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In this paper, we consider the following system:

where € is a bounded domain in RY (N > 3) with smooth boundary, da_v is the outer
normal derivative and f,g: €2 x R — R™ are positive and continuous functions.
Under certain assumptions on f(x, t) and g(x, t), but without the usual (AR) condition,
we prove that the problem has at least one positive strong pair solution (u, v) (see
Definition 1.4 below) by applying a linking theorem for strong indefinite functional.
MSC: 35A01;35J20; 35J25

Keywords: fractional Sobolev spaces; linking theorem; nonlinear boundary
conditions; strong solution

1 Introduction and main result
In this paper, we mainly study the following system:

Au=u, Av=vy, x€,

ou _ v _ (11)
a =f (&), 5 =8l u), x€dQ,

where  is abounded domain in R¥ (N > 3) with smooth boundary, % is the outer normal
derivative and f,g: 9Q2 x R — R* are positive and continuous functions.

Existence results for nonlinear elliptic systems have received a lot of interest in recent
years (see [1-12]), particularly when the nonlinear term appears as a source in the equa-
tion, complemented with Dirichlet boundary conditions. To our knowledge, about the
system with nonlinear boundary conditions, there are not many results. Here we refer to
[9, 13, 14].

We are mainly motivated by [12] and [14].

In [12], Li and one of the authors considered

—Au+u=f(xv), xeRN,
fx,v) 12)
—~Av+v=gxu), xeRN,
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Under some given conditions, we proved that (1.2) had at least one positive solution pair
(u,v) € HY(RN) x HY(RN).
In [14], Bonder, Pinasco, Rossi studied

Au =u, Av=v, x€

4 (1.3)
g—”v‘ =H,(x,u,v), g—: =H,(x,u,v), x€df.
They assumed that H satisfied the following conditions:
(H) [HGx,u,9)] < C(lulP™ o+ 9|77 +1),
(H,) The Ambrosetti-Rabinowitz type condition: For R large, if |(u,v)| > R,
10H 10H
—— @, u, V)u+ ——(x, u,v)u > H(x,u,v) >0, (1.4)
o du B v
wherep+1>a>p>0andg+1> B >g>0 with
1 1
1>—+—, (1.5)
o B
1 1 1
max£+z; qp7 + p 4+ <l+—7, (1.6)
a B g+l « p+l B N-1
1 1
4 pr- <1, and A <1 (1.7)
g+1 « p+1l B
When N > 4, they also assumed
p q q p+l1 p q+1 N+1
maxiy — + —; + < . (1.8)
a B g+l a p+1 B 2(N -1)

(Fia) 12 (e, 10,0)] < (il + 1P + 1), 12,0, )] < (el "B 4 1 41).

(Ha) H(x, u,v) = H(x, -1, —V).

They obtained infinitely many nontrivial solutions of (1.3) under the assumptions (H;)
to (H4) by using variational arguments and a fountain theorem. Note that (1.4) implies

|H(x, u, v)| > c(|u|"‘ + Ivlﬂ) -C (1.9)

(see Lemma 1.1 in [6]). Therefore it is not difficult to verify that any (PS) sequence (or (C),
sequence) of the corresponding functional is bounded in some suitable space.

The crucial part in the nonlinear boundary conditions case is to find the proper func-
tional setting for (1.1) that allows us to treat our problem variationally. We accomplish
this by defining a self-adjoint operator that takes into account the boundary conditions
together with the equations and considering its fractional powers that satisfy a suitable
‘integration by parts’ formula. In order to obtain nontrivial solutions, we use a linking
theorem (see [11]).

The assumptions we impose on f(x, t) and g(x, ¢) are as follows:

(Hy) f,g € C°(02 x R, RY) with f(x, £) = g(x, £) = 0 for any (x,£) € 9Q x (00, 0],

flx,t)>0 and g(x,t)>0 forany (x,t)€dR x (0,+00).
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(Hy) lim,—¢ f(’;’t) =lim;_, ‘@ = 0 uniformly in x € 3.

(H3) There is a positive constant C > 0 such that

fr 0| <C@+1eP),  |gbnn)| <CL+1e7T"), Vixt)edQ xR, (1.10)

where p, g > 2 and satisfy

1 1 1
—+—->1- N—l' (1.11)
yp q -

(Hg) limp— 400 % = limjg- 100 % = +o0o uniformly in x € 92, where F(x,?) :=

Jof @, 8)ds, G(x,t) := [y g(x,5)ds.
(Hs) Forall0<t<s,x € 9Q or s <t <0, x € 9L, there are two positive constants C ,
Cy,, such that

Hl(x) t) S Hl(xrs) + Cl,*’ HZ(x’ t) S HZ(x)S) + CZ,*; (1'12)

where Hi(x,t) = tf (x, ) — 2F (x,t), Hy(x, £) = tg(x, t) — 2G(x, ) with Hj(x,t), Ho(x,t) > 0 for
any£>0,x € 9.

Remark 1.1 By (1.11), there exist / and m with [+ m =1, ,m > % such that

, 101 2 1.13
>3 (1.13)

Remark 1.2 (Hs) was first introduced by Miyagaki and Souto in [15]. A typical pair of
functions f(x,2) = #71, g(x,£) =t t > 0, p,q > 2; f(x, ) = g(x,£) = 0, t < O satisfy (H;) to
(Hs). However, the pair of functions f(x,t) = t(2Int + 1), glx,t) = ¢t(2Int +1), £ > 0; f(x, £) =
glx,t) = 0, £ < 0 satisfy (Hs) but do not satisfy the usual (AR) condition and (H,) in this
paper.

Remark 1.3 The assumptions we impose on f and g are different from the assumptions
in [14]. To our best knowledge, it is the first time the group assumptions have been used
to deal with a system with nonlinear boundary conditions.

In order to state our main result, first we give a definition.
Definition 1.4 We say that (i, v) is a strong solution of (1.1) if
ue WZ%(Q), Ve WZq%l(Q)
and (u, v) satisfies (1.1) a.e. in Q.
Our main results is as follows.

Theorem 1.5 Let (Hy)-(Hs) hold. Then system (1.1) possesses at least one positive strong
solution pair z = (u,v).
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The main difficulties to deal with system (1.1) consist in at least three aspects. Firstly, due
to the type of growth of the functions f and g, we cannot work with the usual H!(£2), and
then we need fractional Sobolev spaces. Secondly, although we have a variational problem,
the functional associated to it always has a strong indefinite quadratic part. So, the func-
tional possesses no mountain-pass structure but the linking geometric structure, which
is more complicated to handle. Thirdly, as we do not assume that the functions f and g
satisfy the (AR) conditions, it is much more difficult to show that any (C). sequence is
uniformly bounded in E (see Section 2).

To prove Theorem 1.5, we try to find a critical point of the functional ® (see (2.5)) in E.
We prove that ® has a linking geometric structure and use a linking theorem under (C),
condition (see Theorem 2.1 in [11]) to get a (C).-sequence {z,} C E of ®. The main diffi-
culty now will be to prove that {z,} is uniformly bounded in E without the (AR) condition.
Then we prove that any (C).-sequence {z,} C E of ® is bounded. To overcome this diffi-
culty, we use some techniques used in [12, 16] for which the assumptions (Hy), (Hs) play
important roles. As {z,} is bounded, then we can prove that {z,} has a subsequence which
converges to a nontrivial critical point of ®. Hence, by the strong maximum principle, we
can prove that the pair solution (u, v) is positive.

The paper is organized as follows. In Section 2, we give some preliminaries. We prove

our main result in Section 3.

2 Some preliminaries
In this section we mainly give some preliminaries which will be used in Section 3. We
follow the structure in [13].

Throughout this paper, we consider the space L2(Q2) x L*(3€2) which is a Hilbert space
with the inner product, which we denote by (-, ), given by

((u,v),(go,1ﬂ))=Lugodx+/ vdo, forany (u,v),(p, V) e L*(Q) x L*(3Q).

aQ

Now we let A: D(A) C L2(R2) x L2(3Q) — L*(R) x L%*(3R) be the operator defined by

ou
A(u,ulpe) = | —Au+u, — |,
v

where D(A) = {(u,ulyq) : u € HX(Q)}. It is not difficult to verify that D(A) is dense in
L%(Q) x L*(3R2). Note that A is invertible with its inverse given by

A_l(hly h2) = (u? M|aQ)»
where u is the solution of

—-Au+u=h, in€,
) (2.1)
5y =hy, onaQ.

By standard regularity (see [17]), it follows that A~! is bounded and compact. Hence, R(A) =
L2(R) x L*(3R2). Therefore, in order to see that A (hence A™) is self-adjoint, it suffices to
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prove that A is symmetric ([18], p.512). In fact, for u,v € D(A), applying Green’s formula,
we obtain

a a
(Au,v):/(—Au+u)vdx+/ —uvda:/(—Av+v)udx+f —Vuda:(v,Au).
Q aq v Q aq OV

Hence A is symmetric. Also we can check that A (and so A7) is positive. For any u € D(A)
and by Green’s formula again, we have

d
(Au,u):/(—Au+u)udx+/ —uudG:/(|Vu|2+u2)dx20.
Q a0 0 Q

Q oV

Hence there is a sequence of eigenvalues (1,) € R with eigenfunctions (¢,,, ¥,) € L>(Q) x
L*(0Q) satisfying 0 < Ay <Ay <--- <1, <--- / and ¢, € H*(Q), ¢uloa = ¥u,

Ay + @y =Ay@y, in L,

} (2.2)
= AWy ON IR

Now we consider the following fractional powers of A, i.e., for 0 </ <1,
o0
AL D(AY) - LX(Q) x L*(99),  with Alu =" AL an(@n, ¥n),
n=1

whereu =Y "7, a,(¢u, V). Let E! = D(A"), which is a Hilbert space under the inner product
(, 0t = (Alu, Alg).

Note that E/ ¢ H*(2). Indeed, if we define A; : H*(Q) C L*(R) — L*(R2) by
Aiu=-Au+u,

and A, : H*(Q) C D(Ay) C L*(3Q2) — L2(02) by
Aru = a—u,
av
then A = (4}, A,) satisfies
A=Aluu, ueDA)ND(Ay),
and hence
A=A, ueD(A)) ND(AL).

Since D(A;) = H*(R2) C D(A;), we have D(A!) c D(A}). Therefore,

E'=D(A") = D(A)).
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Noting that  is smooth, it follows from the results of p.187 in [19] (see also [18, 20]) that
E'=D(A}) c H*(Q).
The following compact result will be useful later.

1
Proposition 2.1 (Theorem 2.1, [14]) Given [ > % and r > 1 so that % > % - 21\11%’ the inclu-

. .ol s il 1 21-1
sion map i : E' — L"(0R) is well defined and bounded. Moreover, if © > 5 — 5=, then the

inclusion is compact.

Denote E = E! x E™, where [ + m =1, I, m are the same as in Remark 1.1 and define
B:EXE— Rby

B((u, v), (@, w)) = <Alu,A’"1p) + (Algo,A"’v).
Associated to B, we have the quadratic form
1 I m

Q(z) := EB(Z’Z) = (A u,A v).
It is easy to see (one can refer to [14]) that the bounded self-adjoint operator L : E — E de-
fined by (Lz, n) := B(z, ) has exactly two eigenvalues +1 and —1, and that the corresponding
eigenvalues E* and E~ are given by

Et = {(u,A’mAlu) = El} and E = {(u, —A’mAlu) = El},

where we use the notation A~ = (A”)7!. Then E = E* @ E~. The spaces E* and E~ are

orthogonal with respect to the bilinear B, that is,
B(z*,z7) =0, Vz'e€E'z €E".
Moreover, we have
Ly s + L2
S = ) = [ 4l a
2 Q

—lgm
if 25 = (4, £(A"A'u)). We see also that for z = (u,v), z = z* + z~ with z* = (w,
(A" Aly+v) - (u—A‘lAmuv) (—AAly1y)
2 ): z = ( D) ) B ) and

1 1 1
(A'u,A™) = B(z,2) = S{Lz,2) = o (|2 13- 12 12)- (2.3)

From (1.10), Remark 1.1 and Proposition 2.1, we can define the functional / : E — R as

H(u,v) = ‘/(m F(x,v)do + ./m Gx,u)do. (2.4)

Page 6 of 17
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Lemma 2.2 The functional H defined by (2.4) is of class C' and its derivative is given by

H ()0, ) = /3 S da s / g u)pdo.

Q2

Moreover, H' is compact.

Proof From (1.10), Holder’s inequality and Proposition 2.1, we have

’/ fx, vy do
aQ

< /anf(x,V)MdU

5/ (L+ P )| do
o

1 p-1
< VI raey 1V lp@e) + 19 llr(pe) 0K 7

< C(IVIZm + 1) 19 Il .
Similarly, we have

-1

< C(lullf; +1)lgllg-

f g, W do
Q

Hence H' is well defined and bounded in E. A standard argument yields that # is Fréchet
differentiable with H’ continuous. By Proposition 2.1 we know that ' is compact (see [21]
for the details). O

Now we define the functional ® : E — R for (1.1) given by
D(z) = Q(2) — H(z). (2.5)
Moreover, @ is class C'(E,R).

Definition 2.3 We say that z = (,v) € E = E! x E" is an (I, m)-weak solution of (1.1) if z
is a critical point of ®. In other words, for every (¢, V) € E, we have

(Alu,Am1//> + <Al¢,AW’V> - / fx, vy do - / glx,u)pdo =0. (2.6)
IQ 90

Now we give a regularity result of an (/, m) weak solution.

Proposition 2.4 If (u,v) € E is an (I, m)-weak solution of (1.1), then u € WZ'I%(Q), Ve
_q_
Wi (Q) and

a
Au=u in$, a—u =f(x,v) ond<, (2.7)
v
. av
Av=v ing, ™ =glx,u) ondQ. (2.8)
v

In other words, (u,v) is a strong solution of (1.1).

Page 7 of 17
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Proof Although the proof is only needed to make some minor modifications as that of
Theorem 2.2 in [13], for the readers’ convenience, we give its detailed proof.
Let us consider ¢ = 0 in (2.6), then

(Alu, A"y) - » fl, )y =0 (2.9)

forall v € E™.
If we take ¥ € H*(Q), then we have

(Alu,A”’w) = (u,Ay) = / (=AY + Y)udx + ?}—udc. (2.10)

Q Q2

On the other hand, by (1.10) and Proposition 2.1, we have

2 2
/ |f (x,v) [P do < / 1+ P Tdo < C/ (1+vP)do
a0 a0 FYe)
< C+ C|v|m < +00, (2.11)
ie,f(x,v)e LI% (3€2). Then from basic elliptic theory (Theorem 9.9, p.9, [17]) there exists
P
one function w € W1 (2) such that

0
Aw=w inQ, a—W:f(x,v) on 0%2.
v

Then we get

0=/Q(—Aw+w)wdx=/Q(—Alﬁ+1//)wdx+/;gw%do—/mf(x,v)wda. (2.12)

From (2.10), (2.11) and (2.12), we have

(u—w,Ayr) = /Q(u—w)(—Al/f + ) dx + (u—w)% =0,

Q 0

which implies that u = w. We have gotten that u € WZ’!% (€2). Finally, since u = w, we
conclude that « satisfies (2.7). We can make the same argument for v. O

3 The proof of our main result

In this section, we mainly want to prove Theorem 1.5. First we present a linking theorem

from [11]. Then we prove that it can be applied to our functional setting stated in Section 2.
Suppose that f(x,t), g(x, t) satisfy the assumptions (H;)-(Hs), then it is easy to see that

for any € > 0 there is a C. > 0 such that for (x,£) € 3Q x R! we have

[fe,0)] <eltl+ CelelP™,  |glx )| < ele] + Cele|*™! (3.1)
and

|F(x,t)| < elt]” + Cctl?, |G(x, 8)| < €lt]* + Celt|9. (3.2)

Page 8 of 17
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Since f(x,£) = g(x,t) = 0 when ¢t < 0, (4,v) = (0,0) € E is a solution of (1.1). So we are
interested in nontrivial and nonnegative solutions of (1.1).

Recall that {z,} C E is called a Palais-Smale sequence of a C! functional I on E at level
¢ ((PS).-sequence for short) if I(z,) — ¢ and I'(z,) — 0 in E* as n — oo. If I(z,) — c and
1+ ||zullg) (z) = 0 in E* as n — 00, then {z,} will be called a Cerami sequence at level ¢
((C).-sequence for short). A standard way to prove the existence of a positive solution to
(1.1) is to get a (PS). or (C). sequence for ® and then to prove that the sequence converges
to a solution to (1.1). In this paper, we want to get a (C), sequence by a linking theorem
(Theorem 2.1, in [11]). So, we need to recall some terminology (see, e.g., [11, 22]).

Let H™ be a closed separable subspace of a Hilbert space H with the norm || - || and let
H* := (H")*. For u € H, we shall write u = u* + u~, where u* € H*. On H we define a new

norm

o]

1, _
H’Zﬁ“” ’ek)| ’

k=1

|l#]| := max ||u+’

where {e;} is a total orthonormal sequence in H~. The topology generated by || - ||, will be
called the 7-topology. Recall from [22] that a homotopy #=1-g: A x [0,1] — H, where
A C H, is called admissible if:
(i) 4 is t-continuous, i.e., h(uy,,s,) — h(u,s) in T-topology as n — oo whenever u, — u
in t-topology and s, — s as n — oo.
(ii) g is v-locally finite-dimensional, i.e., for each (u,s) € A x [0,1], there is a
neighborhood U of (4, s) in the product topology of (E, t) and [0,1] such that
g(U N (A x [0,1])) is contained in a finite-dimensional subspace of H.

Admissible maps are defined similarly. Recall also that admissible maps and homotopies
are necessarily continuous, and on bounded subsets of H the t-topology coincides with
the product topology of H_ ,, and H, -
Let ® € CY(H,R!), R>r>0and zyg € H" \ {0} and define

M={z=z +tzo: |z <Rt>0}, N={zeH":|z|=r}
and

I':={heC(M x[0,1],H)|h is admissible, 4(u,0) = u and

CD(h(u, s)) < max{(b(u), —1} for all s € [0, 1]}.

Proposition 3.1 (Theorem 2.1, [11]) Let H = H* & H~ be a separable Hilbert space with
H~ orthogonal to H*. Suppose that
(i) (@) =35lz" - lz71*) — W(2), where ¥ € C*(H,R?") is bounded below, weakly
sequentially lower semi-continuous and V' is weakly sequentially continuous.
(ii) There exist zg € H'\{0}, @ >0, and R > r > 0 such that ®|y > a and ®|yp < 0.
Then there exists a (C).-sequence for ®, where

:= inf sup ®(h(u,1)).
€= jof sop @k D)

Moreover, ¢ > «.
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For fixed zp € E*\{0} and R > r > 0, let
Mp={z=2"+pzo:2  €E,|lzle <R p>=0}, N,={z€E":|zllg=r}
Lemma 3.2 There exist r > 0 and o > 0 such that ®|y, > a.

Proof Foranyz € N,,z = (u,v) € E*,weknow thatv = A™Aly or, equivalently, # = AlAamy,
By (3.2) and Proposition 2.1, we have

/F(x,v)dcr+/ Gx,u)do
FYe! a0

5/ (‘F(x,v)’ + ’G(x,u)’)da
FYe)

< / [(6|V|2 + C€|v|p) + (e|u|2 + Cg|uq)]da
a9

2 2
<ellully + Cellullyy + €llvignm + Cellvigm

2 2
<ellzllz + Cellzll: + €llzllz + Cellzl|Z.
Since p,q > 2, we have if ||z| ¢ = r is small enough,

D(z) = /AluAmvdx—/ F(x,v)do—/ G(x,u)do
Q a0 IQ

2 2 p q
> Slzlle - €llzllz - Cellzllz — Cellzllp = > 0

N =

for some « > 0. O

Lemma 3.3 For the r given by Lemma 3.2 and any zo = (19, vo) € E*\{0} with ||z||g =1,
there exists R > r such that ® |y, <0, where Mg ={z=2"+ pzo : Izl <R, p = 0}.

Proof If z € Mg, then z = z~ + pzo with either : ||z]g =R, p >0or: |z|[ <R, p = 0.
(i) If p = 0, then we have z € E-, z = (u,—A~""A'u) and

1
O =L | - / Fxv) - / Gl 1) <0,
2 09 2
since F(x, t), G(x,t) > 0 for any (x,£) € 9Q x R
(i) Assume that p > 0. We argue by contradiction. Suppose that there exists a sequence

{zn} € OMy, 24 = pnzo + 2,5 Pn > 0, |20llE = 1, |24l = msuch that ®(z,,) > 0.If z,, = (u, V) :=
(ontto + @ Puvo + V), then by the definitions of E* and E-, we have

(Alun,Amvn>:fAlunAmvndx
Q
= [ Ao+ 0)A" oo + i)
Q

= / (,onAluo + Algon) (onA"'vo + A", dx
Q

Page 10 of 17
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) / (02]A'uo|* = puAuoAl gy + puAluoAl gy — | A", ") dx
Q
2 1

= 2ol - 5 |2 7

Hence,

1
®(z,) = 5(,05||zo||% — ||z; ”}23) —/ F(x,v,)do —/ G(x,u,)do > 0.
a0 3

Q
Therefore,

o 1 2 2 F(x, G(x,

IIZ(nZIT% ) 5(IIZ)(;);H% ol - ||||:1:||||1]295> - /;Q . VnII)Z:H?s(x = do>0
Denote §,, := HZZ—HIIE’ w), = HZZH;IHE = (@ ¥n). Then

®d(z,) 1

do > 0. (3.3)

n

2 H 7”2) _/Q F(x,v,) + G(x,u,)

20" £ [EAY

[EA

On the other hand, 82 + ||, ||2 = 1, which implies that §2 — §> > 0 for some § > 0 and

w, =~ w= (@, V) € E as n — 00, where — denotes the weak convergence in E.
If § = 0, then from (3.3) we get

[w-]” = o, /F("'V"’daao, fG(x’u")do—>0.
il a

o lzlz o lzallz

Since F(x, t), G(x,£) > 0 for any (x,£) € 3Q x R!, by (3.3) we know that §, > |w;, ||

Therefore,
1 =8£ + Hw;”z — 0,
which is impossible.

If § > 0, since §> — §% > 0 and ||z,||[g — +00 as n — o0, it follows that p, — +o0. If
x € 02 is such that dug + ¢ # 0, we have

Uy +
PO T _ Sup + G(x) £0,
n—>+00 ||z, || g
thus,
Uy = Pulhy + P — OO, (3.4)
as 71 — OQ.

Similarly, if 8uo(x) + ¥ (x) # 0, we have
Vi = PpVo + Yy —> 00, (3.5)

as 71 — OQ.
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Since 24 5 0 and F(x,t), G(x,£) > 0, we get

llzn 112

1 2 2 F(xyvn) Vn g G(x; Mn) Uy ?
0 5(8”_”””9_/39[ 2 (nznug) YT <||zn||5) ]d"

1 2 _ 12 F(x: Vn) Vn 2
= _(Sn_ ”Wn”}s)_/ - 2 do
2 Guo+970)  V» llzll e
Gx,u U 2
) / (. n>< . ) "
{Bug+@#0) Uy 2l
Note that
u Uug + -
n =,0n0 (p"—\8u0+<p in E!
llzull£ £
and
v Vo + -
n_ _ P Ipn—\évo+w in E”,
1zl 1zl

as n — +00. Hence, by Proposition 2.1 we may assume, passing to a subsequence, that

Uy Pnlho + Qn ~ Vn PnVo t w;q
= — Sup + @, =

= = — Svy + 1} a.e.in €2,
llzulle llzulle 2l izl

as n — +00. By (3.8), (3.9) and (H,), taking limit in (3.10), using Fatou’s lemma and the
fact that liminf,_, « ||} |2 > ||[w™||%, we obtain

1 -
0<-(8*-|w “125) —/ (+00)(8vo + V) do — / (+00)(Suo + @)’ do
2 {8v0+70) {810 +§70)
— —00,
which is impossible, thus the lemma is proved. d

Lemma 3.4 If{z,} is a (C).-sequence of ®, then {z,} is bounded in E.

Proof Suppose that {z,,} C E is a (C), sequence for &, that is,

D(z) > ¢, [P (zn)

E* (1 + ”Z}’IHE) — 0;
which shows that
c+ 0(1) = CI)(zn), <(b,(zn): Zn) = 0(1), (36)

where o(1) — 0 as n — +00.

We suppose, by contradiction, that

lzullg — +00, (3.7)
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Zn

llznll E

and let w,, = := (wl,w?). Then w, € E with
lwnllg =1.

By Proposition 2.1, {w, } contains a subsequence, denoted again by {w,,} = {(w!, w?)} such
that we may assume that

wl(x) = wl(x) in E/, w?(x) = w*(x) in E;
wl(x) - wl(x), w2(x) - w?(x) a.e. in (3.8)
wl > win L*(0Q) 2 <a < 2](\,1:11)); ‘
w2 — win LA(3Q) (2 < B < Z),
Let 92, = {x € 92, w(x) #(0,0)}. Then we have
. . zp(x) .
lim wy,(x) = lim =w(x) #(0,0) indQ,
n— +00 n—+00 ||z, || g
and (3.7) implies that
|z,] — +00 a.e.in Q2.
We may assume, without loss of generality, that
|ty = +00  a.e. in 0. (3.9)
By (Ha4), we see that
G(x, uy,
M =+00 a.e. indQ..
n—+00 |1y, (x)]
This means that
G(x,
lim w ’w;(x)‘z =+00 a.e.indQ.. (3.10)
n—+00 |1y, (x)]
By (Ha), there is an Ny > 0 such that
G(x,
t,5) (3.11)
Is|?

for any x € 9Q and s € R! with |s| > Nj. Since G(x,s) is continuous on 92 x [N, No],
there is an M > 0 such that

|Gx,5)| <M, (3.12)

for (x,£) € Q x [-Ny, Np]. From (3.11) and (3.12), we see that there is a constant C, such
that for any (x,s) € 3Q x R!, we have

G(x,5) > C,
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which shows that

Gx, u,(x) - C

[EAY

This means that

G(x, u,(x))
—_— - (3.13)
|Mn(x)|2 | | ”ZnHE
Since by (3.6) we have that
c+0(l)=D(z,) = <Alun,Amvn) - / [F(x, v,) + G(x, u,,)] do,
90
which shows that
1 F bl G i
0 o) _ (Alw;,Amwi)—/ [Fs.v) + Gl tinll (3.14)
2z 99 lzn |
Since F(x,t) > 0, we have
1 1 1112 m,, 2|2 11 am, 2
5 +0(1) =o(1) + 3 (’A wn‘ + |A wn} )dx >o0(1) + (A w,,A wn)
Q
/ [F(x,v,) + G, )]
= 5 do
a0 (EAI
G r%n
- | G ter) 4 (315)
s llzallz

We claim that [ =0
If [0Q2.| # 0, then by Fatou’s lemma, (H4) and Holder’s inequality, we get

+00 = +00[082|

G(x, u, C
|:/ limioof l(:u)('?;))\ 1()| do — / hmsup”—daj|
ay " 99, n—>+00 Zull2
G(x, C
=/ limlnf<w| 1 | 2>d0
a0, 1=+ U |ua(x)| 2l
G ) n C
§liminf/ (MM@)F- 2>d0
n=+00 Joo \ ()] 2l
G(x, uy, C
sliminf/ <("L2| w2 )| - 2>da
n=+20 Jao \ |un(x)| 1zl

G, C
=1iminf/ Gl 4 lim/ — do
n=+00 Jyo o lunll n=>+0 Jyq l1Zullg

= 1iminf/ Mdd
FI9)

7400 12117

1
< —+o0(1),
=5 o(1)

which is impossible.
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This shows that
[0€2,] = 0.

Hence w(x) = (0,0) a.e. in 9%2.
Since ®(tz,) is continuous in ¢ € [0, 1], there exists ¢, € [0,1] (n=1,2,...), such that

D(tnzn) = max O(tz,).
As (D'(z,),z,) = 0(1), we see that
(@' (tn2n), tuzn) = 0(1).
By (Hs), then we get for ¢ € [0,1] that

2®(tz,) < 2 (t,un)

= 2q>(tnzn) - (q),(tnzn)7 tnzn) + 0(1)

= / [(t,,v,f(x, tyv,) — 2F(x, t,,v,,)) + (t,,u,,g(x, tatty) — 2G(x, t,,uy,))] do +0(1)
a0

5/ [(v,(f(x,v,,)—ZF(x,V,,)+Cl,*)
90

+ (g, ) = 2G(x, 1) + Cai) | do + 0(1)

=2¢+ (Cpy + Cy) 092 +0(1). (3.16)

On the other hand, taking ¢ = ﬁ € [0,1] and z, = (4., uy,), by (3.8) then w,, = (ttn)

lznllE

(,6,) € E' x E' and 6, — 0 in L'(9R2) (1 < r < Z5D). From (3.2) and 6, — 0 in L'(3<)

1<r< %)asne 00, we obtain

2®(Rw,,) = 2R? -2 / [F(x,R0,) + G(x,R0,)| do = 2R* + o(1).
I

So we have

2R? + 0(1) = 2D(Rw,) < 2¢ + (Cpy + C2.4)|3K2] + 0(1).
Letting n — oo, we get

2R? < (Cyy + C2,)092 + 2c.

Letting R — oo, we get a contradiction. This proves that ||z,|r < C < +00 for some con-
stant C. O

Proof of Theorem 1.5 Under the assumptions (H;)-(Hs), we know that the functional &
given by (2.5) is in C!(E,R!). By Lemma 3.2, there exist 7 > 0 and & > 0 such that ®|y, > «,
where N, = {z € E* : | z||g = r}. By Lemma 3.3, for such an r, there exist R > r and suitable
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zo € E*\{0} such that ®|js;, < 0, where My was given before Lemma 3.3. Note that E =
E* ® E™ and for z = (u,v) € E, we have

0@ = S| |2~ L |2 - [ [Feov) + Gl w)] do.
2 2 e}

Since from Proposition 2.1 and Remark 1.1 we know that E CC L7(32) x LP(9%2), from

(3.2) and Fatou’s lemma, we know that
H(z) = / [F(x, v) + G(x, u)] do
a0

is C! and H > 0 is weakly sequentially lower semicontinuous and H’ is weakly sequentially
continuous in E*. Hence by Proposition 3.1 there exists a (C).-sequence {z,} for ®, where
¢ >« >0. By Lemma 3.4, {z,} is bounded in E. So, up to a subsequence, we may assume
that z, — z #(0,0) in E, as n — oco. From Lemma 2.2, we know that A’ is compact. So it
is easy to check that ®’(z) — 0 in E*. Hence z is a nontrivial solution pair of (1.1). Obvi-
ously, z = (1, v) € E is a nonnegative solution pair of (1.1). Applying the strong maximum

principle, we obtain that # > 0 and v > 0. This completes the proof. O
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