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1 Introduction

Let Q € R® be a bounded domain with smooth boundary 32, and let v be the unit out-
ward normal vector on 9$2. We consider the regularity criterion to the density-dependent
incompressible nematic liquid crystal model as follows [1-4]:

divu =0, 1.1)
0:0 +div(pu) =0, (1.2)
0t(pu) +diviou @ u) + Vr — Au=-V - (Vd © Vd), (1.3)
dd+u-Vd+(ld -1)d - Ad =0, (1.4)

in (0, 00) x © with initial and boundary conditions

(,0, u, d)(! 0) = (1001 Uuop, dO) in Q: (1'5)
u=0, 0,d=0 onadQ, (1.6)

where p denotes the density, u the velocity, 7 the pressure, and d represents the macro-
scopic molecular orientations, respectively. The symbol Vd © Vd denotes a matrix whose
(i,j)th entry is 9;d 9;d, and it is easy to find that Vd © Vd = Vd' Vd.

When d is a given constant vector, then (1.1)-(1.3) represent the well-known density-
dependent Navier-Stokes system, which has received many studies; see [5-7] and refer-
ences therein.

When p =1, Guillén-Gonzdlez et al. [8] proved the blow-up criterion

29 29
-3

T
/ (@77 + | Vd@) |77 ) de < oo with3<q< o0 17)
0

and 0 < T < o0.
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It is easy to prove that the problem (1.1)-(1.6) has a unique local-in-time strong solution
[6, 9], and thus we omit the details here. The aim of this paper is to consider the regularity

criterion; we will prove the following theorem.

Theorem 1.1 Let py € W(Q), ug € Hy(Q) N H*(R), do € H*(Q) with 3 < q < 6 and py >
0, divuy =0 in 2 and 9,dy = 0 on 9Q2. We also assume that the following compatibility
condition holds true: I(Vy,g) € L*(Q) such that

V]T()—Auo +V(Vd0®Vd0):\/,O_og in Q.

Let (p, u,d) be a local strong solution to the problem (1.1)-(1.6). If u satisfies
T 2
/ |lu@)|fs® dt <oo with3<q<oo (1.8)
0

and 0 < T < 0o, then the solution (p,u,d) can be extended beyond T > 0.
Remark 1.1 When p =1, our result improves (1.7) to (1.8).

Remark 1.2 By similar calculations as those in [6], we can replace L?-norm in (1.8) by
LY -norm, and thus we omit the details here.

Remark 1.3 When the space dimension # = 2, we can prove that the problem (1.1)-(1.6)
has a unique global-in-time strong solution by the same method as that in [10], and thus
we omit the details here.

Next we consider another liquid model: (1.1), (1.2), (1.3), (1.5), (1.6) and
8d+u-Vd— Ad=|Vd|*d, (1.9)

with |d| =1 in (0,00) x Q. Li and Wang [9] proved that the problem has a unique local
strong solution. When € := R?, Fan et al. [11] proved a regularity criterion. The aim of
this paper is to study the regularity criterion of the problem in a bounded domain. We will
prove the following theorem.

Theorem 1.2 Let the initial data satisfy the same conditions in Theorem 1.1 and |dy| =1
in Q. Let (p, u,d) be a local strong solution to the problem (1.1)-(1.3), (1.5), (1.6) and (1.9).
If u and Vd satisfy

T 29 2q
/ (||u(t) ||f;3 + ||Vd||Lq*3) dt<oo with3<q<oo (1.10)
0

and 0 < T < 0o, then the solution (p,u,d) can be extended beyond T > 0.

2 Proof of Theorem 1.1
We only need to establish a priori estimates.
Below we shall use the notation

[-1,
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First, thanks to the maximum principle, it follows from (1.1) and (1.2) that
0 < p =llpollee <o0. (21)

Testing (1.3) by «# and using (1.1) and (1.2), we see that

1d

\% = \Y% A 2.2
2dt/pudx+/| ul*dx = /(u )d - Ad dx. (2.2)

Testing (1.4) by —Ad + (|d|? — 1)d and using (1.1), we find that

d

= <%|Vd|2 + i(|d|2 - 1)2> dx + /(—Ad + (1d1? -1)d)’ dx
= /(u -V)d - Ad dx. (2.3)
Summing up (2.2) and (2.3), we have the well-known energy inequality
1d 2
5%/<pu +|Vd)? + = (|d| -1) )dx+/(|Vu|2+ (-Ad + (1dI* -1)d)") dx
<0. (2.4)
Next, we prove the following estimate:
Il 2o 0, Tizo) < max (L, [|do ). (2.5)
Without loss of generality, we assume that 1 < ||dy || >c. Multiplying (1.4) by 2d, we get
0p+u- V- Ap +2|d|p = —21d* (Il do |2 — 1) - 2|Vd|> < 0 (2.6)
with ¢ := |d|* - ||do |7 and ¢(-,0) = |do|* — ||do |7 < 0 and 3,¢ = 0 on IQ x (0,00). Then

(2.5) follows from (2.6) by the maximum principle.
In the following calculations, we use the following Gauss-Green formula [12]:

/Af SIf P dx = = /lfl" 2\ Pdx+ 42— 2 /|VLf|p/2| dx
—/ IFIP72(F - V)f - vdS—/ [fIP~2(curlf x v)-fdS (2.7)
a0 a0
and the following estimate [13, 14]:

_1
I lztom) < CIf Ity ufnwl,, (2.8)

with 1< p < oo.
Taking V to (1.4);, we deduce that

8:Vd; + (u-V)Vd;+ V((|d -1)d;) - AVd; =Y " Vu; ;.
J
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Testing the above equation by |Vd;|P2Vd; (2 < p < 6), using (1.1), (2.7), (2.8), (2.5) and

summing over i, we derive
1d 1 -2
——/ |Vd|de+—/ |Vd|p‘2|V2d|2dx+4p—2/|V|Vd|p/2|2dx
padt Jq 2 Jg p° Ja
= — Z/ |Vdi|p_2(Vd,' . V)U . le‘ das + Z/ [Vbtjajd,'|le'|p_2] . Vd,' dx
. Q2 ;3 Q
i L]
—Z/ v((1d1* -1)d;) - IVdilP~*Vd; dx
i Q
< c/ |Vd|PdS—Z/ wV - (9di| Vi |V d;) dx+C/ |Vd|P dx
Q2 i Q Q
< c/ |Vd|PdS+C/ lu||VdP"? - \V|Vd|mydx+c/ |VdP dx
Q2 Q Q

+/ |u||Vd|? - |Vd|? | Vd| dx
Q

§C/ wzdS+C/ |u|w|Vw|dx+C/ wzdx+/ |u|w|Vd|g’1|V2d|dx
IQ Q Q Q

(w:=|VdP?)

2
= Cliwliz2 Wl + C”“”MHW”L% IVwli2 + Cliwli

+ CllullaIVwll g |IVdI3 V24| | .
L92

2q
q

p-2 1 p_ 2
<25 510wl + g 195 V2 + Clwl + Clul 1w,

which gives

d
—/wzdx+C/ |Vw|2dx+C/ IVdP2|v2d| dx
at Jo Q Q

29

< Cllwl?> + Cllull /g’ lwl?».
Therefore,
IVdllzoo ) <C with2 <p <6. (2.9)

Testing (1.3) by u;, using (1.1), (1.2), (2.1) and (2.9), we have

1d

EE/|VM|2dx+/p|ut|2dx
d

=—/pu-Vu~utdx+ E/Vd@Vd:Vudx—Z/thOVd:Vudx

< ||\/,E||L°°||u||Lq||VM”L% I/ ouel 2

d
+ a/Wt@ Vd: Vudx + 2|Vl 2|Vl s | Vull 3

Page 4 of 10
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= C||u||Lq||Vu|| K ||M|| I/ puell 2
+— f Vd O Vd: Vudx+ C|Vd| 2| Vil 7 lul}3. (2.10)
By the H?-regularity theory of the Stokes system, it follows from (1.3) that

lullyz < C||Vd" - Ad|,, + Cllpus + pu- Vi 2

= ClIVdllsllAdlis + CllVoull2 + Cllulla [Vl 2 s
3
= CllAd| s + CllV/pull 2 + CIIMIIMIIVMII K llull 2
—IIMIIHZ +CllAd| s + Cll/puell2 + CIIMII IVul2,
which yields
el < CllV/puell 2 + CIIMII TIVule + ClAd] . (2.11)

Testing (1.4) by —Ad;, using (2.5) and (2.9), we obtain

2dt/|Ad| dx+/|th| dx

:/((|d|2—1)d+u~Vd)Adtdx
§/|[V(|d|2d—d) +V(u-Vd)|Vd,| dx
< C(1+[|ullall Ad]| L IVull 31Vl s) | Vel 2
< C(1+ ulll AdI, )] L IVl Z Nl D) Vel 2. (2.12)

On the other hand, by the H3-regularity theory of the elliptic equation, from (1.4), (2.5)
and (2.9) we infer that

ldllz < C(lldll2 + IVA]|;2)
<C(1+|V(3d+u-Vd+|d*d-d) HLZ)

< CL+ 1Velz + [ Vull Vel lzo + ol Adll 2 )
< C(1+ | Vdyllp2 + |Vl 2 + ||u||Lq||Ad||? ||d||,§3),
which gives
Il < C(L+ 1Vdyllg2 + I Vaulls + ull fg ||Ad||Lz) (213)
Combining (2.11) and (2.13), we have

lwllpz + 1dllps = C+ Cllﬁurlle +ClIVdy |2 + Cll Vul 2

+ Cllull HIVullz + ClAd] 2 + CIIMII lAad] . (2.14)
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Putting (2.14) into (2.10) and (2.12) and summing up, we arrive at

1d

37 (IVul® +|Ad| )dx+/(,o|ut| +|Vdy| )dx——/Vd@Vd Vudx

1 1
< Z/p|ut|2dx+E/|th|2dx+C+C||Vu||i2

+CIIMII IIVulle+C||Ad||Lz+C||u|| IIAdlle,

which leads to
2l zoo 0,711y < Cs IVeucll20,702) < C (2.15)
Al oo 0, 7:12) + N2l 2¢0,7;01) < C. (2.16)

It follows from (2.14), (2.15) and (2.16) that
llull 20, 7.02) + ANl 20,7123) < C. (217)

Taking 9; to (1.3), testing by u,, using (1.1), (1.2) and (2.15), we have

1d

2 ol dx+/|Vut| dx

5'/pu-V(u?+u-Vu-u¢)dx +

/put-Vu~u,dx

+2’/th®Vqutdx

2
< Clivpuellp2llulle | Vel 2 + Cllall 6 | Vel 16 1| Vot [ 2
2 2
+ Cllulljs | Aull2lluell s + Cllv/ouell 2wl 6Vl

+ Cllv/pucll 2 lluell 6 | Vulls + ClIVALll 2 |Vl oe | Ve 2

1
2 2 2 2 2
= o IWVaeliz2 + Cllullzoe I/ puclly> + Cllullgs + Clltllzz 1/ ouell 2

+ ClIVA|lzeo Ve 72 (218)
Taking 9, to (1.4), testing by —Ad}, using (2.5), (2.15), (2.16) and (2.17), we arrive at
- f(u -Vd +|d)*d -d),- Adydx
< /[ut -Vd+u-Vd, + (|dd -d),|Ady dx

=—/V(ut~Vd)-thdx+/[u~Vd[+(|d|2d—d)t]Adtdx

< (IVuell 21V dlloo + llotell s 1| Adll3) [ Vel 2

+ lulls IVl 31| Adyll 2 + ClIVde N7
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1 1
= Z”Vl’lt”iz + E”Adt”iz + ClIVdl IVl 7> + Cl A1V, 7>

+ C[|Vdy|?,. (2.19)
Combining (2.18) and (2.19), we have

IVouell oo,;02) + Nttell 20,7501y < C, (2.20)

ldell Lo o,y + N el 20,5002y < C. (2.21)
It follows from (1.4), (2.21) and (2.16) that
o0, 7;m2) < C. (2.22)
It follows from (2.14), (2.15), (2.20) and (2.21) that
el poo 0, 7:112) + @l Loogo,3103) < C. (2.23)
It follows from (1.3), (2.20) and (2.23) that
l2tll 20, w26y < C, (2.24)
from which it follows that
IVl 20,7500y < C. (2.25)
Applying V to (1.2), testing by [V p|972Vp (2 < g < 6) and using (2.25), we have
d q q
d—||Vp||Lq < ClIVullr=lIVelliq
t
which implies
IV ol < C, (2.26)
and therefore

loellzoo(0,7509) = 114V pllLoo(0,1529)
< llullzoe(0,7i250) IV ol 00, T:29)

<C (2.27)
This completes the proof.

3 Proof of Theorem 1.2
This section is devoted to the proof of Theorem 1.2. We only need to establish a priori
estimates.

First, we still have (2.1) and (2.2).
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Next, we easily infer that

|d]=1 in(0,00) x Q. (3.1)
Testing (1.9) by —Ad — |Vd|?d and using (1.1) and (3.1), we find that

2dt/|w1| dx+/}Ad+|Vd| d| dx = /(u-V)d-Addx. (3.2)

Summing up (2.2) and (3.2), we have the well-known energy inequality

1d

VT, (pu* + |Vd|?) dx + /(|vu|2 +|Ad +|Vd|Pd|)) dx <. (3.3)

Taking V to (1.9);, testing by |Vd;|P~2Vd; (2 < p < 6), using (1.1), (2.7), (2.8) and (3.1),
similarly to (2.9), we deduce that

1d 1 _2
2 \vdpdx+ = |Vd|P‘2|V2d|2dx+4p— |V|Vd|P’2|2dx
at Jo 2 7
——Z |Vd|P2wz Vv - Vd; dS+ZfVu,8d|Vd|P 2Vd; dx

+/ V(IVd|d) - |VdP>Vddx
Q

p-2
= IVWI dx+CIIW||Lz+C||u|| ||W||L2

r
+/ |Vd|2w2dx+C/ \Vd||V2d||Vd|: | Vd|5 dx  (w:=|Vd]P?)
= —/ |Vw|? dx+CIIWI|Lz+CIIMII IIWIle
VALl 5y + 3 [ 19aP2|vid] s
L32
<2—/ |Vw|? dx+CIIW||Lz+CIIu|| ||W||L2
+C||Vd|| ||w||L2 + —/ \Vd[P2|vd|* dx,
which yields
r 2
||Vd||Lm(O,T;Lp)+f /|Vd|2}v2dy dxdt <C. (3.4)
0

We still have (2.10) and (2.11).
Similarly to (2.12), testing (1.9) by —Ad}, using (3.1) and (3.4), we get

A \Y%
2dt/| d|dx+/| d,|* dx

= /(u -Vd - |Vd)*d) Ad, dx
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/ (IVd]*d —u-Vd) - Vd,dx
< C(1+ l|ullza IAdll 2, + IVull 31 VAl 16 ) | Ve 2
c(Ivd|Pe + ||V|Vd| ||L2)||th||Lz

< C(1+ JullAd], ) La H IVl Zlulys + | VIVAP | ) 1Vl 2. (3.5)

Similarly to (2.13), we have

Idlls < CL+ I Vdell2 + | Vaulls + ||u|| “lladlz + |V(IVdPd) | ,2)

< CU+ | Vdyllz2 + | Vull s + ||u|| YlAadle + || VIVAP] ). (3.6)
Combining (2.11) and (3.6), we have
lull 2 + | dll > < the right hand side of (2.14) + C||V|Vd/[*| . (3.7)

Putting (3.7) into (3.5) and (2.10) and using the Gronwall inequality, we still have (2.15),
(2.16), (2.17) and (2.18).
Similarly to (2.19), applying 9, to (1.9), testing by —Ad, and using (3.4), we have

=/(u-Vd— \Vd|*d), - Ad,dx
:‘/(ut~Vd+u~th—|Vd|2dt—d8t|Vd|2)Adtdx
=—/V(ut~Vd)-thdx+/(u-th—|Vd|2dt—d8t|Vd|2)Adtdx

1
EIIVutIILz +— IIAdcllfz + C||Vd|lz< | V17

+ ClAIL VA7, + ClIVd: . (3.8)

Combining (2.18) and (3.8) and using the Gronwall inequality, we still obtain (2.20) and
(2.21).

By similar calculations as those in (2.22)-(2.27), we still arrive at (2.22)-(2.27).

This completes the proof.
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