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Abstract

In this paper, we show the convergence rate of a solution toward the stationary
solution to the initial boundary value problem for the one-dimensional bipolar
compressible Navier-Stokes-Poisson equations. For the supersonic flow at spatial
infinity, if an initial perturbation decays with the algebraic or the exponential rate in
the spatial asymptotic point, the solution converges to the corresponding stationary
solution with the same rate in time as time tends to infinity. For the transonic flow at
spatial infinity, the solution converges to the stationary solution in time with the
lower rate than that of the initial perturbation in the spatial. These results are proved
by the weighted energy method.
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1 Introduction
In this paper, we are concerned with the following bipolar Navier-Stokes-Poisson equa-

tions:

301 + 0x(p111) = 0,
3 (1) + dx(prud + Pi(p1)) = pathies + 1 E,

0z 02 + 0x(0212) = 0, (L1
3(p2142) + Bx(p2ti3 + Py(p2)) = pathony — P2 E,
Ey=p1-p2

in a one-dimensional half space R, := (0, 00). Here the unknown functions are the den-
sities p; (i = 1,2) > 0, the velocities u; (i = 1,2), and the electron field E. P;(p;) (i =1,2) is
the pressure depending only on the density. u; (i = 1,2) is viscosity coefficient. Through-
out this paper, we assume that two fluids of electrons and ions have the same equation
of state P;(-) = P(-) = P(-) with P(p) = Kp? for K > 0 and y > 1, and also they have the
same viscosity coefficients y; = po = 1. The bipolar Navier-Stokes-Poisson system is used
to simulate the transport of charged particles (e.g., electrons and ions). It consists of the
compressible Navier-Stokes equation of two-fluid under the influence of the electro-static
potential force governed by the self-consisted Poisson equation. Note that when we only
© 2013 Zhou and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
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consider one particle in the fluids, we also have the unipolar Navier-Stokes-Poisson equa-
tions. For more details, we can refer to [1-4].

Recently, some important progress was made for the compressible unipolar Navier-
Stokes-Poisson system. The local and/or global existence of a renormalized weak solution
for the Cauchy problem of the multi-dimensional compressible Navier-Stokes-Poisson
system were proved in [5-7]. Chan [8] also considered the nonexistence of global weak
solutions to the Navier-Stokes-Poisson equations in RYN. Hao and Li [9] established the
global strong solutions of the initial value problem for the multi-dimensional compress-
ible Navier-Stokes-Poisson system in a Besov space. The global existence and L2-decay rate
of the smooth solution of the initial value problem for the compressible Navier-Stokes-
Poisson system in R® were achieved by Li and his collaborators in [10, 11]. The point-
wise estimates of the smooth solutions for the three-dimensional isentropic compressible
Navier-Stokes-Poisson equation were obtained in [12]. The quasineutral limit of the com-
pressible Navier-Stokes-Poisson system was studied in [13—15]. However, the results about
the bipolar Navier-Stokes-Poisson equations are very few. Lastly, Li et al. [16] showed the
global existence and asymptotic behavior of smooth solutions for the initial value problem
of the bipolar Navier-Stokes-Poisson equations. Duan and Yang [17] studied the unique
existence and asymptotic stability of a stationary solution for the initial boundary value
problem, and they showed that the large-time behavior of solutions for the bipolar Navier-
Stokes-Poisson equations coincided with the one for the single Navier-Stokes system in
the absence of the electric field. The consistency is also observed and proved between
the bipolar Euler-Poisson system and the single damped Euler equation; for example, see
[18—-20] and the references therein.

In this paper, we are going to discuss the initial-boundary value problem for the one-
dimensional bipolar Navier-Stokes-Poisson equations. Now we give the initial condition

(o1, u1, P2, u2)(%, 0) = (10, U105 P20, U20) (%) —> (045 Uss P4, Uy) S X —> OO, (12)
and the boundary date
u1(0,8) = uy(0,t) = up, < 0. (1.3)

Here, we suppose infyer, pio (i =1,2) > 0 and further the compatibility condition u;, =
u10(0) = u0(0). Moreover, for the unique existence, we also assume

E(+00,t) = 0. (1.4)

In [17], the authors showed that the solution to (1.1)-(1.4) converges to the corresponding
stationary solution of the single Navier-Stokes system in the absence of the electric field

0:0 + 0x(pu) =0,
10 + 0x(u) L5)

0 (ou) + 0x(put + P(p)) = Uy,

as time tends to infinity. Then, let (0, &)(x) be the stationary solution to the system (1.5).
We know that the stationary solution (p, i) satisfies

(ﬁﬁ)x =0,

(1.6)
(:51:22 + P(ﬁ))x = M/}xx:
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and the boundary and spatial asymptotic conditions
u(0) = uy, lim (p, 1) = (p+, u.), inf p(x) > 0. 1.7)
x— 00 xeRy

In this paper, we are mainly concerned with the decay rate of solutions to (1.1)-(1.4)
toward the stationary solution (p, &, p, i1, 0). Now we state the main result in the following
theorem.

Theorem 1.1 Suppose that M, > 1 and uy < u, hold. The initial data (p19, 410, P20, Y20,
Eo)(x) is supposed to satisfy

(pio, wi0) (i=1,2) € H'(R,), Eo(x) € L*(R,), xiel]g (0105 020) > 0, (1.8)
and there exists a positive constant &y such that
||('01o — P> U1o — Uk, P20 — Py Uo — k) ||1 + || Eoll + 6 < &o. (1.9)
(i) When M, > 1, in addition, the initial data also satisfies (1 + %)% (p1o—p), A +2)% (10 —
u), (1+ x)%(pzo -0), 1+ %)% (upo — 1), (1 +x)2Eg € L2%(R,) for a certain positive constant
«a, then the solution (py, u1, p2, s, E) to (1.1)-(1.3) satisfies the decay estimate
[(or = By = ity 2 = iy =, E) | oo < CAL+ )75 (110)
On the other hand, if the initial data satisfies e%x(pw -0), e%x(ulo - 1), 6%"(/020 - 0),
e%"(uzo - u), e%"Eo € L*(R,) for a certain positive constant ¢, then there exists a positive
constant a such that the solution (py, uy, p2, U, E) to (1.1)-(1.3) satisfies
| (o1 = By s = it p3 = 1tz = i1, E)| o < Ce™". (L.11)
(ii) When M, =1, and there exists a positive constant &y such that if the initial data also

satisfies || (1 +%)3 (010 = f, 1o — iy P20 — P> thao — i) |l1 + || (L +x) £ Eo || < o for a certain constant
a satisfying o € [2,a*), where o™ is a constant defined by

af(a*-2) = and oF >0,
then the solution (p1, U1, p2, U, E) to (1.1)-(1.3) satisfies
||(101 - ,5’ up — ﬁr P2 — ,5’ U — ’jle) ||Loo = C(l + t)7%7 (112)

where M., u, and § are defined in Section 2, and Ey(x) = — fxoo(plo - 020)(¥) dy.

Notations Throughout this paper, C > 0 denotes the generic positive constant indepen-
dent of time. L?(R) (1 < p < 00) denotes the space of measurable functions with the finite
norm || - |l» = (fg | - 1P dx)?, and L™ is the space of bounded measurable functions on R
with the norm || - ||~ = esssup, | - |. We use | - || to denote the L?>-norm. H*R) (k > 0)
stands for the space of L?(R)-functions f whose derivatives (in the sense of distribution)
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DLf (I < k) are also L2(R)-functions with the norm | - [z = (), 1D - I12)2. Moreover,
C*([0, T]; H'(R)) (k,! > 0) denotes the space of the k-times continuously differentiable
functions on the interval [0, T] with values in H'(R).

The rest of the paper is organized as follows. In Section 2, we review the results of the
stationary solution and the non-stationary solutions, then we reformulate our problem.
Finally, we give the a priori estimates for the cases M, >1 and M, =1 in Section 3 and 4,

respectively.

2 Stationary solution and global existence of non-stationary solution
In this section we mainly review the property of a stationary solution, and the unique ex-
istence and asymptotic behavior of non-stationary solutions for (1.1)-(1.3). To begin with,

we recall the stationary equation

OU x = O,
(‘j 'f) ] ) 1)
(Pit* + P(D))x = P
with
(0) = up <0, lim (0, &) = (P4, Us), inf p(x) > 0. (2.2)
x—> 00 xeR,

Integrating (2.1); over (x, c0) yields 5(x) = p,u, (@(x))~!, which implies by letting x — 07,
0y = p(0) = p,u, (up)™'. Namely, iz = ’:—If/ = %, vy = p%), which together with (2.1) implies
Vi
b= — 0. 2.3

o=y (2.3)
Thus, the condition u, < 0 has to be assumed whenever the outflow problem, i.e., the case
up < 0, is consider. Moreover, let the strength of the boundary layer (, ) (x) be measured
by & := |u, — u,|. Finally, we also define (v*, u*) as follows:

u, = e _ \/(14 - v*) [P(é) —P(i)], Py (2.4)
v, v v, v,

and denote the Mach number at infinity M, =: j}%. Then one has the following lemma.
Lemma 2.1 (see [21, 22]) Assume that the condition (2.3) holds. The boundary problem
(2.1)-(2.2) has a smooth solution (p,u)(x), if and only if M, > 1 and uy, < u,. Moreover, if
M, > 1, there exist two positive constants . and C such that the stationary solution (p, i)

satisfies the estimate
yaf(ﬁ(x) — 04 U(x) — u+)’ <Cse™ fork=0,1,2,.... (2.5)

If M, =1, the stationary solution (p, it) satisfies

8k+1

’8§(ﬁ(x)—p+,ﬂ—u+)‘§Cm fork=0,1,2,.... (26)
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As to the stability of the stationary solution of (1.1)-(1.4), Duan and Yang showed the
following results in [17].

Lemma 2.2 (see [17]) Suppose that M, > 1 and uy, < u, hold. In addition, the initial data
(P10, U105 P20, U205 Eo) is supposed to satisfy

(10 = f» 10 — ik, p2o — P, o — ) € H'(R,), Ey € L*(R,), xiel]g (p10, P20) > 0.
Then there exists a positive constant gy such that if
|(o10 = £ ti10 — i, p20 — > tiao — i8) ||, + | Eoll + 8 < &0,

the initial boundary value problem (1.1)-(1.3) has a unique solution (py,uy, pa,us,E) €
X(0,T) for arbitrary T > 0. Moreover, the solution (p1,u1, p2, Uz, E) converges to the sta-
tionary solution (p,u, p, i, 0) as time tends to infinity:

lim sup |P1 - ﬁx U - ’71;,02 - ﬁr Uz — ﬁ¢E| =0.
® xeR,

Here the solution space X(0, T) is defined by

X(0,T) = {(p1, 1, p2, 42, E) : pr — p,r — b, p3 — o, iz — ik € C(0, T; H'),
(101 - la)x! (:02 - ﬁ)x € LZ(O’ T;LZ)’ (ul - ﬁ)x: (M2 - ﬁ)x € Lz (0’ T; Hl)r
EeC(0,T;L%), (1 - )(t,0) = (u - #)(2,0) = 0 (0 <t < T)}.

Finally, to enclose this section, we reformulate the original problem in terms of the per-
turbed variables. Set (¢1, ¥1, 2, ¥2) from the stationary solution as

®i=pi— P Yi=u;—u, i=12.

Due to (1.1) and (1.6), we have the system of equations for (g1, Y1, ¢2, V2, E) as

A1 + 1051 + 105V = —fi,

P10:Y1 + P'(p1)dxp1 + pr110xYr1 = Yriax — &1 + P1E,

01 P2 + U20x92 + P20x Y2 = —f2, (2.7)
020:Vr2 + P'(02)0xp2 + pathp 052 = Yaxw — 82 — P2,

E=~[Z(p1 - p2) (0, 1) dy,

where the nonlinear terms f; (i =1,2) and g; (i = 1,2) are given by
Ji = i + P, & = ity (i + pivr) + px(P (0:) = P'(p)).
The initial and boundary condition to (2.7) are derived from (1.2), (1.3) and (1.4) as follows:

(@i ¥i) (%, 0) = (@i0, Wio) (%) := (pio — o, io — 1), i=1,2, (2.8)

(401,1#1, ¥2, Wz)(t: 0)=0. (2.9)

Page 5 of 22
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The uniform bound of the solutions in the weighted Sobolev space is derived later in Sec-
tions 3 and 4. For this purpose, we introduce the function spaces X,,(0, T) and X (0, T
defined by

Xw(01 T) = {((/)1’ 1#1: @2, erE) : (\/5(/)1; \/Zwl: «/&02, \/awb \/ZE) € C(O: TrLZ(R+))}

and

Xi)(ox T) = {((/)1’ 101: ©2, erE) : («/5%, \/Zwl: \/5902r N/ZwZ) € C(O: T;HI(RJr));
VwE € C(0, T;L*(R,)) }.

Here the two types of weight functions are considered: w(x) := (1 + x)%, or w(x) = e**. Also,

we use the norms | - |24, | - |ae, and | - |, defined by

lf|2,a) = (‘/(; a)(x)f(x)2 dx) 21 lfla,a = lf|2,(1+x)’17 lf|e,a = If|2,e’1x'

The following lemma, concerning the existence of the solution locally in time, is proved

by the standard iteration method. Hence we omit the proof.

Lemma 2.3 If the initial data satisfies (1.8) and /o 10, /010, v/ ©OP20, /020, /OE €
L%(R,), there exists a positive constant T such that the initial boundary value problem

(2.7)-(2.9) has a unique solution (p1, Y1, ¢2, V2, E) € X,(0, T). Moreover, if the initial data
satisfies (1.8), (1.9) and /oo, /010, v/ OP20, JOVr20 € HY(R,) and JoE, € L*(R,),
there exists a unique solution (g1, Y1, 92, ¥2, E) in X2 (0, T).

3 Apriori estimates for M, > 1

In this section, we derive the a priori estimates of the solution (@1, ¥1, @2, ¥, E) for the
case that M, > 1 holds in some Sobolev space. To summarize the a priori estimate, we use
the following notation (see [23]) for a weight function W (x, £) = x (£)w(x):

N(1) = Osfliz;l\ (@1, Y1, 02, ¥2)(0) |,
M(t)? = /0 t X O (| @1 020 ED@|)* + | (Y1 ¥20)(0)|}) d
+ /Ot x(0)(¢1(,0)* + ¢a(7,0)* + E(7,0)%) d,
L0y = fo (009000 DL, + [ @10 V10 020120 O)
@ (W)@, + e e v, O, 5 ) dr.
Proposition 3.1 Suppose that the same assumptions as in Theorem 1.1 hold.

(i) (Algebraic decay) Suppose that (o1, V1, 2, V2, E) € X422 (0, T) is a solution to (2.7)-

(2.9) for certain positive constants a and T. Then there exist positive constants gy and C
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such that if N(T) + § < &, then the solution (91, V1, 92, V2, E) satisfies the estimate

2

1+ 0% (|| (01, Y1, 02, )@ |- + |E@)) + /0 e ) (| (e @200 Ex)() |

t
o | W Y @)[2) i + /0 (1+ 07| (1, 02, B, 9100 02)(1,0) e
< C(||(¢10, Y105 920, ¥20) ||f + || (10, Y10, @20, I/fzoon)Hia)(l +1)° (3.1)

for arbitrary t € [0,T] and ¢ > 0.

(ii) (Exponential decay) Suppose that (1, V1, 92, 2, E) € X0x(0, T) is a solution to (2.7)-
(2.9) for certain positive constants ¢ and T. Then there exist positive constants gy, C,
(< ¢) and a satisfying o < B such that if N(T) + 8 < &g, then the solution (¢1, Y1, 2, V2, E)
satisfies the estimate

e (| (@1 1, @2, 92O} + |21, ¥1, 02, 92, EXD| ) + /0 & (| (@ 920 E) (@)

t
0

W 2O e+ [ |02, (,0) de

t
+ / et ” ((01, wl; 2, ¢2;E, wlxr wa)(r) ||§,ﬂ ar
0
= C(” (@10, Y10, P20, ¥20) ”f + ” (910, Y10, 920, Y20, Eo) ”zﬂ) &2

For the sake of clarity, we divide the proof of Proposition 4.1 into the following lemmas.
We first derive the basic energy estimate.

Lemma 3.2 Suppose that the same assumptions as in Theorem 1.1 hold. Then there exists
a positive constant &g such that N(T) + 8 < &g, it holds that

t
X ¥ 0¥, BN, + /0 X @ (|G ¥, 02,90, YO, + (Y10 ¥2)(D)]5,) dT

2

+ fo x(t)(Zwi(t,0)2+E(t,0)2> dv

i=1

< C|(¢10, Y110, 920, Y20, Eo) ’iw + CL(t)*. (3.3)

Proof From (2.7), a direct computation yields

1
(;0151 + 0260 + §E2) — G + Vi + ¥, = (Ve + Ya¥an)s + Ry, (3.4)

t

here

gi = 5(,0i, Mi) (l =1, 2)7

1 -
Elp,u) = Do, p) + Slu~ il

d(p, p) = /p wd&

3 2
5 s

Page 7 of 22
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Gi = —p1m &1 — paua&s — (P(,Ol) - P(ﬁ))l/ﬁ - (P(,Oz) —P(ﬁ))l/fz - gEz,
R = - iix[P(pl) —P(p) — P'(p)g1 + (pru1 — pit)yn
2

+ P(pa) - P(5) — P'(9)pa + (path — pit) s — 152]

1 1
= =P(0)xp1¥1 — =P(P) 2.
p ;

Owing to Lemmas 2.1 and 2.2, we see that the energy form £(p, u) is equivalent to |(p —

p,u — it)|%. That is, there exist positive constants ¢ and C such that

c(p} +¥7) <& <Clp} +v}), i=12. (3.5)
We also have positive bounds of p; (i = 1,2) as

0<c=<p; (i=1,2)<C, (t,x) € [0,T] x R,. (3.6)

Further, multiplying (3.4) by a weight function W (¢, x) = x (£)w(x), we have

1
<Wp151 + Wpals + EWE2> — (WG + WoGy + WYL, + Wy,

t

2
1, 1,
= VVt(P151 + 02& + §E ) + (; Witix — Eleﬂi )

X

+ =W (W +95) + WRy. (3.7)

N =

Due to the boundary conditions (1.3) and (2.9), the integration of the second term on the
left-hand side of (3.7) over R,

/ <W|:P1M151 + Pt & + (P(,Ol) —P(ﬁ))lﬁl + (P(/Ol) —P(ﬁ))l//z + gE2]> dx

= —x @) p1(t, 0)up&i(£,0) — X (£) p2 (£, 0)up (2, 0) — %uhx(t)E(t,O)2

> Cx(£)(¢1(5,0)* + 2(2,0)* + E(,0)), (3.8)
where we have used the estimates (3.5) and (3.6). Next, G; can be computed as
G1 =Gy + G (3.9)
with

Kyp!™|u u
Gy = voi | +|( 2 2) O+t

5 ) = (V)

u
~Kyp! Mo1yn + g2v2) — 552

Page 8 of 22
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and

2 ~ ~ 2
Kyp,u, ,_,_ _ e 14 Y(pr
Gn=-) ( 2p; (P - p! 3pf)¢?+1<p+u+p”[<l><— -5l -1
1

i=1

A\ ,
+ Ky (57 = pl it + Kp7 [(%) -1-y <% - 1)}% + (pitti — p+u+)5i)

1
- 5(14 —u,)E2.

The conditions M, >1 and u, < 0 yield that the quadratic form Gy; is positive definite

since
2 3
P(p:)2 o pin/Pr o
Gy = : S)M, -1
1 FZI[( 2, ¢+ ) Ui )( )
VP (p:) 1
+ Tf( P'(p.)pi — ,0+l[fi)2:| - §u+52
> Cof + 97 + 93 + 5 + %),
which yields
t t 9
/ W,Gndxdt > C/ X(r)‘(gol,l/fl,wg,lpg,E)’wa drt. (3.10)
0 JR, 0

Using (2.5), (3.5) and the inequalities |®(s) — 5(s = 1)*| < Cls — 1], |s¥ =1 - y(s —1)| <
Cls —1|? for |s — 1| < 1, we have the estimate for Gy, as

1Gial < C(N(8) +8)(¢f + Vi + 93 + 3 +E?),
which implies
t t )
/ WGy dxdt < C(N(t) + 5)/ x@)|(pr, Y1, 92,9, E),, dr. (3.11)
0 JR: 0

Moreover, the positive bound of p; (i = 1,2), (3.6) and the Schwarz inequality yield the
estimate for R; as

IRy| < Cliix|(@7 + V1 + @3 + V3 + E?),
then we have

t t
f WRidxdt < C/ X(t)|(¢l’wl’(p2’¢2’E)|§,|i¢x\w dr. (312)
o JR, 0

Therefore, integrating (3.7) over R, x (0, ), substituting the above inequalities (3.8)-(3.12)
into the resultant equality and then taking N(7') + § suitably small, we obtain the desired
estimate (3.3). O
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Next, we obtain the estimate for the first-order derivatives of the solution for (2.7)-(2.9).
As the existence of the higher-order derivatives of the solution is not supposed, we need
to use the difference quotient for the rigorous derivation of the higher-order estimates.
Since the argument using the difference quotient is similar to that in the paper [21, 22], we

omit the details and proceed with the proof as if it verifies

(@1, Y1, 902, Y2) € C([O, T];HZ(R+)), Prx P2x € LZ([O: T];Hl(R+)),

Ex S L2([0; T];LZ(R+))’ wlx’ ’(//Zx S LZ([O: T]tz(RJr))
Lemma 3.3 There exists a positive constant gy such that if N(T) + § < &g, then
t
X (1020 + f K@ ([| @ @20 ED|* + 01(1, 0) + ¢24(7, 0)?) d
0
C(| (§010’¢20)x||2 + |(¢10, 020, Y105 I/fzo,Eo)E,w) + CL(t)* + CSM(t)>. (3.13)

Proof By differentiating the first and third equations of (2.7) in x, and then multiplying

them by ‘%’“ and ‘%", respectively, one has for i = 1,2,
1 2

2 2
®; ui@; . P 1 i
(&) +(5%) -o+ s ot =45,
¢ x i

2p} 2p; Pl P
which yields
2 2 2 2
Pix Pox ) ( My, U9y, ) 1 1
+ + + + S OLWiex + —5 P2 V2ux = Rt (3.14)
(2/)? 203 200 203 ) ot g Y
2 2
with Ry = ﬁx(p— - —(plxl//lx + ux— - —<p2x1//2x - flx s _ f .22 On the other hand, multi-
Py 2

plying the second and fourth equatlons of (2.7) by “’“ and mx , respectlvely, gives

Vi Vi Pt} P(p;) 1. P
(_lgoix - —lfﬂu-'- At _¢£c+ 2l ‘/)L'Zx_ — Ui Vix + ﬂwf
Pi ¢ Pi i Jx P; Pi Pi

2/0x it (PxPi — PPix) Vi
wtx T
i

AL wzx +(= 1), 1 L+ (pixI/;ixx, i=1,2.
0

i i i

Further, we have

~ = 2
(Lo 2n) -(Lo . AR
t x

- lt - 2t
P1 P1 ,02
" P/(/h) §02 P/(/O2)(p2
1012 1x ,0% 2x
E E
= P — — o +R22 + q)lxlglxx " (prIZZxx, (315)
L1 P2 P1 £3
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here
1 ) 20 ity (Pxp1 — PPV @1
Ry = —typr¥x — ﬂlﬁl - —xlﬁllﬁlx g
P1 P1 P1
1 pxx ux(px(/)Z - Pﬁl’zx)lﬁz Dox
+ —UxPrPon — —1/f2 5 -8
P2 Py Py

Combining (3.14) and (3.15), we have

<</712x L ot Do s <P2x1ﬂ2) . (leﬂlzx oV pyt . U203,
200 205 e ) \ 200 m o, 20
_puta ﬁx¢22> N P (p1)¢3, . P'(02)p3,
2 e ) P p3

P

) + R21 + R22 (316)
02

(%t

vk v (2

P1

The second term on the right-hand side of (3.16) can be rewritten as

— Eo
E(@ ~ @) [ py—Inp), )~ (o1 = P2)Epy

) P12
E.Ep
= [(np1 —Inpp)E] - (Inpy — In po) E, + ——.

P1P2
Under the assumption (3.6) on the densities, it holds that
2 xElax ~ 2 2

(Inp; = In p,)E; > CE,, oipy < C|Px|(E +E). (3.17)
102

Moreover, owing to the Schwarz inequality with the aid of (2.5), Ry; is estimated as

Rot < i (93 + Vi + @3 + Va) + 15xl (01 + Vi + 03, + Vi)
+ 10nal (W + 03 + Wy +93,) + |ihaal (0] + 03 + 03 + 03,)

< C8(<p12 + @3+ YL+ Vs QL+ @r UL+ V). (3.18)
Similarly, we have

Roy < e(f, + 93,) + Co (V¥ + 7 + Va3 + 13)

+ CO(@f + @) + YT + V3 + @ + @, + Uiy + V3 (3.19)

Multiplying (3.16) by a weight function y (¢), we get

2 2 A 2 2 Al B2 2 P (0:)b2
[X(t)z<2¢:; . %’?ﬂlﬂ . X(t)Z(ZW;’“ B %n@ _ px%, ) 'y x(0) (2p,)¢,x
i=1 i ¢ i=1 ®

2p; i pi — i

_ 2 ¢i2x YixVi (plx (/)296
- Xt(t) Z 2,03 +— 0i Z W 02

i=1

+ X ()R + x (£)Raa. (3.20)
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The boundary condition (2.9) gives

*© 2 M'(ﬂ‘z it ,51#*2
/0 [x(t) Z(ﬁ - Tl)} dx > Cx () (01(£,0)* + 92:(£,0)*)  (3.21)
and
fw x[(np; —In pz)E]x dx < Cx (¢1(t,0)* + 2(t,0)* + E(£,0)?). (3.22)
0

Integrating (3.20) over [0, ¢] x R,, substituting (3.17), (3.18), (3.19), (3.21), (3.22) and the

estimate

|<p1(t,x)} + “pZ(t)x)| + |%(f,x)| + |¢2(t7x){ + ’E(t!x”

=< "Pl(t: 0)| + }¢2(tr0)| + |E(t’0)| + \/;H ((/)lx! P2xs WIxr WZxIEx)(t) ’

(3.23)

which is proved by the similar computation as in [21-24], in the resultant equality, and take
¢ and § suitably small. These computations together with (3.3) give the desired estimate
(3.13). 0

Lemma 3.4 There exists a positive constant ey such that if N(T) + § < &o, then

X (t) ” (WIx! wa) Hz + /(; X (T) ” (wlxx: w2xx) ” 2 dt

< C(]| (W10, ¥20)x ||2 + (@10, 20, V10, W20, Eo) |§w)

+ CL(t)* + C(N(2) + 8)M(2)*. (3.24)

Proof Multiplying (2.7), by —%, and (2.7)4 by - ‘”;;"‘ , respectively, we have for i =1, 2,

2 2 2
(&> - (%tlﬁix + Mz_%) + Vi
t X

2 2 Pi
3 gyl Plo Vi :
=——=%_ ”x_l/’m + (pl)q)ixwixx + glwlxx + (_l)lEl//ixxv
2 2 Pi Pi

which yields

2 2 2 A2 2 2

i=1
with

3 -2 p 3 s 2 p
Ry = Vi WY N (pl)(plx%xx Yy by, . (p2)§02x1ﬂ2xx L& WYlnx L& w2xx.
2 2 o1 2 2 02 o1 02

Note that —Evriy + EYoxy = —(E(Y1 — ¥2)x)x + Ex(¥1 — ¥2)x, and the function R3 is estimated
by using (2.5) and Schwarz inequality as

2 2 2 2 2 2 4 4
R3 = S(wlxx + wax) + CS (wlx + wa + (olx + (p2x + wlx + I//2x)

+ Colita| (97 + @3 + Vi + ¥y + Ui+ V3,) + Celal (0] + 03), (3.26)
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where ¢ is an arbitrary positive constant and C, is a positive constant depending on .
Then, multiplying (3.25) by a weight function y (£), we get

2 2 2 2
L03), - (owwr %)) 252

2
= Xt Z % - X [E(wlxx - wax) - R3]~ (3.27)
i=1

]

Integrate (3.27) over [0, £] x R,, substitute (3.26) as well as the estimate

/o (Wi + Vi) dx < CWLT IVl + 192 11 axl1?)

= CN(t) || (wlxr 1;lflxow w2x¢ wax) || 2

and
t
| e - v 0.0)| e
t t
2 2
S/O X [E0,7))| dr+/0 x| (W1 = ¥2)(0,7)* dr
t ¢ ;
S/O X’E(O,t){2d1+Cg/O X||(W171ﬁ2)x||2dr+sf0 X W 2| de

in the resultant equality, and take ¢ suitably small. These computations together with (3.3),
(3.13) and (3.23) give the desired estimate (3.24). O

Proof of Proposition 3.1 Summing up the estimates (3.3), (3.13) and (3.24) and taking
N(T) + § suitably small, we have

2 2
x (@) [Z <|<<pi, ] Y [T/ H2> + |E|§,W}

i=1 i=1
2

¥ /0 x(f)[Z(I(% Uy, * Wi, + 017,00 + 01x(,00* + | (@i Vins) )

i=1

+ |E(r)‘

IR +E<f,0)z} i
= Cltgr0. 10,920, Wzo,Eo)E’W + [ (@105 Y105 920, l/fzo)xHZ) + CL(t)% (3.28)

First, we prove the estimate (3.1). Noting the Poincaré-type inequality (3.23), and substi-
tuting w(x) = (1 + x)? and x (¢) = (1 + ) in (3.28) for B € [0,a] and & > O gives

(L + 2 (o1, v, 00, 02, YO + [ 01,0, ¥, 92) D))

+ / 1+ (@1(7,0)” + 92(7,0)* + 91(7, 00 + 92(7,0)* + E(,0)*) d
0
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t
+ ,3 A (1 + ‘L')E || ((01; I/fl,¢2) w2:E)(T)||iﬁ_1 dr

t
. /0 1+ 0 (|10 02O, + | res 020 Ve V) (O] P) e
< C(||(¢10, Y105 920, Ex¥r20) ”f + || (@10, Y10, @20, Y20, Eo) Hiﬁ)

+ (6= [ o e
+ C‘i: /0 (1 + T)S_l(” ((Pl: 1plr ¥2, WZrE) ”i,ﬂ + || ((plx: wlx’ P2x> sz) ”2) dr. (329)

Therefore, applying an induction to (3.29) gives the desired estimate (3.1). Since this com-
putation is similar those in [23, 25], we omit the details.
Next, we prove the estimate (3.2). Substitute w(x) = e#* and x (£) = e** in (3.28) for B < A

to obtain

(|t ¥1,02, V2 EYO Ly + [ (1 9200 Y ¥2) O] )

t

+ | € (@1(t,0)% + 9a(1,0)% + 91(T, 0)* + @2x(7,0)* + E(7,0)?) dt

S~

t

e’ (:3 || ((pl: 1#1; ©2, ¢2’E)(T) “iﬁ

+

S~

+ || ((plx: P2 Ex7 Ilflxx: szx)(f) || ? + || (vflx; 1pr)(":) || z,ﬂ) dt

=< C(][ (@10, Y10, 920, ¥20)x Hz + || (@10, Y10, 920, V20, Eo) “iﬁ)

+C(a+p%) /Otem | (@1, 1, @2, 12, E) ||§ﬁ dt

+ca [ ' e Yo 920 Y20 |

+C8§ /Ote‘”((pl(t,O)z +¢2(7,0)* + E(7,0)*

+ |G 9200 Exs Y1 ¥2) (0] ) . (3.30)

Here, we have used the Poincaré-type inequality (3.23) again. Thus, taking §, 8 and «
suitably small, we obtain the desired a priori estimate (3.2). O

4 Apriori estimate for M, =1
In the section we proceed to consider the transonic case M, = 1. To state the a priori

estimate of the solution precisely, here we use the notations:

Ni(£) = sup || +2)*"*(¢1, Y1, 92, ¥2)(2)

0<t<t

17
Mi(t)* = / (1 + 0% [ (@150 0250 Exs Wiser Waes Wi Yoaa) () ||iﬂ dr.
0

Proposition 4.1 Suppose that the same assumption as in Theorem 1.1 holds. Suppose that
(@1, Y1, 02,2, E) € X} w (0, T) is a solution to (2.7)-(2.9) for certain positive constants o

(1+x
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and T. Then there exist positive constants gy and C such that if N\(T) + § < &g, then the
solution (@1, Y1, 2, Yo, E) satisfies the estimate

L+ 0% (| (01, Yi 02, Y@ 5 + |EO])
+ / 1+ ‘L')a/ZJrS |((/J1: ©2, Q1> P2, E) (1, 0) |2 dr
0
. fo 1+ 02 (| (1o 920 EDD | + | W10 9200 ) d

< C(|| (@10, Y110, 920, ¥20)x ”2 + || (@10, Y110, 20, IﬁzoyEo)HiQ)(l +t). (4.1)

In order to prove Proposition 4.1, we need to get a lower estimate for #, and the Mach

number M on the stationary solution (p, #) defined by M(x) := %
plx
Lemma 4.2 (see [23]) The stationary solution u(x) satisfies
re2 52 +1
awea(t) S 4D
uy, 1+ B,)? 2

for x € (0,00). Moreover, there exists a positive constant C such that

y+1 6 82 .
-C <Mkx)-1<C .
2|u,| 1+ Bx (1 + Bx)? 1+ Bx

Based on Lemma 4.2, we obtain the weighted L? estimate of (g1, Y1, 02, Yo, E).

Lemma 4.3 There exists a positive constant gy such that if Ny(T) + 8 < &9, then

1+ )% | (@1, Y1, 02, %,E)Iliﬂ + /0 1+ 7)5(p1(7,0)* + 92(1,0)* + E(r,0)*) dt

v [0 68 e g O
+BIEDL . + [ W ¥ ,) dr

t
< C||(¢10, Y10, 920, lﬁzo,Eo)”iﬂ +C§ / 1+ )" (1, Y1, 92,2, E) ||§ﬂ dt
0
¢ 2
+Cé / (1 + I)E ” ((plx; D2xs Ex: WIxx: w2xx) ”a,ﬂ dt (42)
0

for €0, and & > 0.
Proof First, from (2.7), similar as (3.4), we also have
1 -

(,0151 +pa&s + 552) + [,0114151 + (P(p1) = P(p)) Y1 — Y1Vr1x + patia&s
t

+ (P(p2) = P(9))¥r2 — Yoo + g#] + il [P(pl) ~P(p) - P (p)g1 + ;1Y
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1
+ P(p2) = P(5) - P'(5)2 + 27 - 5!52] +(Vh+ Vi)

= —%[wl + o], (4.3)

Notice that from the second and fourth equations of (1.1), one has

1 P b P 0 u
2E:8t(u1—u2)+—8x(uf—u§)+|: (01) xP1 (02) xp2j|_|:ﬂ_u2xxi|,
2 £1 P2 P1 P2

which implies

- %(ul —uy)E; + %Eax(u% - u%)

%EZ = (%(ul - uz)E)

t

L1 P2

A)/ljlx y-1 y-1 l:lx
- E+—E
+4(y—1)(p1 o )E

- (%ml - uz)E) ; <””"E(w1 - wz)) F 2 lou o) = )

Ulxx  Udxx i|

4

ﬁﬁxx Ayﬁx y-1 y-1
- E
4 4()/ _ 1) ()01 P2 )x

(5 -5) ()]
4 2 2/, 01 02

Plugging the above equality into (4.3), we arrive at

Ep - )+ ZE(V] - 43) +

Uy 1
(;0151 + 028 — Z(ul - uy)E + 552) + <;01M151 + paup &y
t
+ (P(p1) — P(D)) Y1 — Y11

+ (P(p2) = P(D))Wra — Yooy + %(w —Yn)E + gEz) + Y+ Y
‘it [P(pl) ~PR) P D)+ i = 2~ o)+ Plp)
—P(5) - P'(B)ga + pr¥f2 — %wl - W2)2:|

u

= —%[%% + @] + Ry,

(4.4)

where

Ry = ~ By — ) + %Ex(wlz —¥3) + %E(%%" —V2¥)

4
Ay _ _ Uy [ u u

+ Y Uy (1)/1_10%/ 1)xE+_x|: lxx_ 2xx:|E
4y -1) 4L P

=: R41 + R42 + R43 + R44 + R45.
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Further, multiplying (4.4) by a weight function W (¢,x) := (1 + Bx)?(1 + t)¢, we have

~x 1
(W,Olgl + szgz - MZ W(u1 - I/lz)E + E WE2>
t

1 1
+ (—WGz — W, — Wi, + wawf + i\mf)

+ W,Gs + Wwfx + Wszx + G3

= Wt(plgl + 02&s — Z(Ml —u)E + EE2> - W7[¢11ﬂ1 + @] + WRy. (4.5)

Where G, and Gj3 are defined

Gy = —p1n &1 — patir s — (P(p1) — P(p)) Y — (P(p2) — P(D)) 2
- (- yE- SE

and

Gz := Wi, [P(,Ol) —~P(p) - P (p)g1 + piy — %(Vfl —¥2)* + P(p) - P(p)
1 1
—P (D)2 + p2vry — %(wl - %)2] = 5 Wat = 5 Waats.

By the same computation as in deriving (3.9), we rewrite the terms G, and Gs to G =
Go1 + Gz, Gs = G31 + Gz with

2

P +3/2 . §28 . " P(p _ .
szz[( (2,;3 o+ " 2(p)w3>(M—1)+ 2(/5)( P/(p)goi—pwi)z}
i=1

Uik,

1
-2 (Y1 —Y)E - §M+E2,

2 ~ ~ 2
_ PP (L 1N o pesvila(LY_Y (P _
a2 (G oo (2) -3 (5 1)

i

P(5)32 P . 3/2
+ (pitti — pU)E; + (P(pi) -P(p) —P’(ﬁ)‘/’i)% - |:( (;,; - (,02) p+>§0i2

u-— M+)E21

+ (,5 P'(p) _ p+\/P/()0+))w2:| = 1):| _%(

P (M-
2 2
~ 2 1 ’ 2 1 2
Gz = Wi, PM/fl + EP/ (,0+)<ﬂ1 - 5 xx‘/’l

- 1 1
+ W, (p+w22 + EPU(P+)§0§> - EWxxwzz
and
2

1 1
Gsy = Wi, Z[(Pi—p+)1ﬁ?+ E(P”(ﬁ)—P”(PJf))(P,-Z+P(pi)—P(ﬁ)—P,(,5)</’i—EP/’(5)</7,‘2:|.
i1
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By utilizing Lemma 4.2 with the aid of the fact that 8 < «* and u, < 0, we obtain the lower
estimate of W,G,; + G3; as

2 [Kypl A u, \""
WG + Gz > E [T [(y +1)B + 2<u—b> (y - 1)]52(1 + (1 + Bx)f 2>
i=1

+2
L 24 [4<u+>y (DB -z)]sz(mfu + By }
4 up

- CﬁSS(l +1)5(1+ Bx)“"_?’((pl2 + WE + (pg + 1//22)

>

> C82(1-CoA+1)° 1+ Bx)’g_2(<p12 + 1//12 + (p% + 1/f22)
+CB(1 +¢t)* (1 + Bx)P1E? (4.6)
for B € (0, a]. On the other hand, the estimates (2.6), (3.5) and (3.6) yield

|WiGas + G| < C(N1(2) +6%)8(1 + £)° (1 + Bx)P (¢} + ¥ + 03 + 13)
+C8B( +1)* (1 + Bx)PLE2. (4.7)
For the first term on the right-hand side of (4.5), we estimate it as

; .
il
/ W —"[p1y1 + @2¥] dxdt
0 JR, 1Y

=<

. -
/ W%[(plz + wlz + <p§ + wzz] dxdt
o JR,

<C$ /t(l +1)f ((pl(O, )% + (0, r)z) dt
0

t
+ CS/ 1+7) 1+ Bx)? ((plzx + wfx + <p§x + szx) dxdt
0

Similarly, we get

t
/ WR41 dxdt
0 JRy

<

t
/ Wit [E> + Y7 + 3 | dxdr
0 JR,
12
< C8/ (1+7)°E(0,7)%dt
0

t
+C8‘/(1+r)é
0

(1 +Bx)P (Y, + 3, + E2) dxdr. (4.9)
R,

In the same way, we estimate Ry, and Ry3 as follows:

t
/ WR42 dxdrt
0 JRy

t
<Cs / A+1) [ Q+Bx)f (Y, +va + E}) dxdr (4.10)
0 R,
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and

t
/ WRys3 dxdt
o JRr,

t t
§C8/ (1+‘L’)EE(0,‘L')2d‘L'+C8/ (1+r)'§/ 1 +Bx)ﬁE§dxdr
0 0 R

+

+ CNi(2) / t(1 +1)¢ / (1 +Bx)P (Y1, + v3,) dxdr. (4.11)
0 R,

. -1 -1 -2 =2\ ~ -2 -2
Since (p{ = p3 D=y =Dlp{ =03 )bx+p] ¢1x—p3 2], we have

t
/ WR44 dxdt
0 JRy

t
< CcS/ (1+7)°E(0,7)%dt
0
t
+ C(S/ (1+1) / (1 +Bx)P (¢}, + ¢3, + E2) dxdr. (4.12)
0 R,

Moreover, it is easy to compute Rys5 = ﬁx(% - Eﬁ%) + %E((Pl — @), which implies

t
/ WR45 dxdt
0 JRy

<cs ft(l +7)5(E(0,7)* + ¢1(0,7)* + ¢2(0, 7)) dt
0

t
+ CS/ A+ | Q+Bx)f (¢}, + @3, + E2+ Y+ ¥y,) dxdr. (4.13)
0 R,

Finally, integrate (4.5) over R, x (0, £), substitute (4.6)-(4.13) in the resultant equality, and
take Ni(¢) and § suitably small. This procedure yields the desired estimate (4.2) for g €
(0,a].

Next, we prove (4.2) for g = 0. Substituting W = (1 + £) in (4.5) and integrating the
resultant equality over R, x (0, ), we get

(1 + )¢ || (01, 1, 92, ¥, E)O)|)?

¢ 2
+ /O (1+7)f (Z ¢i(t,0)* + E(7,0) + | (Y1, wa)Hz) dr
i=1

t
< C||(¢10, Y10, 10, Y10, Eo) ||2 +C§ / @+ )5 (1, Y1, 92, Y2, E) H2 dt
0

t
+Cé / (1 + 1-)5 ” (‘plxt P2x Ex: wlxx) ¢2xx) ||2 dxdr.
0

Here, we have used the fact that G, > 0 holds. Therefore, we obtain the estimate (4.2) for
the case of = 0. O

In order to complete the proof of Proposition 4.1, we need to obtain the weighted esti-
mate of (@1, Yix, Pax, Yax)-
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Lemma4.4 There exists a positive constant gy such that if N1(T)+8 < o, then for 8 € [0, ]
and & > 0,

t
(14 0| (1o Ve @20 V20) |, + fo (1 + 0 (01(,0)° + g2e(1,002) e

t
+ / 1+ -[)5 || (015 Vx> P2x> Yo Ex)(T) ”iﬂ drt
0
= C( H (¢107 WIO: 20, sz’EO) ”:ﬁ + ” ((pIOx: I/f10xr P20x> Wsz) Hi,ﬁ)

t
+Ce [ @ 01t i o s 12 O (8.14)
0

Proof Since the derivation of the estimate (4.14) is similar to that of (3.13) and (3.24), we
only give the outline of the proof. Multiplying (3.16) by W = (1 + Bx)?(1 + t)*, we have
2

ZHW<¢_% N (pixllfi):| N [W<ui<p§x i ﬁxxb?)] N WP/(piz)wfx}
p= 2p0; Oi ‘ 2p; Pi i % o;

2

-3 [Wt( Yis —‘p”‘w‘> + W(ﬁc + (—)MESE LRy 4 R22>
o 2p; Pi pi
wior el PVt
- Wx( b g dd ) . (4.15)
2p; Pi Pi

Integrating (4.15) over R, x (0, t) and substituting (4.2) gives the estimate for ¢;, and ¢y,
as

t
09l + [ A O (0.0 + 00,08 + |19 B )
0
< C||(¢10, Y10, 920, W20, Eo» 9105 P20x) ”iﬁ

t
+C& / W+ D5 (91, Y1, 01 02, V2, 02 L AT + C(NL(D) + )Mi(D)”. (4.26)
0

Here, we have used the inequalities

_ ) _ ,5x W22
208 m ;o 205 P 02

< C(1+ Bx)’ (97, + ¢3.,) + CU+ Bx) (v, + ¥13,)

+ CB(L+Bx)P 2 (pf + Y + 03 + 1/122)

2 5 2 2
u u
((+ Bx)P). 195 ou¥n  PeVi | U,

and

(1 + Bx)?|Ryy + Ray| < (& + C8)(1 + Bx)? (galzx + ‘ng) +C.(1 + Bx)? (lplzx + ¢22x)
+C8(1 + Bx)? (‘P12 + Ut r ol wzz),
where ¢ is an arbitrary positive constant. We note that the third term on the right-hand

side of the above inequality is estimated by applying the Poincaré-type inequality (3.23)
for the case of 8 = 0.
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Next, we prove the estimate for (1., ¥2,). Multiply (3.25) by W = (1 + £) (1 + Bx)” to get

1//2;; 1//2x : uiwz%c zxx
( 71+W 22 )t—Z<WWitWix+WT> WZ

i=1 i=1 pi

2 2

1 i
=Wy W Z(x/atwm l) — EWriae + EW e + WRs.  (4.17)

i=1

Integrate (4.17) in R, x (0, £) and substitute (4.2) and (4.16) in the resultant equality with
the inequalities

(4 B) [pretnes 0 1 g+ SV (11 By
2 2
8(1+Bx)’32%%¢x 1+Bxﬁ2 (0 + Vi + Vi)
i=1 i=1
2

+ C.8(1 + Bx)P™* Z(@f + 1//3)

i=1

and
/o (L4 B (1, + 9) dix < CNAO) | (e Vtams Vs V)

This procedure yields

t
1+ 0| W 2 + /0 1+ 0 | Ve 2|

C(|[ (@10, Y10, 920, Y20, Eo) | i,ﬂ + || (©10x> Vi0xs 9201 Ya0x) ”jﬂ)

2

+ Ct / A4 TS @ i Vi) |2y T + NGO + M. (218)

i=1

Finally, adding (4.16) to (4.18) and taking N (¢) + 6 suitably small give the desired estimate
(4.14). O

By the same inductive argument as in deriving (4.1), we can prove Proposition 4.1, which
immediately yields the decay estimate (1.12).
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