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1 Introduction
In this work, we consider the following hyperbolic integro-differential equation with in-
tegral conditions:

3’u 3’u

t
lu = i a’(x, t)@ +clx, t)u=f(x,t) + /0 ot - s)K(s, u(x,s)) ds, 1.1)

for all (x,£) € Q=1(0,1) x (0, T), subject to the initial conditions

u(x,0) = p(x), uy(x,0) = ¥ (x) (12)

and the weighted integral conditions

1
/ ulx, t)dx =0, (1.3)
0
1
/ h(x)u(x,t)dx =0, (1.4)
0

where f, ¢, ¥, h, a, ¢, @ and K are given functions.

Various problems arising in heat conduction [1-5], chemical engineering [6], thermoe-
lasticity [7], and plasma physics [8] can be modeled by the nonlocal problems. Boundary
value problems with integral conditions constitute a very interesting and important class
of problems. These nonlocal conditions arise mostly when the data on the boundary can-
not be measured directly. Recall that the presence of an integral term in boundary con-
ditions can complicate the application of classical methods of functional analysis in the
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theoretical study of nonlocal problems, therefore, several methods have been proposed
for overcoming the difficulties arising from nonlocal conditions; see Beilin [1], Cannon et
al. [2, 8], and Dehghan et al. [3, 4, 9].

Numerical solutions are introduced to obtain approximations for the solution of partial
differential equations when the analytical solutions are difficult or impossible to obtain
due to complicated geometry or boundary conditions. In the area of numerical analysis,
the Galerkin method is a class of methods for converting a continuous operator problem
to a discrete problem. In principle, it is the equivalent of applying the method of a varia-
tion of parameters to a function space, by converting the equation to a weak formulation,
hence in this approach we choose a system of linearly independent functions such that
they satisfy the given homogeneous boundary condition, and they are dense in a function
space containing the exact solution of the above boundary value problem.

The advantage of this approach is not only to establish the existence and uniqueness of
the solution, but it is also a very effective method in the study of the approximate solution
and its convergence.

In this paper, we study the hyperbolic integro-differential equation (1.1) with a Volterra
operator of the form fot a(t —s)K(s, u(x,s)) ds in the second member, which appears in the
modelling of the quasi-static flexure of a thermo-elastic rod and has been studied in [9,
10] under different boundary conditions, by means of the Rothe method. Let us mention
that different methods are used to solve similar integro-differential equations, for exam-
ple, in [11, 12] the authors have established the existence and uniqueness of the solution
using Rothe’s method of an integro-differential equation. In [10, 13], the authors have used
Rothe’s method and the techniques of [7] to prove the existence, uniqueness and contin-
uous dependence of a strong solution to a quasi-linear integro-differential equation. In
[6], the local existence and uniqueness of a classical solution of an abstract second-order
integro-differential equation in a Banach space have been investigated by using the theory
of an analytic semi-groups and contraction mapping theorem. In [14, 15] the authors inves-
tigated a telegraph equation with non-local integral conditions by means of the Galerkin
method.

This paper is organized as follows: In the next section, we define the generalized solution
and the functional spaces. In Section 3, we prove that the generalized solution if it exists is
unique. The existence of the generalized solution by using the Galerkin method is estab-
lished in the fourth section, and for this, we construct an approximation solution of the
problem (1.1)-(1.4). We prove that we can extract a subsequence, which converges to the
desired generalized solution. An application is included to illustrate that corresponding

assumptions are satisfied.

2 Notation and definition

Let L%(0,1) be the usual space of Lebesgue square integrable real functions on (0,1) whose
inner product and norm will be denoted respectively by (-,-) and || - ||. Denote by H(Q) the
Sobolev space consisting of all functions u € L*(Q) having weak derivatives in L2(Q), with

the norm

T iy ol 2 1 2
||u||f1(Q):/0 /;[(/x u(E,t)dS) +(u(x,t))2+</x ut(s,t)d‘i) }dxdt.
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Let us define the generalized solution of the problem (1.1)-(1.4). Suppose that « is a so-
lution of this problem, multiply both sides of equation (1.1) by fxl (h(&) — h(x))ve(&,t) dE,
where v € H7(Q) = {v(x,t) € H(Q), v(x, T) = 0}, integrate by parts the resultant equation
over the domain Q, use the conditions (1.2), (1.3), (1.4) and the fact that v,(x, T) = 0, we
obtain

/ lu(/l(h(é) —h(x))vt(é',t)d?;‘) dxdt=15 -1, + Iz,
Q X

where
L= / utt(x,t)< f (h(€) — h(x))viE, t)dg> dx dt
/h(x (f Wzg)(/x Vtt(s,t)dg)dxdt,
I = / 2 (x, £) it (%, £) (/xl(h(s) — h(x))v(&, ) ds) dxdt
=2 / (aay).u ( / h(&) - h(x))v (€, t)dé)dxdt
- /Q (4aaxh’(x)+a2h(2)(x))u( / vt(g,t)df) dxdt + /Q a*h (x)uv, dx dt

and

1
I =/Qc(x,t)u(x,t)(/ (h(é)—h(x))vt(éit)d*é) dxdt

1 1
= —/()ch’(x)(/x u(é,t)dé) (/; vt(é,t)d%‘) dxdt
1 1
+ /(;cx(‘/x u(&,t)d&) </x (h(&) — h(x))v,(€,0) d&) dxdt.
Calculating I; — I, + I3, we deduce
1 1 1
fQ[—h/(x)/x utdéfx vu(€,t)dE - (4aaxh’(x)+a2h(2)(x))u/x v(§,8) dE
1 1
—azh/(x)uvt—ch/(x)/ u(&,t)d“;‘/ vi(E,t) dE
1
+2aaa [ (1(6) - vl 0 s

1 1
+cx</ u(S,t)dé) </ (h(“;‘)—h(x))vt(“g‘,t)d$>:|dxdt

1
=ff(x,t)</ (h(é)—h(x))vt(f,t)d$> dxdt
Q x

t 1
+ /Q</O a(t - s)K (s, u(x,s)) ds> (/x (h(&) — h(x))v,(&, 1) d&) dxdt. (2.1)
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Definition 1 By a generalized solution of problem (1.1)-(1.4), we mean a function u €
H(Q) satisfying for all v € Hr(Q) the identity (2.1).

3 Uniqueness of generalized solution
For solving the problem, we make the following hypotheses:

(H1) The functions 4 and c are nonnegative and satisfy on Q

0< ap = ﬂ(x! t) = AO, |at¢ Ay, Axty Ay, axxx' = Al:

0<cy <clxt) <Cy, |cxy | < Ch.

The function « is continuous and denote [ = maxo<;<7 | (t)].
(H2) The function # € C2([0,1],R), /' is nonnegative and satisfy for all x € (0,1)

(/)

(%),

WP@)|) <k, 0<ko <H(x).

(H3) The operator K(t, u(x, t)) is linear with respect to # and continuous according to
the both variables ¢ and u and satisfies for all # € H(Q) and (x,£) € Q

K (t,u(x,1))| < |ulx,1)|.

Now we shall show that the generalized solution of problem (1.1)-(1.4) if it exists is

unique.

Theorem 2 Assume that f € Ly(Q), ¢, ¥ € Ly(0,1) and hypotheses (H1)-(H3) hold, then
the generalized solution of problem (1.1)-(1.4) if it exists is unique.

Proof Suppose that there exists two different generalized solutions u; and u; of the prob-
lem (1.1)-(1.4), then u = u; — u, is a generalized solution of the problem (1.1)-(1.4) with
¢ =¥ = 0and second member F = fot a(t—s)(K (s, ui(x,s)) —K(s, uz(x,5))) ds. We shall prove

that u =0 in Q. Let v € Hr(Q) and denote for 0 <t < T.
Q" ={(x,t) € Q,0<x<1,0 <t < t}. Consider the function v such that

ulx,t), 0<t<r,
v(x, t) =
0, T<t<T.

Substituting v into identity (2.1), it follows
1 1 1
/(;[—h/(x)/x utdE/x uy(&,t)dé - (4aaxh/(x)+azh(2)(x))u/x u:(£,t) dé
1 1
—azh/(x)uut—ch/(x)/ u(E,t)dé/ u(&,t)dé

1
+ 2aay)u / (hE) — h(x)) (&, 1)

1 1
+cx</ u(é,t)dé) </ (h(S)—h(x))uAS,t)d&)]dxdt
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= / </toz(t—s)(K(s, ul(x,s)) —K(s, uz(x,s))) ds)
o \Jo
1
X (/ (h(é) —h(x))ut(f;‘,t) d“g‘) dxdt. (3.1)

Integrating by parts it yields

1 1 2 1 2
f h’(x)[(/ u,(s,r)dé) + (a(x,r))z(u(x,r))2 +c(x,r)<f u(é,r)dé‘) ]dx
0 x X
1 2
_ f [h@( / u(g,t)dg) + 2W aa,(u(x, 1))’

1
— (8aa,h' (x) + 2a2h(2)(x))u/ u (€, 1) dE
1
- aa)s | (hE) - bl 0 s
1 1
+ 2cx</ u(“;‘,t)d&) </ (h(¢) - h(x))ut(é,t)dé)] dxdt
+2 /Qr </Otoz(t —s)(K(s, ul(x,s)) —K(s, uz(x,s))) ds)
1
X (/ (h(x) —h(é))ut(é,t) dS) dxdt. (3.2)

Applying Cauchy inequality, e-inequality and the hypotheses on the operator K to the last
term in the right-hand side of (3.2), we get

2’/r</0 a(t—s)(l((s,ul(x,s)) —I((s,uz(x,s)))ds>

1
X (/ (h(é)—h(x))u[(é,t)d&‘) dxdt‘

=(],
(1,

< (max|a(t)|)2/

QT

1 2
+4k12/QT </ uAE,t)dS) dxdt

<Pt / |K(s, ul(x,s)) - I((s, uz(x,s)) |2 dsdx
QT

1 2
+4k12/QT </ ut(é,t)d§> dxdt

1 2
5lZT”K(t,ul)—I((t,uz)”iz(Q,)+4k12/ (/ ut(E,t)d“g‘> dxdt
Q" \Jx

1
2 2

/t at—s) (K(s, ul(x,s)) - K(s, us (%, s))) ds
0

N
dx dt>

dx dt)

1
/ (h(&) — h(x))u, (&, 1) dg

t 2
/ (K (s, u (x, s)) -K (S, us(x, s))) ds| dxdt
0
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1 2
5127”141 _MZH%;(QT) +4k12/ (/ Mt(g;t)ds) dxdt
QT

X

1 2
< Pl g, + 462 /Q , ( [ ut(é,t)ds) ddt.

Applying similar inequalities with ¢ = 1, for the second, the third and the fourth terms in
the right-hand side of (3.1) then using conditions (H1)-(H3), we obtain

1 1 2 1 2
/oko[</x ut(é,r)dS) +a(2)|u(x,f)|2+co</x u(g,r)dg) ]dx

< / |:(k1(10A0A1 + A +4A7) + PT)|ulx, t)’2
1 2
+ (ki(3Cy +4ApA; +4A7) +4k7) (/ u (€, 1) dé)
X

1 2
+ 3k C; (/ u(g,t) dé) ] dx dt, (3.3)

denote

2T
M=k max<6AoA1 + A+ <3G+ 4k1),
1

. M
m = ko mln(l, u%,co), L= "

then (3.3) becomes

1 1 2 1 )
/[(/ ”‘(S”)dg) dx+|u(x»f>|2+(/ u(&f)dé) :|dx
o L\Jx i
1 2 ) ,
SL/QT[(/; ut(é,t)d$> + |u(x,t)|2+ </x u(x,t)dé) ]dxdt. (3.4)

Gronwall inequality implies

1 1 2 1 2
/ [([ ut(é,r)df) dx+|u(x,r)|2+(f u(f,t)dé) ]dxfo,
0 x x

hence u(x,7) =0, for all x € (0,1) and 7 € (0, T), then u = 0 in Q. Thus, the uniqueness is
proved. O

4 Existence of generalized solution
In order to prove the existence of the generalized solution we apply Galerkin method.

Theorem 3 Assume that the assumptions of Theorem 2 hold, then the problem (1.1)-(1.4)
has a unique solution u € H(Q).

Proof Let {wi(x)} be a fundamental system in H(0,1), such that

1, k=i
(Wi, W) = 8k =

0, k+i.

Page 6 of 12
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We have to find for each n € N*, the approximate solution of the problem (1.1)-(1.4) which
has the following form:

u® =" B(B)wi(x). (4.1)

k=1

Denote

@) =Y gmx), YO =) Yim()

k=1 k=1 (4.2)
B (0) = ¢, Bi(0) = Y,

the approximate of the functions ¢(x) and v (x). Substituting the approximate solution in
equation (1.1), multiplying both sides by | xl (h(&)—h(x))w;(&) d&, then integrating according
tox on (0,1), we get

1 1
/ () (x, 1) - a2(x,t)u§§)(x,t)+c(x,t)u<">(x,t))( / (h(é)—h(x))wi(é)ds) dx
/ fxt(/ he) - h(x))wl@)ds)

+ /0 /0 a(t-9)K (s, u (x,5)) ds (/x (h(§) - h(x))w;(§) dé) dx. (4.3)

Substituting (4.1) in (4.3), we get

n 1
PNAG) (m(x), / (n) —h(x))wi(@ds)
k=1 *

L>(0,1)

+Zﬁk(t>[(—a (5, )W} (%), / h(e) - h(x))w,@)ds)
k=1

Ly(0,1)

1
+ (CWk(x)r/ (h(£) —h(x))wi(é)dé) }
X Ly(0,1)
1 1
= [ fn [ ()~ neoywite) d a

0 X

1 t n 1
+ /0 /0 ot —s)I((s, kZI:'Bk(S)Wk(x)) ds/x (h(é) - h(x))wi(é)dé dx. (4.4)

Integrating by parts in L,(0, 1) the left-hand side of (4.4) yields

n 1 1
B (®) (h/(x) wi(§)d§, Wi(é)dé)
s | mos. |

+Zﬁk(t( aa) (), / e - x))wl(ads)

k=1 Ly(0,1)

1
- ((zmaxh/ +a®h?)wi(x), / wi(é)d’;‘)
x Ly(0,1)

Ly(0,1)

Page 7 of 12
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1 1
_azh/(wk(x>,wi(x>)L2(o,l)—(ch/ / w@)de, [ o)

+<cx/ wi(& dé/ dé)
x Ly(0,1)

f flt / (&) - W) wie) d dx

Ly(0,1)

1
+ /0 /O ot —s)[((s, ;ﬁk(s)wk(x)) ds/x (h(&) — h(x))w;(&) dE dx. (4.5)

Denote

L 1
= (h (x)/x Wk(f)dg’/x Wi(S)d‘E)Lz(o,l),

1
Oki = <2(aax)ka(x), / (h(€) —h(x))wi(é)d$>

Ly(0.1)

1
- ((4aaxh’ + ﬂzh(z))Wk(x),/ Wi(g)dé;_)

L>(0,1)

2 1 1
—a h(Wk(x);Wi(x))L 1) <Ch/x wk(é)dé,/x Wi(g)dé)h(o,l)

1 1
+<cx / wi(&) dt, / (h(s>—h<x))wf(s>ds) ,

L2(0,1)

1 1
Fo- [ f(x,t)( / (h(s)—h(x»wi@)ds)dx
1
+Z f ( / ot~ K (s, fr(5)wil®) d )( / (h(&)—h(x))wi(ads)dx

then (4.5) becomes

Y B0+ Betori = F(), B0 =gr,  Bi(0) = Y.

k=1

Consequently, we obtain a Cauchy system of second-order integro-differential equations
with smooth coefficients, so it has one and only one solution that for every # there exists

a unique sequence %" that satisfies (4.3). d
Lemma 4 The sequence (u™) is bounded.

Proof Multiplying (4.3) by g/(t) then summing with respect to i from 1 to # it yields
1 1
/ () (%, 8) = a® (%, Ou (x, 8) + c(x, £)u™ (x, 1)) < / (h(g) - h(x))ul” (€, 1) ds> dx
/fxt/ )) ($ t)dE dx
1
+ /0 /o a(t - $)K (s, u" (x,5)) ds< / (h(g) - h(x))ul” (€, 1) dg) dx. (4-6)
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Integrating (4.6) over ¢ from 0 to T we obtain

1 1 2 1 2
/ h’(x)[c(x,t)(/ u(")(é,r)df) +612(9c,t)(u(”)(ac,r))2 + (/ uﬁn)(é,r)dg&) dx]
0 X x
1 1 2
- h'<x>[c<x,0)( [ w)(sms)
0 X
1 2
+a*(x,0) (9" ()" + </ w(”)(%‘)dé) ]dx
1 2
+/ [Zh/aat(u(”))z +H ¢ (/ u"(&,1) ds)
1
— 4(a2 + ad)ul” ( / (h(€) - hx)u” &, 1) d&)
1
— (8aah' (x) + 2a*h® (x))u ( f (&, t) dg)
1 1
+2cx( / u<”><s,t)ds) ( / (h@)—h(x))ui")(s,t)ds)
1
£ 2o t) ( IREROr dé)
t 1
+2 f a(t —$)K (s,u" (x,5)) ds( / (h(x)-h(s))u§">(g,t)dg)]dxdt. (4.7)
0 X

Thanks to Cauchy inequality, e-inequality, the hypotheses on the operator K to the last
term in the right-hand side of (4.7), we get

¢ 1
2' / r fo a(t—s)[((s,u(")(x,s))ds< f (h(é)—h(x))uﬁ”)(g,t)ds> dxdt‘
1 2
512f||1<(t,u(n>)||i2(Qf)+4k12 er (/x u,(g,t)dg) dx dt

1 2
< Pr)u® |y e, + 4K /Q ( f uﬁ’”(s,t)dg) dxdt.
T x

Using similar inequalities for the second, the third and the fourth terms in the right-hand
side of (4.7), then regrouping the same terms yields

1 1 2 1 2
i k{(/ ui‘”(s,r)ds) +aé}u<">(x,r>\2+co</ u<">(s,r>ds) }dx
0 X X
1 1 2
skl[ fo [co( / w(”)(é)d$> + A2 (9" ()
1 2
. ( / w<">(§)ds> }dmzufniz(@)]

1 2
+ f [3/q<:1< / u<">(g,t)ds) + [k (10404, + A2 + A2) + 2] [u (x, 1)

1 2
+ [ki(BCr + 4A0A; +4A2 +2) + 4K2] ( / ) dg) } dxdt. (4.8)

Page 9 of 12
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Let I = M/m, where

'Y 2 2 2 PT
M= kl max SCI + 4AOA1 + 4A1 +2+ 4/(1, 10A()A1 +A0 + 4A1 + /—, C()
1

then (4.8) becomes

1 1 2 1 2
/|:</ u(”)(é,t)dé) +u(”)(x,t)2+</ uE”)(S,r)dé) :|dx
0 x x
1 1 2 1 2
i "(£) 4 () < (£) g ) ]d 2
sL[/O [(/ ) é) o) s ([ e |
1 2 1 2
"&b d ) ™) (x, )| < (&, 8)d ) ]d dt}. (4.9
+/;)r|:(/x u(&,t)dE +|u x | + /x u, (& & x )

Now, we apply Gronwall lemma to get

1 1 2 1 2
/ [(/ ut(f,r)d“g‘) +|u(x,r)|2+</ u(&,r)dé) ]dx
0 x x
= ([1([ ““(s)ds)z (¢’ (/lwm(s)dsﬂd I11)- @10)
<e ; : @ + ("™ (%)) + : x + . (4.

Integrating (4.10) according to 7 on [0, T] yields

9 L = U g+ 1971 + Vo) (1)

Thus inequality (4.11) implies the boundedness of the sequence %", g

Remark 5 We have proved that the sequence {#} is bounded, so we can extract a subse-
quence, which we denote by {1} that is weakly convergent. Now we prove that its limit
is the desired solution of the problem (1.1)-(1.4).

Lemma 6 The limit of the subsequence {u"¥} is the solution of the problem (1.1)-(1.4).

Proof We shall prove that the limit of the subsequence {u"¥)} satisfies the identity (2.1).
Let 0(t) € C%(0, T), such that 0,(T) = 0, let us prove that identity (2.1) holds for any func-
tions v(x, ) = >y, Ok(&)wi(x) € Hr(Q). Since the set S,, = {v(x, 1) = > _; Oc(&)wi(x), Ok (2) €
C*(0,T),6,(T) = 0} is such that | J;2; S, is dense in H7(Q), it suffices to prove (2.1) for
v € S,. Multiplying (4.3) by 6,(¢), summing according to k from 1 to #, then integrating

over t from 0 to T, we obtain

f()[—h/(x)(/xluinﬂ dg) (/xl vie(E, £) dé)

1
~ (4aa. (x) + a®h® (x))u"™ / ve(£,8) dE

X

1 1
— @l )"y, — ch (x) / U (&, 8) dE f Vi(E, ) dE
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+ 2aay) ™ / ' (1(E) = )i ) d
oy ( /1 W 1) dé) ( /1 (h(&) = h) (&) dg)} dvdt
ol s

1
/ / oe(t—s)K s, ) (i, s)) ds</ (h(é) - h(x))vt(é‘,t) dé) dxdt. (4.12)
Denote by u the weak limit of the subsequence {#"¥)} when k tends to infinity. Hence,
t 1
’ / / alt—)K (s, u"™ (x,5)) ds< / (h(&) - h(x))v.(€,2) ds> dx dt
QJ0 x
t 1
- / / alt - s)K(s, u(x,s)) ds([ (h(“g‘) - h(x))vt(?;‘, t) d$) dxdt‘
QJo x
= ’/ </t a(t—s) (K(s, ul (x, s)) - K(s, u(x, s))) ds)
e\Jo
1
X (/ (h(&) —h(x))vt(é',t)dé) dxdt‘
1 2 172
< zklﬁ(/Q(/x vl d.g) dxdt)
12
X (/ |K(s, u(”k)(x,s)) - K(s, u(x, s)) |2 ds dx)
Q
1 2 1/2
- 2k1ﬁ( /Q ( / A dg) dxdt) |K (™) = K&, 0] 20,

1 2 172
SZkl«/T(/ (/ |v,|d%'> dxdt) | ~u| 15— 0.
Q x

Finally, by passing to the limit in (4.12), we get that the limit u satisfies (2.1). O

Example 7 Consider the following boundary value problem for hyperbolic integro-

differential equation for 0 <x<1,0<t<T:

%u 10%u 1
S5 ) = S Sl t) ¢ U )
1 sin(2
=272 cos(2rx)e ™ — (¢ + —[e”” B 1] M
T o2

+/(; (t-s) (/(; u(r,s) dr) ds, (4.13)

subject to the initial conditions

u(x,0) = cos(2mwx), u(x,0) = —mcos(2wrx), O<x<l1 (4.14)
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and the weighted integral condition

1
/ u(x, t)dx =0, (4.15)
0
1
/ h(x)u(x,t)dx =0, (4.16)
0

where /(x) = 1 — cos(mx). It is easy to prove that assumptions (H1)-(H3) are satisfied, then
from Theorems 2 and 3, and we deduce that the problem (4.13)-(4.16) has a unique gener-
alized solution in the sense of Definition 1. Moreover, the function u(x, t) = e cos(2mx)
is the solution of this problem.
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