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Abstract

This paper deals with the problem of determining an unknown boundary condition
u(0) in the boundary value problem u,(y) = Auly) = 0, u(0) = f, u(+o0) = 0, with the aid
of an extra measurement at an internal point. It is well known that such a problem is
severely ill-posed, i.e, the solution does not depend continuously on the data. In
order to overcome the instability of the ill-posed problem, we propose two
regularization procedures: the first method is based on the spectral truncation, and
the second is a version of the Kozlov-Maz'ya iteration method. Finally, some other
convergence results including some explicit convergence rates are also established
under a priori bound assumptions on the exact solution.
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1 Formulation of the problem
Throughout this paper, H denotes a complex separable Hilbert space endowed with the
inner product (-,-) and the norm || - ||, £(H) stands for the Banach algebra of bounded
linear operators on H.

Let A:D(A) C H — H be a positive, self-adjoint operator with compact resolvent, so
that A has an orthonormal basis of eigenvectors (¢,,) C H with real eigenvalues (1,) C R,,

ie.,

. 1 ifi=j,

Ay = kup, neN, (s, ¢1) =3, = o
0 ifi+#j,

0<US}\.1§)\‘2§)\.3§"', lim}\,,:oo,
n—00

[o¢]
Vh e H, h= Zhn¢n; hn = (h: ¢Vl)

n=1
In this paper, we are interested in the following inverse boundary value problem: find

(u(y), u(0)) satisfying

uyy—Au=0, 0<y<oo,

u(0) =f, u(+o0) = 0,

(1.1)
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where f is the unknown boundary condition to be determined from the interior data
ulb)=geH, 0<b<oo. (1.2)

This problem is an abstract version of an inverse boundary value problem, which general-
izes inverse problems for second-order elliptic partial differential equations in a cylindrical

domain, for example we mention the following problem.

Example 1.1 An example of (1.1) is the boundary value problem for the Laplace equation
in the strip (0,77) x (0, 00), where the operator A is given by

82

A=——,
0x2

D(A) = Hy(0,7) NH*(0,7) C H = L*(0, ),
which takes the form

Uyy(%,9) + Urx(x,9) =0, x€(0,7),y € (0,+00),
u(0,y) =u(m,y) =0, ye(0,+00),
ux,0)=f(x),  wulx,+00)=0, x€l0,7],
ulx,y=b)=gx), x€l0,7].

To our knowledge, there are few papers devoted to this class of problems in the abstract
setting, except for [1, 2]. In [3], the author studied a similar problem posed on a bounded
interval. In this study, the algebraic invertibility of the inverse problem was established.
However, the regularization aspect was not investigated.

We note here that this inverse problem was studied by Levine and Vessella [2], where the
authors considered the problem of recovering #(0) from the experimental data gj,...,g,
associated to the internal measurements u(b;), ..., u(b,), in which the temperature is mea-
sured at various depths 0 < b; < --- < b, as approximate functions gi,...,g, € H such
that

ZP;’ || u(b;) - gi ||2 <&,

i=1

where py, ..., p, are positive weights with >, p; =1 and ¢ denotes the level noisy.

The regularizing strategy employed in [2] is essentially based on the Tikhonov regular-
ization and the conditional stability estimate ||u,(0)|| < E for some a priori constant E.

In practice, the use of N-measurements or the average of a series of measurements is
an expensive operation, and sometimes unrealizable. Moreover, the numerical implemen-
tation of the stabilized solutions by the Tikhonov regularization method for this class of
problems will be a very complex task.

For these reasons, we propose in our study a practical regularizing strategy. We show
that we can recover #(0) from the internal measurement u(b) = g under the conditional
stability estimate ||#(0)| < E for some a priori constant E. Moreover, our investigation is

supplemented by numerical simulations justifying the feasibility of our approach.
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2 Preliminaries and basic results
In this section we present the notation and the functional setting which will be used in
this paper and prepare some material which will be used in our analysis.

2.1 Notation
We denote by C(H) the set of all closed linear operators densely defined in H. The do-
main, range and kernel of a linear operator B € C(H) are denoted as D(B), R(B) and N(B);
the symbols p(B), o (B) and 0,,(B) are used for the resolvent set, spectrum and point spec-
trum of B, respectively. If V' is a closed subspace of H, we denote by ITy the orthogonal
projection from H to V.

For the ease of reading, we summarize some well-known facts in spectral theory.

2.2 Spectral theorem and properties
By the spectral theorem, for each strictly positive self-adjoint operator B,

B:D(B)CH— H, D(B)=H, B=B" and

(Bu,u) > y||lull>, YueD(B)(y>0),

there is a unique right continuous family {E;, A € [y, 0o[} C L(H) of orthogonal projection
operators such that B = f;o AdE; with

D(B) = {veH:/ookzd(E,\v,v) < oo}‘
%

Theorem 2.1 [4, Theorem 6, XIL.2.5, pp.1196-1198] Let {E;, A > y > 0} be the spectral
resolution of the identity associated to B, and let ® be a complex Borel function defined
E-almost everywhere on the real axis. Then ®(B) is a closed operator with dense domain.
Moreover,
(i) D(®B)):={theH: fy‘” |®(1)|2 d(Eyv,v) < 00},

(i) (®B)h,y) = [ D) A(Eh,y), he D(®(B), y € H,

(iii) 9B = [ |PMN)* d(Esh, ), h € D(P(B)),

(iv) ®(B)* = ®(B). In particular, if ® is a real Borel function, then ®(B) is self-adjoint.

We denote by S(y) = e?VA = 3% eV (., ¢, ), € L(H), y > 0, the Co-semigroup gen-
erated by —v/A. Some basic properties of S(y) are listed in the following theorem.

Theorem 2.2 (see [5], Chapter 2, Theorem 6.13, p.74) For this family of operators, we
have:

LSO <1,Vy>0;

2. the function y —> S(y), y > 0, is analytic;

3. forevery real r > 0 and y > 0, the operator S(y) € L(H, D(A"?));

4. for every integer k > 0 and y > 0, ||SP(y)| = [|A¥2S(y)|| < c(k)y™;

5. forevery h € D(A™?), r > 0, we have S(t)A™*h = A2 S(y)h.

Theorem 2.3 For y > 0, S(y) is self-adjoint and one-to-one operator with dense range

(S) = SO, R(SY)) = H).
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Proof Let ¢, : [0,+00[ — R, s —> ¢,(s) = e™?*. Then, by virtue of (iv) of Theorem 2.1, we
can write S(y)* = qb_y(A) =¢,(A) = eIVA - S(y).

Let 1 € N(S(¥0)), ¥o > 0, then S(y9)h = 0, which implies that S(y)S(yo)h = S(¢ + to)h = 0,
y > 0. Using analyticity, we obtain that S(y)% = 0, y > 0. Strong continuity at 0 now gives
h = 0. This shows that N(S(yo)) = {0}.

Thanks to

R(S(y0)) = N(S(y0))" = (0} = H,
we conclude that R(S(y)) is dense in H. O
Remark 2.1 For y = b, this theorem ensures that S(b) is self-adjoint and one-to-one op-

erator with dense range R(S(b)). Then we can define its inverse S(b)~! = P4 which is an

unbounded self-adjoint strictly positive definite operator in H with dense domain

D(S(B)™) =R(S(®b)) = Yhe H: |[VAh|* = > i

n=1

(B, )| < +00 ¢

Let us consider the following problem: for £ € H find v € C'(]0, +oo[; H) N C([0, +oo[;
H)NC(]0, +oo[; D(A)) such that

V(y) + «/Zu(y) =0, O0<y<+oo,¥(0)=¢. (2.1)

Theorem 2.4 [6, Theorem 7.5, p.191] For any & € H, problem (2.1) has a unique solution,
given by

V() =SO)E =Y eV (E, b (2.2)
n=1

Moreover, for all integer k > 0, v € C*(]0, +oo[; D(A¥?)). If, in addition, & € D(A'"?), then
v e C([0, +oo[; D) N C/([0, +oo[; H) and

P
dy

c(k)
kS

vijeN, | S| - 4 ue0] < 52 a).

On the other hand, Theorem 2.4 provides smoothness results with respect to y: v €
C>(]0, +oo[; H) N C/([0, +0o[; H) whenever £ € D(4//?), j € N. Under this same hypothesis,
we also have smoothness in space: v € C([0, +oo[; D(4//2)) N C/*([0, +oo[; D(A¥?)), k <.

Here we recall a crucial theorem in the analysis of the inverse problems.

Theorem 2.5 [7, Generalized Picard theorem, p.502] Let B: D(B) C H — H be a self-
adjoint operator and the Hilbert space H, and let E,, be its spectral resolution of unity. Let
0 € C(R,R) and Z(0) := {t € R: 6(¢) = 0}. We suppose that the set Z(0) either is empty or

contains isolated point only. Then the vectorial equation

0B =
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is solvable if and only if

/Rye(x)y’zdmw < 0.
Moreover,
N((B) ={0} <= 0,(B)NZ(H)=4.

On the basis {¢,}, we introduce the Hilbert scale (H*);cr (resp. (€;)ser) induced by VA
as follows:

H° = {h eH: Vi |nen)| < +oo},
n=1

€= {heH:Zeﬂ”W

n=1

(h,(p,q)|2 < +oo}.

2.3 Non-expansive operators

Definition 2.1 A linear operator M € L(H) is called non-expansive if
Ml <1

Theorem 2.6 [8, Theorem 2.2] Let M € L(H) be a positive, self-adjoint operator with
IM|| < 1. Putting Vo = N(M) and Vi = N(I — M), we have

s— lim MnZHVI, s— lim (]—M)HZHVO,

n—+00 n—+00

VheH, lim M'h=Tyh, lim (I - M)"h = Ty, h.

n—+00 n—+00

For more details concerning the theory of non-expansive operators, we refer to Kras-
nosel’skii et al. [9, p.66].
Let use consider the operator equation

Sp=U-Mg=y (2.3)
for non-expansive operators M.
Theorem 2.7 Let M be a linear self-adjoint, positive and non-expansive operator on H.
Let € H be such that equation (2.3) has a solution §. If 1 is not an eigenvalue of M, i.e.,
(I = M) is injective (V1 = N(I — M) = {0}), then the successive approximations

O =M, + 7, n=0,1,2,...,

converge to ¢ for any initial data ¢, € H.
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Proof From the hypothesis and by virtue of Theorem 2.6, we have
Vg{)o S H, Mngé)o —> HV1§00 = H{O}QOO =0. (24)

By induction with respect to , it is easily seen that ¢, has the explicit form

n-1

and (2.4) allows us to conclude that

P =¢u=M"(po-p)—0, n—>oo. (2.5)
O

Remark 2.2 In many situations, some boundary value problems for partial differential
equations which are ill-posed can be reduced to Fredholm operator equations of the first
kind of the form By = v, where B is compact, positive, and self-adjoint operator in a
Hilbert space H. This equation can be rewritten in the following way:

¢=U-wB)p+wy =Ly +wy,

where L = (I - wB), and w is a positive parameter satisfying w < ﬁ. It is easily seen that the
operator L is non-expansive and 1 is not an eigenvalue of L. It follows from Theorem 2.7

that the sequence {¢,}°, converges and (I — wB)"¢ — 0 for every { € H as n — 00.

3 lll-posedness and stabilization of the inverse boundary value problem
3.1 Cauchy problem with Dirichlet conditions
Consider the following well-posed boundary value problem:

Vy—Av=0, 0<y<oo,
V(O) :E, (3.1)

v(+00) = 0,
where & is an H-valued function.

Definition 3.1 [10, p.250]
« A function v: [0, +oo[ — H is called a generalized solution to equation (3.1) if
v e E, = C([0, +oo[; H) N C*(]0, +oo[; H) N CY([0, +oo[; H™), and for all y €]0, +o0[,
u(y) € D(A) and obeys equation (3.1) on the same interval ]0, +oo[.
« A function v: [0, +oo[ — H is called a classical solution to equation (3.1) if
veE, =CY[0, +oo; H) N C%(]0, +oo[; H), and for all y €]0, +00[, u(y) € D(A) and
obeys equation (3.1) on the same interval ]0, +oo[.
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Theorem 3.1 Problem (3.1) admits a unique generalized (resp. classical) solution if and
only if € € H (resp. £ € H').

Proof By using the Fourier expansion and the given Dirichlet boundary conditions
V(y) = Z Vn(y)¢n’
n=1
v(0) = Zvn(0)¢n =§= Zgn(pm
n=1 n=1

V(+00) = D v,(+00)¢h, = 0,

n=1

we obtain

Vo= duvu(y) =0, 0<y<oo,
Vn(o) = ‘i:n: (32)

Vu(+00) = 0.
This differential equation admits two linearly independent fundamental solutions
o) = eV, gr(y) = eV,
Thus, its general solution can be written as
va(y) = cteVrn g eVt o e R,

Applying v, (+00) = 0 and v,(0) = £, yields c;, = 0 and c;, = £,. Finally, the solution of (3.2)
is

V()/) = 5()’)5 = e—yﬂg = Ze_ymgn(ﬁn’ En = (5, ¢n) (3‘3)
n=1

Remark 3.1 It is easy to check that the expression (3.3) solves the problem
u'(y) + VAuy) =0, yelo,+ool,  u(0)=¢.

If £ € H (resp. & € H'), by virtue of Theorem 2.4 and Remark 3.1, we easily check the
inclusion v € Eg (resp. v € E;) and v(y) € D(A) for y €]0, +o0[. (N

3.2 Inverse boundary value problem
Our inverse problem is to determine v(0) = f from the supplementary condition v(b) = g,

then we get

vb) =Y eV =g = guhn (3.4)

n=1 n=1
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We define

K=S(b):H—>H, h—>Kh=Y e""h,p,. (3.5)

n=1

The operator equation (3.5) is the main instrument in investigating problem (3.4). More
precisely, we want to study the following properties:

1. Injectivity of K (identifiability);

2. Continuity of K and the existence of its inverse (stability);

3. The range of K.
It is easy to see that K is a linear compact self-adjoint operator with the singular values
(0% = e‘bﬂ )15y, and by virtue of Remark 2.1, we have

i,
1. N(K)={0},

2. R(K)= {h eH: | eVAn|* fe”’m (h,¢)|” < +oo},
3. R(K)=H. "

Now, to conclude the solvability of problem (3.4) it is enough to apply Theorem 2.5.

Corollary 3.1 The inverse problem (3.4) is uniquely solvable if and only if

u(b) = g € R(K) = :heH:Ze%m|(h,¢n)|2<+oo}. (3.6)
n=1

In this case, we have

f=u0)=K"g=Y "e"V"gp,. (3.7)
n=1

In other words, the solution f of the inverse problem is obtained from the data g via the
unbounded operator L = K~! defined on functions g in the subspace

+00
D(L)={geH:) ™

n=1

(g,¢n)f2 <100, gn = (g: ¢n)}

Corollary 3.2 Problem (1.1)-(1.2) admits a unique solution u € C([0, +oo[; H) if and only
if

+00
u(0)eH +— geR(K):{heH:Zebm|(h,¢,,)|2<+oo}.
n=1
In this case, we have

+00
u(y) = e(b—y)«/zg - Z e(b—y)mgn%, (3.8)

n=1

Page 8 of 23
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From this representation, we see that:
«+ u(y) is stable in the interval [b, +00] (supye[b’wo[ el < llgl);
« wis unstable in [0, b[. This follows from the high-frequency w, = e ?v* — 400,

n— +0Q.

3.3 Regularization by truncation method and error estimates
A natural way to stabilize the problem is to eliminate all the components of large # from
the solution and instead consider (3.7) only for n < N.

Definition 3.2 For N > 0, the regularized solution of problem (1.1)-(1.2) is given by

In= Z ebmgn({bm &n = (g’ ®n), (3.9)
n<N
un(y) = Z e(b_y)mgn@w n = (g dn). (3.10)
n<N

Remark 3.2 If the parameter N is large, fy is close to the exact solution f. On the other
hand, if the parameter N is fixed, fy is bounded. So, the positive integer N plays the role
of regularization parameter.

Remark 3.3 In view of

lu@) —un || = |SOF -] < |F -] = lu—unlo < ||(f —fa)

’

andif g € €, ie, Y., &V|(g,¢,)|* < 00, then
If -fvll— 0, N — oo,
implies

llu—unlloc = sup [||u(y)—uN(y)||—>0, N — oc0.

y€[0,+00

Since the data g are based on (physical) observations and are not known with complete
accuracy, we assume that g and g° satisfy ||g — g°|| < 8, where g° denotes the measured
data and § denotes the level noisy.

Let (f]f,, uf\,) denote the regularized solution of problem (1.1), (1.2) with measured data gs:

fIé[ = Zebmgz(pbm gf, = (ga: ¢n); (3.11)
n<N
w ) =Y et NVinge, &= (g ). (312)
n<N

As usual, in order to obtain convergence rate, we assume that there exists an a priori
bound for problem (1.2)

+00
|42 ” < B2 <voo = Y areVirig, P <, (3.13)
n=1

where E > 0 is a given constant.
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Remark 3.4 For given two exact conditions g; and gy, let fi y and f, 5 be the corresponding
regularized solutions, respectively. Then

Vo —finll? = e

n<N

(@ -] <N g - all. (3.14)

The main theorem of this method is as follows.

Theorem 3.2 Let f;) be the regularized solution given by (3. 11) and let f be the exact so-
lution given by (3.7). If || A”*f|| < E, r > 0 and if we choose /Ay log( ), 0<6 <1, then
we have the error bound

) b ! 1 ’ 1-6
I=sel = (5) <log(1/8)) B (315)

Proof From direct computations, we have

A=Al = eV g - g < eV,

As=IIf Sl = Z Vg, |

n=N+1

- Y /g

n=N+1

1 Biad 2r
s— > VA Vg,

AN+1 n=N+1

()

Using the triangle inequality

If =A< If =full + [ =£3]] = A1 + A,

we obtain

IF-£il < ( ) E+eVNs, (3.16)

By choosing /Ay = 7 log %), 0 <6 <1, we obtain

o) b ! 1 " 1-6
-] < (9) (log(m)) E+s, .

Finally, from (3.4) and (3.15), we deduce the following corollary.

Corollary 3.3 Let ul; be the regularized solution given by (3. 12) and let u be the exact
solution given by (3.8). If | A”*f|| < E, r > 0 and if we choose /Ay = & log( ), 0<0<1,then
we have the error bound

b\~ 1 r
-l = s futn -0 =l = (3 ) (o) E+0 G0

ye
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4 Regularization by the Kozlov-Maz'ya iteration method and error estimates

In [11, 12] Kozlov and Maz’ya proposed an alternating iterative method to solve boundary
value problems for general strongly elliptic and formally self-adjoint systems. After that,
the idea of this method has been successfully used for solving various classes of ill-posed
(elliptic, parabolic and hyperbolic) problems; see, e.g., [13-15].

In this section we extend this method to our ill-posed problem.

4.1 Description of the method
The iterative algorithm for solving the inverse problem (1.1)-(1.2) starts by letting f; € H
be arbitrary. The first approximation #°(y) is the solution to the direct problem

uy,—Au’ =0, 0<y<oo,
u°(0) = fo, (4.1)

u(+00) = 0.
If the pair (1%, f;) has been constructed, let

Psr: i =fi — 0(u*(0) - ), (4.2)
where w is such that

1
O<w< KT VM, |IK| = supeVin = etVH <,
n

Finally, we get z*! by solving the problem

k+1 k+l _
u,, —Au =0, 0<y<oo,
u1(0) = fir, (4.3)

Uk (+00) = 0.

We set G = (I — wK). If we iterate backwards in (P)g.1, we obtain

k-1
fi=Gfo+w) Gg=Gfy+(I-G)K'g=Gfy +f - GY. (4.4)
i=0
This implies that
fi=f=Gh=f) w0 -ul) =SOIG o - 1. (4.5)

Proposition 4.1 The operator G = (I — wK) is self-adjoint and non-expansive on H. More-

over, it has not 1 as eigenvalue.

Proof The self-adjointness follows from the definition of G (see Theorem 2.1). Since the
inequality 0 < 1 —we™* <1fora e o (A), wehave 0,(G) C]0,1[, then1is not an eigenvalue
of G. d
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In general, the exact solution u(0) = f € H is required to satisfy the so-called source
condition; otherwise, the convergence of the regularization method approximating the
problem can be arbitrarily slow. Since our problem is exponentially ill-posed (the eigen-
values s, = eV of K converge exponentially to 0), it is well known in this case [16, 17]
that the best choice to accelerate the convergence of the regularization method is to use
logarithmic-type source conditions, i.e.,

(fo—f) = Vp(@K)s, &ecH,|&|<E, (4.6)

where

In(¢)”*, 0<t<1,

W(t) =
0, =0,
with 8 > 0.

Remark 4.1[16, p.34] Thelogarithmic source condition ¢ = (fy —f) € R(Wg(wK)) is equiv-
alent to the inclusion ¢ € R(A~#?) = D(A#7?).

Proof The proof is based on the following equivalence:

x 28 [’
Z(ln(i) + \/)T,,) <to0 Z(\/)Ty,)z‘3 < +00. O
k=1 k=1

Lemma 4.1 [18, Appendix, Lemma A.1] Let 8 >0 and k € N, k > 2. Then the real-valued
Sfunction T(t) = (1 - t)¥ ln(f)‘ﬂ defined on [0,1] satisfies

t(¢) < Cln(k)*. (4.7)

Remark 4.2 Let k € N*. Then the real-valued function o(t) = 1 — (1 — £)* defined on [0,1]

satisfies
o(t) < kt. (4.8)
Proof Using the mean value theorem, we can write
o(t) = 0(0)=(t-0)0'(?), 0<i<t,
then
o(t) = tk(1 - 1) < k. O
Let us consider the following real-valued functions:

e
we bV

-
Q(A):(l—we-bﬁ)k1n< ) , € [y, 400,

k-1 —bﬁ)k

PO =03 (1-we ) =t m0 )

’ )\4 E [)\,1, +OO[.
i=0 webVr


http://www.boundaryvalueproblems.com/content/2013/1/178

Bouzitouna et al. Boundary Value Problems 2013, 2013:178
http://www.boundaryvalueproblems.com/content/2013/1/178

Using the change of variables ¢ = (1) = we™"*, we obtain

-
é(t)=Q(01(t))=(1—t)kln<§) , telo0,1],

. 0ty 0,1
P =P@)={“ 10.1]
wk, t=0.

Now we are in a position to state the main result of this method.

Theorem 4.1 Let g € & and w satisfy 0 < w < PV let fy be an arbitrary element for the
iterative procedure suggested above, and let u* be the kth approximate solution. Then we
have

sup ||u(y) —uk(y) ” -0, k— oo (4.9)
ye[0,+00

Moreover, if (fy — f) € HP (B > 0), i.e., (fo — f) = Vg (wK)E, & € H, ||&|| < E, then the rate of
convergence of the method is given by

B
—u* CE(L) , k=2 ‘
ye[sgffw[llu(y) w0 = CE( {1 >2 (4.10)

Proof By virtue of Proposition 4.1 and Theorem 2.7, it follows immediately

sup [||u(y)—uk(y)H <6k -N] =0 k- oo
ye[0,+00

We have

|ut) - 0)])* = [S0)G Ko -1

<G -N]" =D Q| & 0w

n=1

< (sup Q) 117 = (sup Q)

te(0,1] te(0,1]
and by virtue of Lemma 4.1 (estimate (4.7)), we conclude the desired estimate. a

Theorem 4.2 Let g € €' and w satisfy 0 < w < e?Y™, let fy be an arbitrary element for the
iterative procedure suggested above, and let u* (resp. ul) be the kth approximate solution
for the exact data g (resp. for the inexact data g°) such that ||g — g°|| < 8. Then, under
condition (4.6), the following inequality holds:

‘ 1y
e )~ 160)] < CE(ln(k)) rels

where e(k) = |0 Y0 (I - wK)|| < k.

Page 13 of 23
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Proof Using (4.4) and the triangle inequality, we can write

k-1

ff=G%+ o) Ggumly) = SOy, (4.11)
i=0
k-1 '

ff=Gh+o) G uy) =Suf, (4.12)

i=0

[40) - 50)] = [ (u0) - ' ) + (4" 0) - w50)) | = A1 + Ao,

where

B
81= ) -0 = Ju) -] = CE( )+ k=2, (13)
n(k)

and

k-1

®S() Y Gl(g-¢g)

i=0

A = |#0) - w50 = SO £ =

k-1

a)ZG"(g—g‘s)

i=0

< 8:A2.

=

k-1
® E G
i=0

By using inequality (4.8), the quantity A, can be estimated as follows:
Ay < wks. (4.14)

Combining (4.13) and (4.14) and taking the supremum with respect to y € [0, +o0[ of
llze(y) — ulg(y) I, we obtain the desired bound.

Remark 4.3 Choosing k = k(§) such that wké — +00 as § — 0, we obtain

sup ”uk(y)—ulg(y)H—>0 as k — +00. 0
y€[0,+00[
5 Numerical results
In this section we give a two-dimensional numerical test to show the feasibility and effi-
ciency of the proposed methods. Numerical experiments were carried out using MATLAB.
We consider the following inverse problem:

Uyy(%,9) + U, 9) =0, x€(0,),y € (0,+00),
u(0,y) =u(m,y) =0, ye€(0,+00), (5.1)
u(x,0) =f(x), u(x,+00)=0, x€l0,7],

where f(x) is the unknown source and u(x, 1) = g(x) is the supplementary condition.
It is easy to check that the operator

82

A=-",
0x2

D(A) = Hy(0,7) N H*(0,7) C H = L*(0, )

is positive, self-adjoint with compact resolvent (A is diagonalizable).
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The eigenpairs (1, ¢,) of A are

2
dop =12, ¢n(x) =,/ —sin(nx), neN*.
T
In this case, formula (3.7) takes the form

f&) = u(x,0) =K "'g(x)

= % Zen (/Ong(x) sin(nx) dx) sin(nx). (5.2)
n=1

Truncation method

We use trapezoid’s rule to approach the integral and do an approximate truncation for the
series by choosing the sum of the front M + 1 terms. After considering an equidistant grid
O=x1 < <apn=m,%=G-Dh=(G-1)3,j=1---(M+1), we get

M+1 +oo

fla) = % > e (hglxi) sin(nxy)) sin(na;), (5.3)

i=l n=1
M+1 N

fulx) = ; D) e (hglxi) sin(mxy)) sin(mxy), (5.4)

i=1 n=1
M+1 N

ff,(x/) = % Z Z e’ (hg5 (%) sin(nxi)) sin(nx;). (5.5)

i=1 n=1

In the following, we consider an example which has an exact expression of solutions

Example
_ /2,q . _ /2 0y . .
If u(x,0) = |/ ~esin(x), then the function u(x,y) = \/ Ze 7 sin(x) is the exact solution of

problem (5.1). Consequently, the data function is g(x) = u(x,1) = \/g sin(x).
Adding a random distributed perturbation (obtained by the Matlab command randn)
to each data function, we obtain the vector g5:

g’ =g + erandn(size(g)),

where ¢ indicates the noise level of the measurement data and the function ‘randn(-)’ gen-
erates arrays of random numbers whose elements are normally distributed with mean 0,
variance o2 = 1, and standard deviation o = 1. ‘randn(size(g))’ returns an array of random
entries that is the same size as g. The bound on the measurement error § can be measured
in the sense of Root Mean Square Error (RMSE) according to

M+1

1/2
1
b1l = (5 Y-y

i=1
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Using g° as a data function, we obtain the computed approximation f;} by (5.5). The relative
error E,(f) is given by

AR =S
EO="m 56)

Kozlov-Maz'ya iteration method
By using the central difference with step length /1 = 75 to approximate the first derivative
u, and the second derivative u,,, we can get the following semi-discrete problem (ordinary

differential equation):

Myy(xi:y) - Ah(xi;_)/) =0, «;=ihi= 1,...,N,y e (0,+OO),
I/l(x() = O)y) = u(xNJrl = 71’;)’) =0, VAS (0» +OO)1 (57)
u(x;,0) = f(x;), u(x;, +00) =0, w;=ihi=1,...,N,

2
where A, is the discretization matrix stemming from the operator A = —%:
1. ..
Ay = 7 Tridiag(-1,2,-1) € My(R)
is a symmetric, positive definite matrix. We assume that it is fine enough so that the dis-
cretization errors are small compared to the uncertainty § of the data; this means that A

is a good approximation of the differential operator A = —;—;2, whose unboundedness is
reflected in a large norm of Ay, (see [19, p.5]). The eigenpairs (g, ex) of Ay, are given by

N+1\> [ k=« gkt \\N
i =4 sin“{ —— |, er = | sin , k=1,...,N.
T 2(N +1) N+1/)),4

The discrete iterative approximation of (4.12) takes the form

k-1
Fox) = (I - 0K folx)) + @ 2(1 - wKy)'g’ (%), j=1,...,N, (5.8)

i=0

where Kj, = e V2 and o < m =evi1 = 2788].

Figures 1-4, Table 1 show the comparisons between the exact solution and its computed
approximations for different values N, M and ¢.

Figures 5-12, Table 2 show the comparisons between the exact solution and its computed

approximations for different values N, k, w and €.

Conclusion
The numerical results (Figures 1-4) are quite satisfactory. Even with the noise level ¢ =
0.01, the numerical solutions are still in good agreement with the exact solution. In ad-
dition, the numerical results (Figures 5-12) are better for (w = 2.2305, ¢ = 0.01) and
(w=1.9517, ¢ = 0.001) and the other values are also acceptable.

In this study, a convergent and stable reconstruction of an unknown boundary condi-
tion has been obtained using two regularizing methods: truncation method and Kozlov-
Maz'ya iteration method. Both theoretical and numerical studies have been provided.
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Truncation method

25
%  Approximate solution
2 * Excact solution
1.5
1 *
*
0.5
0 1 1 1 1 1 1 J
0 0.5 1 1.5 2 25 3 3.5
Error(Excact,Approximate)
0.1
| Error: epsilon=0.01,M=20
0.08
0.06
0.04
0.02
0 1 1 1 1 1 1 J
0 0.5 1 15 2 25 3 35

Figure 1 TM with (noise level = 0.01, truncation term = 4, grid points of TR = 21).

25

Truncation method

*  Approximate solution
Excact solution

0.05

0.04

0.03

0.02

0.01

0.5 1 1.5 2 25 3 3.5

Error(Excact,Approximate)

Error: epsilon=0.01,M=40

0.5 1 1.5 2 25 3 3.5

Figure 2 TM with (noise level = 0.01, truncation term = 4, grid points of TR = 41).
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Truncation method

25
*  Approximate solution
ok Excact solution
1.5F
1+
0.5F
0: i i 1 i i J
0 0.5 15 2 25 3 35
x 10 Error(Excact,Approximate)
8 -

Error: epsilon=0.001,M=20

Figure 3 TM with (noise level = 0.001, truncation term = 4, grid points of TR = 21).

25

Truncation method

*

Approximate solution
Excact solution

0.5

Error(Excact,Approximate)

Error: epsilon=0.001,M=40

Figure 4 TM with (noise level = 0.001, truncation term = 4, grid points of TR = 41).

Table 1 Truncation method: Relative error E,(f)

N M e E,(f)

20 4 0.01 0.0361
40 4 0.01 0.0155
20 4 0.001  0.0022
40 4 0.001  0.0019
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25 T T

Kozlov-Mazia iteration method

T
Excact solution
---%--- Approximate solution

|

Error(Excact,Approximate)

0.35 T T

0.25f

T T
Error: epsilon=0.01,N=40,itr=4

Figure5 @ =1.3941.

25 T T

Kozlov-Mazia iteration method

T
Excact solution
---%--- Approximate solution

|

Error(Excact,Approximate)

3.5

0.12 T T

01F

0.08

0.06

0.04

0.02

T T
Error: epsilon=0.01,N=40,itr=4

Figure 6 @ =1.8587.
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Kozlov-Mazia iteration method

25 T T

T
Excact solution
---%--- Approximate solution

Error(Excact,Approximate)

T T
Error: epsilon=0.01,N=40,itr=4

Figure 7 @ =1.9517.

Kozlov-Mazia iteration method

25 T T

T
Excact solution
---%--- Approximate solution

Error(Excact,Approximate)

0.1 T T

0.08

0.06

0.04

0.02-

T T
Error: epsilon=0.01,N=40,itr=4

Figure 8 @ =2.2305.

30 35 40
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25 T T

Kozlov-Mazia iteration method

T
Excact solution
---%--- Approximate solution

Error(Excact,Approximate)

0.25 T T

02

0.15f

0.1F

0.05f

T T
Error: epsilon=0.001,N=40,itr=4

Figure 9 w =1.3941.

15 20 25

30 35 40

Kozlov-Mazia iteration method

25 T T

T
Excact solution
---%--- Approximate solution

0 0.5 1

Error(Excact,Approximate)

T T
Error: epsilon=0.001,N=40,itr=4

Figure 10 w = 1.8587.
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Kozlov-Mazia iteration method

Excact solution
---%--- Approximate solution

|

0.025 T T

Error(Excact,Approximate)

0.02

0.015

0.01F

0.005

0

T T
Error: epsilon=0.001,N=40,itr=4

0 5 10

Figure 11 @ =1.9517.

30 35

40

Kozlov-Mazia iteration method

---%--- Approximate solution

T
Excact solution |-

Error(Excact,Approximate)

25 3 3.5

0.06 T T

0.04
0.03|
0.02

0.01F

T T
Error: epsilon=0.001,N=40,itr=4

Figure 12 w =2.2305.

Table 2 Kozlov-Maz'ya method: Relative error E,(f)

N k e ® E.(f)

40 4 0.01 0.5 x 2.7881 =1.3941 0.0790
40 4 0.01 2/3 x 2.7881=1.8587  0.0205
40 4 0.01 0.7 x 27881 =19517 0.0223
40 4 0.01 0.8 x 2.7881 =2.2305 0.0214
40 4 0.001 0.5 x 2.7881 =1.3941 0.0792
40 4 0.001 2/3 x 2.7881=1.8587  0.0082
40 4 0.001 0.7 x 27881 =19517 0.0026
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Future work will involve the error effect arising in computing eigenfunctions and eigen-
values of the operator A on the truncation method. The question is how to obtain some
optimal balance between the accuracy of eigensystem and the noise level of input data.
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