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Abstract
In this paper, we study the bifurcation and stability of solutions of the extended
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1 Introduction
In this paper we work with the extended Fisher-Kolmogorov type equation with periodic
boundary condition, which reads

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t = –μ ∂

∂x u + α ∂

∂x u + λu + g(u), (x, t) ∈R× (,∞),∫ π
 u(x, t)dx = , t ≥ ,

u(x, t) = u(x + kπ , t), ∀k ∈ Z,

u(x, ) = u, x ∈R,

(.)

where u = u(x, t) : R × [,∞) → R is an unknown function, μ > , α >  are constants,
λ ∈R

+ is the system parameter. g(s) is a polynomial on s ∈R, which is given by

g(s) =
p∑

k=

aksk ,

where  ≤ p ∈N and ak are given constants.
The extended Fisher-Kolmogorov (EFK) equation has been proposed as a model for

phase transitions and other bistable phenomena [–]. It has been extensively studied
during past decades. Kalies and van der Vorst [] considered the steady-state problem;
by analyzing the variational structure, they proved the existence of heteroclinic connec-
tions, which are the critical points of a certain functional. Also, by the variational method,
Tersian and Chaparova [] derived the existence of periodic and homoclinic solutions.
Peletier and Troy [] were interested in the stationary spatially periodic patterns and
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showed that the structure of the solutions is enriched by increasing the coefficient of
the fourth-order derivative term. The structure of the solution set was also investigated
by van den Berg [], who enumerated all the possible bounded stationary solutions pro-
vided this coefficient is small. Rottschäer and Wayne [] showed that for every positive
wavespeed there exists a traveling wave. And they also found the critical wavespeed to
discriminate the monotonic solution from the oscillatory one. By an iteration procedure,
Luo and Zhang [] proved that equation (.) possesses a global attractor in the Sobolev
spaceHk for all k >  provided that ap <  and p is an odd number. We refer the interested
readers to the references in [–] for other results on the EFK equation; see also, among
others, [–].
Returning to problem (.), our main interest in the present paper is the bifurcation and

stability of solutions. By using a notion of bifurcation called attractor bifurcation devel-
oped byMa andWang in [, ], a nonlinear attractor bifurcation theory for this problem
is established. Work on the topic of attractor bifurcation also can be seen in [, ].
The main objectives of this theory include:
() existence of attractor bifurcation when the system parameter crosses some critical

number,
() dynamic stability of bifurcated solutions, and
() the topological structure of the bifurcated attractor.
Our main results can be summarized as follows.
. If λ ≤ μ + α, the steady state u =  is locally asymptotically stable.
. As λ crosses μ + α, i.e., there exists an ε >  such that for any μ + α < λ < λ + ε,

system (.) bifurcates from the trivial solution to an attractor �λ.
. �λ is homeomorphic to S and consists of exactly one cycle of steady solutions

of (.).
Moreover, we apply this theory to a model of the population density for single-species

and derive biological results.
This article is organized as follows. The preliminaries are given in Section . The math-

ematical setting is presented in Section . Themathematical results are given in Section .
In Section  we applymathematical results to amodel of the population density for single-
species and derive biological results. In Section  we discuss some existing results and
compare them with ours. Finally, Section  is devoted to the conclusions.

2 Preliminaries
We begin with the definition of attractor bifurcation which was first proposed by Ma and
Wang in [, ].
Let H and H be two Hilbert spaces, and letH ↪→H be a dense and compact inclusion.

We consider the following nonlinear evolution equations

⎧⎨
⎩

du
dt = Lλu +G(u),

u() = u,
(.)

where u : [,∞) → H is the unknown function, λ ∈ R is the system parameter, and Lλ :
H → H are parameterized linear completely continuous fields depending continuously
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on λ, which satisfy

⎧⎪⎪⎨
⎪⎪⎩
Lλ = A + Bλ a sectorial operator,

A :H →H a linear homeomorphism,

Bλ :H →H parameterized linear compact operators.

(.)

Since Lλ is a sectorial operator which generates an analytic semigroup Sλ(t) = {etLλ}t≥

for any λ ∈R, we can define fractional power operators (–Lλ)μ for  ≤ μ ≤  with domain
Hμ =D((–Lλ)μ) such that Hμ ⊂Hμ if μ > μ, and H =H (see [, ]).
In addition, we assume that the nonlinear terms G : Hα → H for some  ≤ α <  are a

family of parameterized Cr bounded operators (r ≥ ) such that

G(u) = o
(‖u‖Hα

)
. (.)

Definition . [] A set � ⊂ H is called an invariant set of (.) if S(t)� = � for any
t ≥ . An invariant set � ⊂ H of (.) is said to be an attractor if � is compact, and there
exists a neighborhood ofW ⊂H of � such that for any ϕ ∈W we have

lim
t→∞distH

(
u(t,ϕ),�

)
= ,

where distH (u(t,ϕ),�) = infv∈� ‖u(t,ϕ) – v‖H , ∀t ≥ .

Definition . [] () We say that the solution to equation (.) bifurcates from (u,λ) =
(,λ) to an invariant set �λ if there exists a sequence of invariant sets {�λn} of (.) such
that  /∈ �λn , and

lim
n→∞λn = λ,

lim
n→∞ max

v∈�λn
‖v‖H = .

() If the invariant sets �λ are attractors of (.), then the bifurcation is called attractor
bifurcation.

To prove the main result, we introduce an important theorem.
Let the eigenvalues (counting multiplicity) of Lλ be given by

βk(λ) ∈ C (k ≥ ),

and the principle of exchange of stabilities holds true:

Reβi(λ)

⎧⎪⎪⎨
⎪⎪⎩
< , if λ < λ,

= , if λ = λ (≤ i ≤ m),

> , if λ > λ,

(.)

Reβj(λ) < , ∀j ≥ m + . (.)
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Let the eigenspace of Lλ at λ = λ be

E =
⋃

≤j≤m

∞⋃
k=

{
u, v ∈H|

(
Lλ – βj(λ)

)kw = ,w = u + iv
}
.

It is known that dimE =m.
The following attractor bifurcation theorem can be found in [].

Theorem . Let H = H = R
n, conditions (.), (.) hold true, and u =  is a locally

asymptotically stable equilibrium point of (.) at λ = λ. Then the following assertions
hold true:
() Equation (.) bifurcates from (u,λ) = (,λ) to attractors �λ for λ > λ, with

dimension m –  ≤ dim�λ ≤ m, which is connected as m > .
() The attractor �λ is a limit of a sequence ofm-dimensional annuli Ak with Ak+ ⊂ Ak ;

especially, if �λ is a finite simplicial complex, then �λ has the homology type of the
(m – )-dimensional sphere Sm–.

() For any uλ ∈ �λ, uλ can be expressed as

uλ = vλ + o
(‖vλ‖H

)
, vλ ∈ E.

() If u =  is globally asymptotically stable for (.) at λ = λ, then for any bounded open
set U ⊂H with  ∈U , there is an ε >  such that λ < λ < λ + ε, the attractor �λ

attracts U\� in H , where � is the stable manifold of u =  with codimension m. In
particular, if (.) has a global attractor for all λ near λ, then U =H .

Remark . As H and H are infinite dimensional Hilbert spaces, if (.) satisfies condi-
tions (.)-(.) and u =  is a locally (global) asymptotically stable equilibrium point of
(.) at λ = λ, then the assertions ()-() of Theorem . hold; see [, ].

To get the structure of the bifurcated solutions, we introduce another theorem.
Let v be a two-dimensional Cr (r ≥ ) vector field given by

vλ(x) = λx – F(x) (.)

for x ∈R
. Here

F(x) = Fk(x) + o
(|x|k), (.)

where Fk is a k-multilinear field, which satisfies the inequality

C|x|k+ ≤ 〈
Fk(x),x

〉 ≤ C|x|k+ (.)

for some constants  < C < C and k = m + ,m ≥ .

Theorem . (Theorem . in []) Under conditions (.), (.), the vector field (.)
bifurcates from (x,λ) = (, ) to an attractor �λ for λ > , which is homeomorphic to S.
Moreover, one and only one of the following conclusions is true:
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() �λ is a period orbit.
() �λ consists of infinitely many singular points.
() �λ contains at most (k + ) = (m + ) singular points and has N + n (N + n≥ )

singular points, N of which are saddle points, N of which are stable node points
(possibly degenerate), and n of which have index zero.

3 Mathematical setting
Let

H = L(, π )

and

H =
{
u ∈H(, π )

∣∣∣u(x + π ) = u(x),
∫ π


udx = 

}
.

We define Lλ = A + Bλ :H →H and G :H →H by

⎧⎪⎪⎨
⎪⎪⎩
Au = –μ d

dx u + α d
dx u,

Bλu = λu,

G(u) = g(u).

(.)

Consequently, we have an operator equation which is equivalent to problem (.) as fol-
lows:⎧⎨

⎩
du
dt = Lλu +G(u),

u() = u.
(.)

4 Mathematical results
As mentioned in the introduction, we study in this manuscript attractor bifurcation of
the EFK equation under the periodic boundary condition. Then we have the following
bifurcation theorem.

Theorem . For problem (.), if a + μa + αa <  is satisfied, then the following
assertions hold true:
() If λ ≤ μ + α, the steady state u =  is locally asymptotically stable.
() If λ > μ + α, system (.) bifurcates from the trivial solution u =  to an attractor �λ.
() �λ is homeomorphic to S and consists of exactly one cycle of steady solutions of (.).
() �λ can be expressed as

�λ =
{
x̃ cos(x + θ ) + o

(|x̃|)|θ ∈R
}
,

where x̃ =
√

(μ+α–λ)(μ+α–λ)
a(μ+α–λ)+a

(a 
= ), or x̃ =
√

(μ+α–λ)
a

(a = ), and
μ + α < λ < μ + α + ε, ε is sufficiently small.

Proof of Theorem . We shall prove Theorem . in four steps.
Step . In this step, we study the eigenvalue problem of the linearized equation of (.)

and find the eigenvectors and the critical value of λ.

http://www.boundaryvalueproblems.com/content/2013/1/169
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Consider the eigenvalue problem of the linear equation,

Lλu = βu. (.)

It is not difficult to find that the eigenvalues and the normalized eigenvectors of (.) are

⎧⎨
⎩βk– = βk = λ –μk – αk, k = , , . . . ,

ek– = sinkx√
π
, ek = coskx√

π
,

(.)

under condition that we get the principle of exchange of stabilities

β(λ) = β(λ)

⎧⎪⎪⎨
⎪⎪⎩
< , λ < μ + α,

= , λ = μ + α,

> , λ > μ + α,

βj(μ + α) < , j ≥ .

Step . We verify that for any λ ∈R, operator Lλ +G satisfies conditions (.) and (.).
Thanks to the results in [, , ], we know that the operator Lλ :H →H is a sectorial

operator which implies that condition (.) holds true.
It is easy to get the following inequality:

∥∥G(u)∥∥
H =

∫ π



∣∣g(u)∣∣ dx
≤ C

∫ π



( p∑
k=

|u|k
)
dx

≤ C
p∑

k=

‖u‖kLk (,π )

≤ C
p∑

k=

‖u‖kH 

,

which implies that G(u) = o(‖u‖H 

), where

H 

=

{
u ∈H(, π )

∣∣∣ ∫ π


udx = ,u(x + π ) = u(x)

}
,

then condition (.) holds true.
Step . In this part, we prove the existence of attractor bifurcation and analyze the topo-

logical structure of the attractor �λ.
Let Eλ

 = E = span{e, e}, Eλ
 = E⊥

 . Let 
 be the center manifold function, in the neigh-
borhood of (u,λ) = (,μ + α), we have

u = y +
(y),

where y = xe + xe.

http://www.boundaryvalueproblems.com/content/2013/1/169
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Then the reduction equations of (.) are as follows:

⎧⎨
⎩

dx
dt = (λ –μ – α)x + 〈G(u), e〉,
dx
dt = (λ –μ – α)x + 〈G(u), e〉.

(.)

To get the exact form of the reduction equations, we need to obtain the expression of
〈G(u), e〉 and 〈G(u), e〉.
LetG :H ×H →H andG :H ×H ×H →H be the bilinear and trilinear operators

of G respectively, i.e.,

G(u,u) = auu,

G(u,u,u) = auuu.

Since

〈
G(y, y), e

〉
=

〈
G(y, y), e

〉
= ,

the first order approximation of (.) does not work. Now, we shall find out the second
order approximation of (.). And themost important of all is to obtain the approximation
expression of the center manifold function.
By direct calculation, we have

〈
G(y, y), ek

〉
=

⎧⎪⎪⎨
⎪⎪⎩

a√
π
xx, k = ,

a

√

π
x –

a

√

π
x , k = ,

, k 
= ,.

According to the formula of Theorem . in [] (or Remark .), the center manifold
function 
, in the neighborhood of (u,λ) = (,μ + α), can be expressed as


(y) = –
∞∑
k=

β–
k

〈
G(y, y), ek

〉
ek +O

((|β| + |β|
)|y|) + o

(|y|)

= –(λ – μ – α)–
a


√

π

(
xxe + xe – xe

)
+O

(|λ –μ – α|(|x| + |x|
))
+ o

(|x| + |x|
)
.

In the following, we calculate 〈G(u), ej〉, j = , .

〈
G(u), ej

〉
=

〈
G

(
y,
(y)

)
, ej

〉
+

〈
G

(

(y), y

)
, ej

〉
+

〈
G(y, y, y), ej

〉
+O

(|λ –μ – α|(|x| + |x|
))

+ o
(|x| + |x|

)
, j = , .

By direct calculation, we have

〈
G

(
y,
(y)

)
, e

〉
=

〈
G

(

(y), y

)
, e

〉

http://www.boundaryvalueproblems.com/content/2013/1/169
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= –(λ – μ – α)–
a
π

x – (λ – μ – α)–
a
π

xx

+O
(|λ –μ – α|(|x| + |x|

))
+ o

(|x| + |x|
)
,〈

G
(
y,
(y)

)
, e

〉
=

〈
G

(

(y), y

)
, e

〉
= –(λ – μ – α)–

a
π

x – (λ – μ – α)–
a
π

xx

+O
(|λ –μ – α|(|x| + |x|

))
+ o

(|x| + |x|
)
,

〈
G(y, y, y), e

〉
=
a
π

x +
a
π

xx,

〈
G(y, y, y), e

〉
=
a
π

x +
a
π

xx,

then we obtain the expression of 〈G(u), ej〉, j = , .

〈
G(u), e

〉
= Ax +Axx +O

(|λ –μ – α|(|x| + |x|
))

+ o
(|x| + |x|

)
,〈

G(u), e
〉
= Axx +Ax +O

(|λ –μ – α|(|x| + |x|
))

+ o
(|x| + |x|

)
,

(.)

where A = –(λ – μ – α)– a
π + a

π
.

Putting (.) into (.), we have the reduction equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx
dt = (λ –μ – α)x +Ax +Axx

+O
(|λ –μ – α|(|x| + |x|)

)
+ o(|x| + |x|),

dx
dt = (λ –μ – α)x +Axx +Ax

+O
(|λ –μ – α|(|x| + |x|)

)
+ o(|x| + |x|).

(.)

For the case of λ < μ + α, it is obvious that u =  is locally asymptotically stable. For the
case of λ = μ + α, if a + (μ + α)a < , which implies that A < , then u =  is also
locally asymptotically stable. Assertion () of Theorem . is proved.
Since the following equality holds true:

x
(
Ax +Axx

)
+ x

(
Axx +Ax

)
= A

(
x + x

),
according to Theorems ., . and Remark ., we can conclude that if λ > μ+α, equation
(.) bifurcates from u =  to an attractor �λ, which is homeomorphic to S.
Step . In the last step, we show that the bifurcated attractor of (.) consists of a singu-

larity cycle.
Since the even function space is an invariant subspace of Lλ +G defined by (.), we shall

consider the bifurcation problem in the even function space and prove that system (.)
bifurcates from (u,λ) = (,μ + α) to two steady solutions. For any function v in the even
function space can be expressed as follows:

v =
∑
k≥

xkek ,

http://www.boundaryvalueproblems.com/content/2013/1/169
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by the Lyapunov-Schmidt reduction method used in Step , we can deduce that the re-
duction equation of (.) is as follows:

dx
dt

= (λ –μ – α)x +Ax +O
(|λ –μ – α||x|

)
+ o

(|x|), (.)

which implies that (.) bifurcates from (u,λ) = (,μ+α) to two steady solutionsV±
λ (x, t) =

±
√

(μ+α–λ)(μ+α–λ)
a(μ+α–λ)+a

cosx + h.o.t. in the space of even functions.
Since the solutions of (.) are translation invariant,

V +
λ (x, t) → V +

λ (x + θ , t), ∀θ ∈R,

the set

T =
{
V +

λ (x + θ , t)|θ ∈R
}

represents S inH, which implies that
∑

λ consists of exactly one circle of steady solutions
of (.). This completes the proof of Theorem .. �

Remark . Suppose that {ei}, the generalized eigenvectors of Lλ, form a basis of H with
the dual basis {e∗

i } such that

〈
ei, e∗

j
〉
H

⎧⎨
⎩= , if i 
= j,


= , if i = j.

We have

v = x + y ∈ Eλ
 ⊕ Eλ

 ,

x =
m∑
i=

xiei ∈ Eλ
 ,

y =
∞∑

i=m+

xiei ∈ Eλ
 .

Then near λ = λ, the center manifold function φ(x,λ) in Theorem . in [] can be
expressed as follows:

φ(x,λ) =
∞∑

j=m+

φj(x,λ)ej +O
(∣∣Reβ(λ)

∣∣ · ‖x‖k) + o
(‖x‖k), (.)

where

φj(x,λ) = –


βj(λ)
〈
Gk(x, . . . ,x), e∗

j
〉
H .

Remark . If g(s) in (.) is not a polynomial but a Cω with Taylor’s expansion in s =  as
g(s) =

∑∞
k= aksk ; if a +μa +αa <  is satisfied, then the conclusions of Theorem.

also hold true.

http://www.boundaryvalueproblems.com/content/2013/1/169
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Remark . If the higher order terms
∑p

k= akuk in g(u) are omitted, from the proof of
Theorem ., it is easy to see that the conclusions of Theorem . also hold true.

5 Applications
In this section, we apply Theorem . to a model of the population density for single-
species as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂v
∂t = –μ ∂

∂x v + α ∂

∂x v + bv + bv + av + b, (x, t) ∈R× (,∞),∫ π
 v(x, t)dx = a

a
π , t ≥ ,

v(x, t) = v(x + kπ , t), ∀k ∈ Z,

v(x, ) = u + v, x ∈R,

(.)

whereμ, α are the diffusion coefficients, v is the population density for single-species, and
a < , a < , b = –λ

a
a

+ 


a
a
, b = λ – 


a
a
, b = a

 . It is easy to see that b < , b > 
and b < . Inspired by the work of Murray [], b represents the birth rate, bv + av

describes the intra specific competition, and b stands for the emigration which arises
from disease.
It is not difficult to verify that v = a

a
is a positive steady solution of system (.). From

the translation

u(x, t) = v(x, t) – v, (.)

we derive the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t = –μ ∂

∂x u + α ∂

∂x u + λu + au + au, (x, t) ∈R× (,∞),∫ π
 u(x, t)dx = , t ≥ ,

u(x, t) = u(x + kπ , t), ∀k ∈ Z,

u(x, ) = u, x ∈R.

(.)

According to Remark ., if the condition a +μa +αa <  is satisfied, the conclu-
sions of Theorem . for system (.) also hold true. Consequently, from the translation
(.), we have the following results for (.).

Theorem . For problem (.), if a + μa + αa <  is satisfied, then the following
assertions hold true:
() If b ≤ μ + α – 


a
a
, the steady state v = a

a
is locally asymptotically stable

(Figure ).
() If b > μ + α – 


a
a
, system (.) bifurcates from the solution v to an attractor �b .

This implies that the stability will switch from the original state (i.e., v) to a new one
(i.e., �b ) (Figure ).

() �b is homeomorphic to S and consists of exactly one cycle of steady solutions of (.)
(Figure ).

http://www.boundaryvalueproblems.com/content/2013/1/169
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Figure 1 Bifurcation diagram for the model of the population
density for single-species. (1) Bifurcation appears at λ0 =μ + α

– 5
16

a22
a3
. (2) Bifurcated attractor �b1 is the boundary of the shaded

region. (3) The first horizontal solid line from above denotes that the
solution v = v0 is stable, and the horizontal dotted line means this
solution is unstable.

Figure 2 The spatial distribution of the population density. (1) Figure 2(A) shows that the population
density keeps a uniform spatial distribution when the birth rate is low. (2) Figure 2(B) shows that the
population density changes periodically with space when the birth rate becomes high enough. (3) The area
of the shaded regions stands for the population of this single-species. And the area of the shaded region in
Figure 2(A) is equal to the area of the shaded region in Figure 2(B).

() �b can be expressed as

�b =
{
v + x̃ cos(x + θ ) + o

(|x̃|)|θ ∈R
}
,

where x̃ =
√

(μ+α–λ)(μ+α–λ)
a(μ+α–λ)+a

, and μ + α < λ < μ + α + ε, ε is sufficiently small.

Furthermore, Theorem . and the equality

∫ π


v(x, t)dx =

a
a

π , t ≥ ,

yield the following biological results.

Biological results For the model (.), if a + μa + αa <  is satisfied, we have the
following assertions:
() The population of this single-species is a conservative quantity.
() If the birth rate is low, then the population density will keep a uniform spatial

distribution (Figure (A)).
() If the birth rate becomes high enough, then the spatial distribution of the population

density will not keep uniform but change periodically with space (Figure (B)).

6 Discussion
Taking α = , λ = , g(u) = –u in (.), Peletier and Troy [] analyzed stationary antisym-
metric single-bump periodic solutions. They found that the coefficient of the fourth-order

http://www.boundaryvalueproblems.com/content/2013/1/169
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derivative term μ played a role of system parameter. If μ ≤ 
 , the family of periodic so-

lutions is still very similar to that of the Fisher-Kolmogorov equations. However, if μ > 
 ,

different families of periodic solutions emerged.
Taking μ = , λ =  in (.), and under hypothesis that g() = –, g ′() < –, g ′(u) <  for

 < u < , Rottschäer andWayne [] showed that for every positive wavespeed, there exists
a traveling wave. And they also found that there exists a critical wavespeed c∗. If c ≥ c∗,
the solution is monotonic; otherwise, the solution is oscillatory.
Unlike the work mentioned above, which focuses on the structure of solutions varying

with the system parameter (μ or c), the manuscript presented here investigates the topo-
logical structure and the stability of solutions varying with the system parameter, i.e., λ.
Firstly, if λ ≤ μ + α, the bifurcated attractor consists of the trivial solution; if λ > μ + α,
the bifurcated attractor consists of only one cycle of steady state solutions and is homeo-
morphic to S. Secondly, if λ ≤ μ + α, the trivial solution is locally asymptotically stable.
However, if λ > μ + α, the stability switches from the trivial solution to the bifurcated at-
tractor.
Since the increment of dimension of spatial domain may lead to much richer bifurcated

behavior, further investigation on higher dimension of spatial domain is necessary in the
future.

7 Conclusions
In this article, we first prove the existence of attractor bifurcation when the system param-
eter crosses critical numberμ+α, which is the first eigenvalue of the eigenvalue problemof
the linearized equation of (.). Second, we show that the stability of solutions varies with
the system parameter λ. If λ ≤ μ+α, the trivial solution u =  is locally asymptotically sta-
ble. However, if λ > μ + α, the stability switches from u =  to �λ. Third, the topological
structure of the attractor is investigated. We prove that the attractor �λ consists of only
one cycle of steady state solutions and is homeomorphic to S. At last, the expression of
bifurcated solution is also obtained.
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