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Abstract
Approximate symmetries of a mathematical model describing one-dimensional
motion in a medium with a small nonlinear viscosity are studied. In a physical
application, the approximate solution is calculated making use of the approximate
generator of the first-order approximate symmetry.
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1 Introduction
We consider the third-order partial differential equation

wtt =
[
σ (wx) + λ(wx)wtx

]
x, ()

where σ and λ are smooth functions, w(t,x) is the dependent variable and subscripts de-
note partial derivative with respect to the independent variables t and x.
Equation () can describe the behavior of a one-dimensional viscoelastic medium in

which nonlinearities appear not only in the elastic part of the stress, but also in the vis-
coelastic one.
Some mathematical questions as the global existence, uniqueness and stability of solu-

tions can be found in [, ]. Moreover, shear wave solutions are found in [], where some
explicit examples of blow-up for boundary value problems with smooth initial data are
shown. A symmetry analysis and some exact solutions are shown in [–], while when
λ(wx) = λ, with λ a positive constant, a symmetry analysis can be performed in [–].
It is well known that a small dissipation is able to prevent the breaking of the wave profile

allowing to study the so called ‘far field’, and a technique widely used is the perturbation
analysis performed by expanding the dependent variables in power series of a small pa-
rameter (may be a physical parameter or often artificially introduced). Having in mind
to perform an ‘approximate symmetry analysis’, we introduce in () a small parameter ε,
namely

wtt = f (wx)wxx + ε
[
λ(wx)wtx

]
x, ()
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with f = σ ′ (hereafter, a prime denotes derivative of a function with respect to the only
variable upon which it depends). For ε= , we recover the nonlinear wave equation

wtt = f (wx)wxx. ()

The combination of the Lie group theory and the perturbation analysis gives rise to the
so-called approximate symmetry theories. The first paper on this subject is due to Baikov,
Gazizov and Ibragimov []. Successively another method for finding approximate sym-
metries was proposed by Fushchich and Shtelen []. In the method proposed by Baikov,
Gazizov and Ibragimov, the Lie operator is expanded in a perturbation series so that an
approximate operator can be found. But the approximate operator does not reflect well an
approximation in the perturbation sense; in fact, even if one uses a first-order approximate
operator, the corresponding approximate solution could contain higher-order terms.
In themethod proposed by Fushchich and Shtelen the dependent variables are expanded

in a perturbation series; equations are separated at each order of approximation and the
approximate symmetries of the original equations are defined to be the exact symmetries
of the system coming out fromequating to zero the coefficients of the smallness parameter.
This method is consistent with the perturbation theory and yields correct terms for the
approximate solutions but a ‘drawback’ is present: it is impossible to work in hierarchy, i.e.,
in the search for symmetries, there is a coupled system between the equations at several
orders of approximation, therefore the algebra can increase enormously.
In this paper we work in the framework of the approximate method proposed in [,

], in which the expansions of the dependent variable are introduced also in the Lie group
transformations so that one obtains an approximate Lie operator which permits to solve in
hierarchy the invariance conditions starting from the classification of unperturbed equa-
tion (). We obtain the symmetry classification of the functions f (wx) and λ(wx) through
which equation () is approximately invariant and search for approximate solutions.
The plan of the paper is the following. The approximate symmetrymethod is introduced

in the next section; the group classification via approximate symmetries is performed in
Section ; in Section , in a physical application, the approximate solution is calculated by
means of the approximate generator of the first-order approximate group of transforma-
tions.

2 Approximate symmetry method
In general, any solution of () will be of the form w = w(t,x, ε) and the one-parameter Lie
group of infinitesimal transformations in the (t,x,w)-space of equation () can be consid-
ered in the following form:

t̂ = t + aξ (t,x,w(t,x, ε), ε
)
+O

(
a

)
, ()

x̂ = x + aξ (t,x,w(t,x, ε), ε
)
+O

(
a

)
, ()

ŵ = w + aη
(
t,x,w(t,x, ε), ε

)
+O

(
a

)
, ()

where a is the group parameter.
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Let us suppose that w(t,x, ε) and ŵ(t̂, x̂, ε), analytic in ε, can be expanded in power series
of ε, i.e.,

w(t,x, ε) = w(t,x) + εw(t,x) +O
(
ε

)
, ()

ŵ(t̂, x̂, ε) = ŵ(t̂, x̂) + εŵ(t̂, x̂) +O
(
ε

)
, ()

where w and w are some smooth functions of t and x; ŵ and ŵ are some smooth func-
tions of t̂ and x̂.
Upon formal substitution of () in (), equating to zero the coefficients of zero and first

degree powers of ε, we arrive at the following system of PDEs:

L := wtt – f (wx)wxx = , ()

L := wtt – f (wx)wxx – f ′(wx)wxxwx

– λ′(wx)wxxwtx – λ(wx)wxxt = , ()

where we have set

f (wx) = f (wx)|ε=, f ′(wx) = f ′(wx)|ε=,
λ(wx) = λ(wx)|ε=, λ′(wx) = λ′(wx)|ε=.

Hence,w is a solution of nonlinearwave equation ()whichwe callunperturbed equation,
while w can be determined from the linear equation ().
In order to have a one-parameter Lie group of infinitesimal transformations of the sys-

tem ()-(), which is consistentwith the expansions of the dependent variables () and (),
we introduce these expansions in the infinitesimal transformations ()-(). Upon formal
substitution, equating to zero the coefficients of zero and first degree powers of ε, we get
the following one-parameter Lie group of infinitesimal transformations in the (t,x,w,w)-
space

t̂ = t + aξ 
(t,x,w) +O

(
a

)
, ()

x̂ = x + aξ 
 (t,x,w) +O

(
a

)
, ()

ŵ = w + aη(t,x,w) +O
(
a

)
, ()

ŵ = w + a
[
η(t,x,w) + η(t,x,w)w

]
+O

(
a

)
, ()

where we have set

ξ i
(t,x,w) = ξ i(t,x,w(t,x, ε), ε

)|ε=, i = , , ()

η(t,x,w) = η
(
t,x,w(t,x, ε), ε

)|ε=, ()

η(t,x,w) + η(t,x,w)w =
dη

dε

∣∣
∣∣
ε=

. ()

We give the following definition: We call approximate symmetries of equation () the (ex-
act) symmetries of the system ()-() through the one-parameter Lie group of infinitesi-
mal transformations ()-(). Consequently, the one-parameter Lie group of infinitesimal
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transformations ()-(), the associated Lie algebra and the corresponding infinitesimal
operator

X = ξ (t,x,w)
∂

∂t
+ ξ (t,x,w)

∂

∂x
+ η(t,x,w)

∂

∂w

+
[
η(t,x,w) + η(t,x,w)w

] ∂

∂w
()

are called the approximate Lie group, the approximate Lie algebra and the approximate
Lie operator of equation (), respectively.
Moreover, after putting

X = ξ 
(t,x,w)

∂

∂t
+ ξ 

 (t,x,w)
∂

∂x
+ η(t,x,w)

∂

∂w
, ()

the approximate Lie operator () can be rewritten as

X = X +
[
η(t,x,w) + η(t,x,w)w

] ∂

∂w
()

and X can be regarded as the infinitesimal operator of unperturbed nonlinear wave equa-
tion () (or ()).
It is worthwhile noticing that, thanks to the functional dependencies of the coordinates

of the approximate Lie operator () (or ()), now we are able to work in hierarchy in
finding the invariance conditions of the system ()-(): firstly, by classifying unperturbed
nonlinear wave equation () through the operator () and after by determining η and
η from the invariance condition that follows by applying the operator () to the linear
equation (). In fact the invariance condition of the system ()-() reads

X()
 (L)|L= = , ()

X()(L)|L=,L= = , ()

where X()
 and X() are the second and third extensions of the operators X and X, respec-

tively.

3 Group classification via approximate symmetries
The classification of equation () is well known (see for details Ibragimov [] and bibli-
ography therein). From (), we arrive at the following result:

ξ 
 = at + at + a, ()

ξ 
 = ax + a, ()

η = (at + a)w + atx + at + ax + a, ()
[
(a – a)wx + a

]
f ′(wx) – (a – a)f (wx) = , ()

(awx + a)f ′(wx) + af (wx) = , ()

where ai, i = , , . . . ,  are constants.
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Taking ()-() into account, from () we obtain the following additional conditions:

a = a = , ()

η = at + a, ()

η = a, ()
[
(a – a)wx + a

]
λ′(wx) – (a – a – a + a)λ(wx) = , ()

with a, a and a being constants.
After observing that conditions () impose restrictions upon X, summarizing we have

to manage the following relations:

ξ 
 = at + a, ()

ξ 
 = ax + a, ()

η = aw + at + ax + a, ()

η = at + a, ()

η = a, ()
[
(a – a)wx + a

]
f ′(wx) – (a – a)f (wx) = , ()

[
(a – a)wx + a

]
λ′(wx) – (a – a – a + a)λ(wx) = . ()

For f and λ arbitrary functions, we obtain

a = a = a, a = a =  ()

and we call the associate seven-dimensional Lie algebra the approximate principal Lie al-
gebra of equation (). We denote it byApproxLP and it is spanned by the seven operators

X =
∂

∂t
, X =

∂

∂x
, X =

∂

∂w
, X = t

∂

∂w
, ()

X = t
∂

∂t
+ x

∂

∂x
+w

∂

∂w
, X =

∂

∂w
, X = t

∂

∂w
. ()

The classification of f (wx) and λ(wx) with the corresponding extensions ofApproxLP

arising from ()-() is reported in Table .

Table 1 Classification of f (w0x) and λ(w0x) with the corresponding extensions ofApproxLP

Case Forms of f (w0x) and λ(w0x) Extensions ofApproxLP

I f (w0x ) = f0e
2
p w0x X8 = x ∂

∂x + (w0 + px) ∂
∂w0

+ sw1
∂

∂w1

λ(w0x ) = λ0e
1+s
p w0x

II f (w0x ) = f0(w0x + q)
2
p X8 = x ∂

∂x + [(1 + p)w0 + pqx] ∂
∂w0

+ sw1
∂

∂w1

λ(w0x ) = λ0(w0x + q)
1+s
p –1

f0 , λ0 , p, q and s are constitutive constants with p �= 0.
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4 A physical application
Let us consider a homogeneous viscoelastic bar of uniform cross-section and assume the
material to be a nonlinear Kelvin solid. The classical equation of motion (the constant
density is normalized to  and the mass forces are neglected)

wtt = τx ()

assuming a stress-strain relation of the following form:

τ = σ (wx) + λ(wx)wxt , ()

where τ is the stress, x the position of a cross-section in the homogeneous rest configu-
ration of the bar, w(t,x) the displacement at time t of the section from its rest position,
σ (wx) the elastic tension (wx is the strain), and λ(wx)wxt is the viscosity component of the
stress, reduces to ().
Let us consider the following form of the tension σ (wx):

σ (wx) = σ log( +wx), ()

which was suggested by Capriz [, ].
So, we fall in Case II of Table  with the following identifications:

f = σ, p = –, q = . ()

In this case, the approximate Lie operator X assumes the form

X = x
∂

∂x
– (w + x)

∂

∂w
+ sw

∂

∂w
()

and from the corresponding invariant surface conditions, we obtain the following repre-
sentation for the different terms in the expansion of w:

w =
ψ(t)
x

– x, ()

w = χ (t)xs, ()

which give the form of an invariant solution approximate at the first order in ε.
The functions ψ and χ must satisfy the following system of ODEs to which, after (),

the system ()-() is reduced through () and () (we have chosen s = –):

ψtt + σ = , ()

χtt + σ
χ

ψ
+ λψψt = . ()

After solving ()-() and taking ()-() into account, we have

w = –σ
t

x
– x, ()

http://www.boundaryvalueproblems.com/content/2013/1/143
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w = –



σ
λt( log t – ). ()

Therefore, the invariant solution up to the first order in ε is

w(t,x, ε) = –σ
t

x
– x – ε

σ
λt( log t – )

x
+O

(
ε

)
. ()

We have an unperturbed state represented by a stretchingmodified by the viscosity effect.

5 Conclusions
In this paper we perform the group analysis of the nonlinear wave equation with a small
dissipation () in the framework of the approximate method proposed in [, ]. In order
to remove the ‘drawback’ of the method proposed by Fushchich and Shtelen [], we in-
troduce, according to the perturbation theory, the expansions of the dependent variables
in the one-parameter Lie group of infinitesimal transformations of equation (). Equating
to zero the coefficients of zero and first degree powers of ε, we obtain an approximate
Lie operator which permits to solve in hierarchy the invariance condition of the system
()-() starting from the classification of unperturbed nonlinear wave equation (). The
proposed strategy is consistent with the perturbation point of view and can be generalized
in a simple way to the higher orders of approximation in ε.
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