 1
* dsd
5/0 /Of(t)|su(t)| |u(t)| s dt
T 1 T
dsd F(t,0)d
+/0 /Og(t)|u(t)| s t+/0 (¢,0) dt
) T T T
<l /0 f(t)r:lzr+||»t||m/0 g(t)dt+/0 E(t,0)dt

T
<P ult / f@)dt + Csllully + Ca,
0

where C; is defined in (2.9), C5 and Cj are constants. Hence, we get

T T
o(u) —/0 %(SD‘;‘u(t),ﬁD";u(t))dt—/o F(t,u(p)) dt,

| cos(ma)| r
> fllulli = Cy™Mully™t | f(@)dt - Csllulle - Ca.
0
If 0 <v <1, wehave

o(u) > +00, as |lully — oo.

According to the same arguments in [36], ¢ is weakly lower semi-continuous. By
Lemma 2.5, the proof of Theorem 3.3 is completed. O
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4 Example
In this section, we give two examples to illustrate our results.

Example 4.1 In BVP (1.1), let

[x*, |xl <1,
F(t,x) =
lel*, || > 1.

It is easy to verify all the conditions in Theorem 3.2, so BVP (1.1) has infinitely many
solutions (u,) on E¥ and ||, ||sc — 00 as 1 — 00.

Example 4.2 In BVP (1.1), let F(t,x) = |x|. It is easy to verify all the conditions in Theo-
rem 3.3, so BVP (1.1) has at least one solution which minimizes ¢ on E*.
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