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Abstract
In this paper, we consider the following quasilinear elliptic system:

- ij Dy(ay(x, u)Dw) + 3 Zﬁj:] Dsaylx,u)DiuDju = 225 |u|°"2|v|/3u x e,
Zu Dj(by(x, YD) + 1 ZZﬂ Dsbjj(x,v)DvDyv = a+,3 |u|°‘|v|’3 2 x e,
u=0, v= O, x €082,
where Diu = B—X, D a,/(x u)= 3uaU(x u), Dsbj(x,v) = " ~bix,v), > 2, 8> 2,

o+ P <2.2% 2% = N 2 is the critical Sobolev exponent and Qc RV (N>3)isa
bounded smooth domain. By using the perturbation method, we establish the
existence of both positive and negative solutions for this system.

MSC: 35J60; 35833
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1 Introduction

Let us consider the following quasilinear elliptic system:

- Zzle,-(ai,»(x, u)Diu) + 1 Zzlesa,j(x, u)D;uDju = mﬂ < \u* 2Py, xeQ,
= Y01 Dilbij(x,v)D) + 5 300, Dibyj(x,v)DivDyy = Zjulvlf 2y, xeQ, (L)

u=0, v=0, x €082,
where Du = o0, Dsaji(x, u) = aij(x,u) Dibyi(x,v) = i b, v), 0 >2, 8>2, 0+ <2
2%, 2% = =5 is the critical Sobolev exponent and Q C RN (N > 3) is a bounded smooth

domain. ThlS system includes the following special class of system with a;(x, u) = (1 +
u?)8y, by(x,v) = (L +v2)5y, i.e.,

2 _
—Au - %uA(uz) = ﬁ|u|°‘ vy, xeQ,

—Av—IvA(A) = %|u|“|v|ﬂ‘2‘/, xeQ,
u=0, v=0, x €09,

which is referred to as the so-called modified nonlinear Schrédinger system.
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Our assumptions on the functions a; and b;; are as follows.

(A1) The functions a; € CH(Q x R,R), b; € CH(Q2 x R,R), a; = aj;, by = by, i,j=1,2,...,N.
(Az) There exist constants ay, a1, by, by satisfying a; > ag >0, b1 > by >0, (@ +  — 2)ag >
2a; and (a + B — 2)bgy > 2b; such that

N
ao(1+5°)E1° <) ayx )68 <a(1+5) &P,

ij=1

N
bo(l + 52)|E|2 < Zbij(x,s)éiéj < bl(l +52)|$|2

ij=1

forxeQ, e eRY,seR.
(A3z)

N N
0= Diaylx,s)skif; <2 ay(x,5)5,

ij=1 ij=1

N N
0< ZDsb,j(x,s)séiéj <2 Zbij(x, S)Siéj

ij=1 ij=1

forxeQ, & cRY,seR.

In recent years, much attention has been devoted to the quasilinear Schrédinger equa-
tion of the following form:

~Du+ AV (x)u— kAP )u = ulP?u, xeRV. (1.2)

See, for example, [1] where Poppenberg et al. proved the existence of a positive ground
state solution by using a constrained minimization argument. Using a change of variables,
Liu et al. [2] used an Orlicz space to prove the existence of a soliton solution for equation
(1.2) via the mountain pass theorem. Colin and Jeanjean [3] also made use of a change of
variables but worked in the Sobolev space H!(RY). They proved the existence of a positive
solution for equation (1.2) from the classical results given by Berestycki and Lions [4]. Liu
et al. [5] established the existence of both one-sign and nodal ground states of soliton-type
solutions for equation (1.2) by the Nehari method. By using the Nehari manifold method
and the concentration compactness principle (see [6]) in the Orlicz space, Guo and Tang
[7] considered the following quasilinear Schrodinger system:

A+ (hax) + Du— 3 (AlulPu = 25 |ul*2v|fu, xeRV,

a+f
—Au+ (Ab(x) + Du - H(Alu?)u = % lu|?|v|P2y, xeRN, 1.3)
u(x) — 0, v(x) — 0, |x| — o0,

with a(x) > 0, b(x) > 0 having a potential well and @ > 2, 8> 2, o + 8 <2 - 2% and they
proved the existence of a ground state solution for system (1.3) which localizes near the
potential well int a71(0) for A large enough. Guo and Tang [8] considered also ground state
solutions of the single quasilinear Schrédinger equation corresponding to system (1.3) by
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the same methods and obtained similar results. In particular, by the perturbation method,
Liu et al. [9] considered the existence and multiplicity of solutions for the following quasi-

linear equation of the form

Zﬁzl Dj(aij(x, u)D;u) — % ZZlesa,-j(x, u)DiuDju + f(x,u) =0, x¢€,
u=0, x €02

(1.4)

under suitable assumptions.

It is worth pointing out that the existence of one-bump or multi-bump bound state so-
lutions for the related semilinear Schrédinger equation (1.2) for k = 0 has been extensively
studied. One can see Bartsch and Wang [10], Ambrosetti et al. [11], Ambrosetti et al. [12],
Byeon and Wang [13], Cingolani and Lazzo [14], Cingolani and Nolasco [15], Del Pino and
Felmer [16, 17], Floer and Weinstein [18], Oh [19, 20] and the references therein.

Motivated by the single equation (1.4), the purpose of this paper is to study the exis-
tence of both positive and negative solutions for the coupled quasilinear system (1.1). We
mainly follow the idea of Liu et al. [9] to perturb the functional and obtain our main re-
sults. We point out that the procedure to system (1.1) is not trivial at all. Since the ap-
Zlej(aij(x, u)D;u) — % Zzzl Dyayj(x, u)DiuDju and
Z?;zl D;j(by(x,v)Dyv) — % Zzzl D;bjj(x,v)D;vDjv, we need more delicate estimates.

The paper is organized as follows. In Section 2, we introduce a perturbation of the func-

pearance of the quasilinear terms >

tional and give our main results (Theorem 2.1 and Theorem 2.2). In Section 3, we verify the
Palais-Smale condition for the perturbed functional. Section 4 is devoted to some asymp-
totic behavior of the sequences {(u,, v,)} C WSA(Q) X WSA(Q) and {u,} C (0,1] satisfying
some conditions. Finally, our main results will be proved in Section 5.

Throughout this paper, we will use the same C to denote various generic positive con-

stants, and we will use o(1) to denote quantities that tend to 0.

2 Perturbation of the functional and main results
In order to obtain the desired existence of solutions for system (1.1), in this section, we
introduce a perturbation of the functional and give our main results.

The weak form of system (1.1) is

N N
1
/ Za,j(x, M)DiMDj(D + Ef E Dsﬂi]‘(x, M)Dl'I/tD]M(/)

Q=1 ij=1

N N
1
+ /Q Zblj(x,v)Diijt/f+ 5 /Q ZDsb,-j(x, v)DyvDjvir

ij=1 ij=1
200
a+p

2
/ 2P up — =P / P2 = 0 2.1)
Q a+f Jg

for all (¢, ¥) € C5°(£2) x C5°(£2), which is formally the variational formulation of the fol-
lowing functional:

N

N
1 1 2
Io(u,v) = 5/ Zai;(x,u)DiuDju+ 5/ szj(x,V)DtVD/V—m/ lul|vIP. (2.2)
Q Qo Q

ij=1 ij=1
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We may define the derivative of Iy at (1, v) in the direction of (¢, ¥) € C§°(2) x C5°(£2)

as follows:

N 1 N
() (o,) = [ - aytswDanig s [ Y Daaytw DD

ij=1 ij=1
N 1 N
+/ Zblj(x, V)Dl‘VDjlﬂ + E/ ZDsbij(x, V)Dl'VDjl/lﬁ
= Q=
ij=1 ij=1
2 2
-2 [t - 22 [ v v, 23)
o+ ﬁ Q o+ ﬂ Q

We call (u,v) a critical point of I, if (u,v) € Wy*(Q2) x W (), Jou? |1 Vul* < oo,
fQ V2| Vv|? < 0o and (I (u,v), (¢, ¥)) = 0 for all (p,¥) € CP(R) x C(R). That is, (u,v)
is a weak solution for system (1.1).

When we consider system (1.1) by using the classical critical point theory, we encounter
the difficulties due to the lack of an appropriate working space. In general, it seems that
there is no suitable space in which the variational functional I, possesses both smoothness
and compactness properties. For smoothness, one would need to work in a space smaller
than Wj*(S2) to control the term involving the quasilinear term in system (1.1), but it
seems impossible to obtain bounds for (PS), sequence in this setting. Several ideas and
approaches, such as minimizations [1, 21], the Nehari method [5] and change of variables
[2, 3], have been used in recent years to overcome the difficulties. In this paper, we consider

the perturbed functional
1
) = g [ (9 +19%) Do)
Q

N
1 . w1
= Z“/Q(Wu' +|Vylt) + 5/QZai,(x,u)D,»uDju

ij=1

N
1 2 3
+3 | X bstwpany - —— [ e, (2.4)

ij=1

where 11 € (0,1] is a parameter. Then it is easy to see that I, isa C'-functional on W&A(Q) X
Wé'4(§2). We can define also the derivative of I, at (1, v) in the direction of (¢, 1) as follows:

(I;L(u,v),(go,l//»:ML|VM|2VMV¢+/L/§2|VV|2VVVI//

N N
1
+/ Zai,(x,u)DiuDj<p+§/ ZDsalj(x,u)DiuD,-uw
Q Q

ij=1 bj=1

N N
1
+/Q E bij(x,v)DivDjyr + 5/9 E Dibyj(x, v)DivDiviyr

ij=1 bj=1
2a
oa+ B

f |u|“*2|v|ﬂu<p—i f |ul* VP2 vyr (2.5)
Q a+f Jq
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for all (¢, ¥) € C(2) x C3°(R2). The idea of this paper is to obtain the existence of the
critical points of I, for ;1 > 0 small and establish suitable estimates for the critical points
as it — 0 so that we may pass to the limit to get the solutions for the original system (1.1).

Our main results are as follows.

Theorem 2.1 Assume that (A;)-(As) hold, o >2, 8>2 and o + B <2 -2*. Let u,, — 0

and let {(u,,v,)} C W(%A(Q) X Wé’4(§2) be a sequence of critical points of 1, satisfying

Il/m(un, vn) =0and 1, (u,,v,) < C for some C independent of n. Then, up to a subsequence,
u, — U, V,— 7V in Wé’Z(Q),

u,Vu, - uvVu, Vv Vv, = vV in L2(Q),
un/ (IVaal* + |Vva|*) > 0,
Q

Il/,,n (”m Vn) - I(/)(M, V)

as n— 00, and (u,v) is a critical point of I.

Theorem 2.2 Assume that (A,)-(As) hold, o > 2,8 >2and o+ < 2-2*. Then 1, has a pos-
itive critical point (u,,,v,) and a negative critical point (i,,7,), and (u,,v,) (resp.,(#,,V,.))

converges to a positive (resp., negative) solution for system (1.1) as i — 0.

Notation We denote by || - || the norm of WSA(Q) and by | - |; the norm of L*(2) 1 <s<
+00).

3 Compactness of the perturbed functional
In this section, we verify the Palais-Smale condition ((PS). condition in short) for the per-

turbed functional I, (&, v). We have the following proposition.

Proposition 3.1 For u > 0 fixed, the functional 1,,(u,v) satisfies (PS). condition for all
c € R. That is, any sequence {(u,,v,)} C W3’4(SZ) X W&'4(Q) satisfying, for c € R,

Iu(un: Vu) —> ¢, (3.1)

I (1t va) = O strongly in (Wy*(Q) x Wy ()" (3.2)

has a strongly convergent subsequence in W(}A(Q) X Wé"L(Q), where (WéA(Q) X W&"L(Q))*
is the dual space of WSA(Q) X WéA(Q).

To give the proof of Proposition 3.1, we need the following lemma firstly.

Lemma 3.2 Suppose that a sequence {(u,,v,)} C Wé"*(Q) X W3'4(Q) satisfies (3.1) and
(3.2). Then

4 1 1 -
) 1 -1
h}?i)SOliPH (I/ln; Vn)” S <4 o+ ﬂ) M C.
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Proof 1t follows from (3.1) and (3.2) that

Cc+ 0(1) - o ! 0(1) || (um Vrl) ||

+B

1
= I/L(um Vn) - m<11/4(u”’ Vn): (unr Vn))
1 1
= (Z ~ +/3)M/Q(|Vunl4 +1Vval*)
11 N 11
+ (5 - +ﬂ> /QZal-j(x,u)D,-uD,'u+ (5 "o h

ij=1

N
)‘/QZbij(x,v)D,-ijv

ij=1

N N
1 / 1
D Da»»(x,u)DuD«u—i/E D,byj(x, v)DivDjv
2Aa+p) oty o T 2(a+ B) Yyt o o

(11 4 o (a+p=2)ay—2a; N 2
> (4 a+ﬁ)u[9(|Vu| +|Vv*) + 21 ) L(1+un)|Vun|
(@ + B —2)by —2b ) )
+ 2@+ p) /Q(l+vn)|an|

11
> (Z_ a+ﬂ>u[9(|vm4+ IVv*).

Thus we have

4 1 1 B
) 1 -1
hr]lllsolo]p” (un; Vn)” S <4 a+ ﬁ) M C.

This completes the proof of Lemma 3.2. d
Now we give the proof of Proposition 3.1.

Proofof Proposition 3.1 From Lemma 3.2, we know that {(«,, v,)} is bounded in W&’A‘(Q) X
W3'4(Q). So there exists a subsequence of {(u,, v,)}, still denoted by {(u,,v,)}, such that

(th, Vi) = (u,v)  weakly in W3*(2) x Wy () as n — oo,

U, —> U, v, — v stronglyin L°(2) asn — oo forany 2 <s<2 - 2%

Now we prove that (u,,v,) — (&,v) in W(}A(Q) X WSA(Q). In (2.5), choosing (¢, V) = (u,, —
Uy, Vi — Vi), We have

o(1) ” (Un =ty Vi = Vm)”

= <1,/L(um Vn) - IZL(um’ Vm)’ (un — Ums Vn — Vm))

=M/(|VunI2Vun— IV st >V thyn) (Vi = Vi)
Q

i f (Vv Vv = [V VPV ) (V¥ = V0,)
Q

N
+ / > (@(® ) Djthn — @175, ty) Dyt (Djityy — Dyty)
i
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N
+ / Z(bij(x; V) DV = byj(%, Vi) DiVyn ) (Djvyy — Djvyn)
Q

ij=1

N
1
+ E / E (Dsaij(x, un)DiunDjun - Dsﬂij(xy um)Diuijum)(un — Up)
2 =1

N
1
+ = / Z(Dsbij(xv Vn)DL'VnDjVn _Dsbij(x¢ Vm)DiVijVm) (Vn - Vm)
2 Jao

ij=1
20
- /(|un|“-2|vn|ﬂun — (8|2 | ) (= 1)
o +ﬂ Q
28 _ _
- (|un|a|vn|ﬁ zvn - |um|a|Vm|ﬁ 2Vm)(Vn — V). (3.3)
a+f Jo

We may estimate the terms involved as follows:
2 2 1 4
w (lvun| Vi, — V| vMm)(vun -Vu,) > ZM |Vu, — Vu,|",
Q Q

1
n f (IVVul* V¥ = 1VV V00 ) (V¥ = V) > g / IV, = Vl*,
Q Q

N
/ Z(ﬂzj(x; un)Diun - aij(x: um)Dtum)(Djun - D]um)
Q=1

N
= /g Zag(x, un)Di(tty — th) Dj(1t — )

ij=1

N
+ /Q Z(aij(x: un) - ﬂz’j(x, um))Diuij(un - um)

ij=1
N
= / ZDsaij(xr iy + (1 - t)um)(un - Mm)Diuij(un - um)
21
> —Cluty = ||t | (]l + N[22}
— 0 asm,n— oo for somet € (0,1),

N
/;2 Z(bij(xr Vn)DiVn - bi]’(xr Vm)DiVm) (DjVn _Djvm)

ij=1

N
= [ 3 by Dt =)D =)

2 jm1

N
+ / Z(bi;’(% Vi) — by(x, Vm))DiVij(Vn — Vi)
Q

ij=1
N
= / ZDsbij(x, TV, + (1— 7:)Vm)(Vn - Vm)DiVij(Vn ~Vm)
2in
> —Clvy = Viula vl (1Vl + [Vall)

— 0 asm,n— oo forsome t € (0,1),
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N =

N
/ Z(Dsaij(x¢ Mn)DiunDjun - Dsﬂij(x; um)DtMijum)(un - um)
Qi

1 N
- Z D i (%, 1) Dyt D, (1), — um)|

j=1

\)

+ = / Z|D ai(%, un)Divt, Djtt, (1, — um)|

ij=1

2 2
< C(lltnll® + Nt 1?) 118 = thma
— 0 asm,n— oo,

Z (Dsbyj(%, Va) DivuDyvy = Dsbij(%, Vi) DiVinDjvim) (Vis = Vi)
ij=1

<—fZ‘Db,, %, V) DV DV (Vi = Vi) |

ij=1
+ = / Z|D bij(%, V) DivuDyva(V = V)|
ij=1
< C(Ivall® + 1vinll*) [V = Vinla

— 0 asm,n— 0o,

oa+f

f (1661211t = 11l 1) = 1)
Q

-1 -1
/(mm [l + [t vl = 11
a+pB Jo

20 B
«+ B (|Mn|a+ﬁ|vn|a+ﬁ + |um|a+ﬁ|Vm|u+ﬁ)|Mn - Mm|a+ﬂ

| /\

— 0 asm,n— oo,

-2 -2
V 101201 = Vit V0 (V= i)

o +/3
28 . _
< (1211 P 7+ 11t [Vl P 7)1V = Vi
o+ f
28
=< m(|”ﬂ|a+ﬁ|vn|a+ﬂ + |”m|a+ﬁ|Vm|a+,g)|Vn - Vm|a+ﬂ

— 0 asm,n— 0.
Returning to (3.3), we have
1 4 4
Z/’L (|Vun - V”lm| + |VVn - VVm| ) =< 0(1)” (M,, —UmryVn — Vm) || + O(I)y
Q

which implies that ||(z;, — 4, vy, — Vi) || = O, i.e., (t4y, ty) = (4, V) in WSA(Q) X W(}A(Q).

This completes the proof of Proposition 3.1. O
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4 Some asymptotic behavior

Proposition 3.1 enables us to apply minimax argument to the functional 1, (x,v). In this
section, we also study the behavior of the sequences {(u,,v,)} C W&'A‘(Q) X W(}A(Q) and
{u,} C (0,1] satisfying

Un— 0, (4.1)
L, (n,ve) = ¢, (4.2)
|2, Gt v)[* = 0. (4.3)

The following proposition is the key of this section.

Proposition 4.1 Assume that the sequences {(u,,v,)} C W(}A(Q) X W(}A(Q) and {ju,} C
(0,1] satisfy (4.1)-(4.3). Then, after extracting a sequence, still denoted by n, we have

(s Vi) = (,v)  in W3 (2) x Wi (R),

(Un Vit vy Vvy) = @Vu,vVv) in L*(Q) x L*()
and

(1n (), va(%)) — (u(x),v(x)) a.e.xe€Q
asn— oo.

Proof Similar to the proof of Lemma 3.2, by (4.1)-(4.3), we have

1
a+p

> G - aiﬁ)unfg(wunh V)
(“‘32(_“23‘2)_2“1fQ(1+u§)|wn|2

(Ol+,3—2)bo—2b1 2 2
2+ B) /9(1 +v,) [V, (4.4)

C > I, (tn, V) = (1,;” (U, Vi), (i, Vn)>

Thus
un/(|wn|‘*+|an|4)+f(|wn|2+|an|2)+/(u2|wn|2+v3|wn|2) <C (45)
Q Q Q

for some C independent of #n. Then, up to a subsequence, we have

(tny V) = (,v)  in Wp(R) x Wy (R2),

(4, Vb, vy V) = (uVu,vVv)  in L2(Q) x L2(Q)
and
(un(x), va(x)) > (u(x),v(x)) ae.xeQ

as n — 00. This completes the proof of Proposition 4.1. g
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5 Proof of main results

In this section, we give the proof of our main results. Firstly, we prove Theorem 2.1.

Proof of Theorem 2.1 Note that (u,,v,) satisfies the following equation:

o / VitnPVir Vo + i f Vv, 2V,
Q Q

N N
1
+/ Zﬂij(x, u,)Diu,Djp + —/ ZDsai,-(x, u,)Diu,Dju,
2 =1 2 Je ij=1

N N
1
+ /Q § bi,(x,v,,)DiVnDjw+§ /Q § Dybij(%, V) Divu Dy, r

ij=1 ij=1
20
a+p

o— 2/3 o —.
/|un| 2|vn|f‘un¢>——/ |11Vl P v, = 0 (5.1)
Q a+fJo

for all (¢, V) € W(}A(Q) X WSA(Q). Since

([

N2 N
< C/ Zﬂij(x, u,)Diu,Dju, < C
2 =1
and
1\% N
(/ |Vn|zé_N2) =< C/ Zbij(xr Vn)DiVnDjVn =< C
Q Q

ij=1

By Moser’s iteration, we have

[thn|Le < C, [Valreo < C. (5.2)
Hence
lulpe < C, [vlgee < C (5.3)

for some C independent of #n. To show that (i, v) is a critical point of Iy, we use some
arguments in [22, 23] (see more references therein). In (5.1), we choose ¢ = & exp(-Mu,,),
Y = nexp(-Mv,,), where £ € C°(R2), £ > 0, n € C3°(R2), n = 0 and M > 0 is a constant.
Substituting (¢, ¥) into (5.1), we have

0= iy / Vit Vi, (V& exp(-Muy) - § Vit exp(=Mu,))
Q

+ U / Vv > Vv (V1 exp(=Mv,) — nVv, exp(-Mv,,))
Q

N

+ / Z a;(%, un)Ditty (D/S exp(-Mu,) - M&Dju, exp(—Mu,,))
QL
ij=1

N
+ / Z bij(%, vu)Div, (Djn exp(-Mv,) — MnD;v, exp(-Mv,,))
Qo
ij=1

Page 10 of 16
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N
1
+ 3 /Q ZDsﬂij(x, un)D,»u,,D,ung exp(—Mu,)

ij=1

N
1
+ 5/ ZDSbi,(x, Vu)Div,Djv,n exp(—Mv,,)
2 =1

20
oa+f

) 28 )
/ i expl-e) - 2 / 4l [V 12V exp(=M,)
Q Q

=< ,U«n/ |Vun|2VunV$ GXP(—M“n) + U-n/ |VVn|2VVnV77€‘XP(—MVn)
Q Q

N N
+ / Z azj(x> ”n)DiunDjé exp(-Mu,) + / Z bz’j(x’ Vn)DiVnDjn exp(-Mv,)

Q ij=1 Q ij=1

N 1
_/ Z(Maij(x, uy) — EDsaij(x, u,,))Diu,,Dju,,S exp(—Mu,,)
Q

ij=1

N
1
- / Z (Mbij(x, Vi) = EDsbIj(x: Vn)>DiVnDjVn77 exp(=Mv,,)
Q

ij=1
20
o+ f

2
- —IB/ |Mn|a|Vn|ﬂ72VnT)eXP(—MVn)- (5'4)
o+ ,3 Q

/ 0] v Pt exp(=Mity)
Q

Note that Ma;(x,u,) — %Dsai/(x, u), Mby(x,v,) — %Dsbi/(x,vn) are positive for M
large enough. By Fatou’s lemma, the weak convergence of {(u,,v,)} and the fact that
o [o(IVttn]* + [V, |*) is bounded, we have

N N
0< f Zai,»(x, u)D;uD;& exp(—Mu) + /;2 Z bij(x, v)DyvDjn exp(—Mv)

ij=1 ij=1

N
_ / Z(Ma,;(x, u) — %Dsaij(x, u))DiuDjué exp(—Mu)
Q

ij=1

N
1
_/ E (Mb,-,-(x, V) - EDsbij(x, V))D,‘VD;’V?] exp(-Mv)
Q

ij=1
20
a+p

2
f |u|“*2|v|f’usexp(—Mu)——ﬁ f |u|*|v|P~2vi exp(~Mv)
Q a+pf Jq

N N
= f Zai,»(x, u)D;uD; (S exp(—Mu)) + /Q Z by(x, u)D,»VDj(n exp(—Mv))

ij=1 bj=1

N
1
+ 5 / ZDs(lij(x, M)Dl‘uDjI,tf;: exp(_Mu)
Q=1

N
1
+ 5/ ZDsbi,'(x, v)D;vDjvn exp(-Mv)
Qi1

20
a+p

/ 0l211P u exp(—Mu) — —2— / |l [vIP 2 vn exp(—=Mv). (5.5)
Q a+pB Jo
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Let (x,w) > (0,0), (x,w) € C§°(£2) x C°(2). We may choose & = x exp(Mu), n = wexp(Mv)
such that (¢,7n) € W&A(Q) X W3’4(Q), |€ |00y < C and |n|ro(q) < C. Then we obtain

N N
/ Za,»j(x, u)D;uD;x +/ Zbij(x, v)D;vDjw
Q Q

ij=1 ij=1

N N
1 1
+ 5‘/ E Dyaij(x, u)DiuDjuy + E/ E D;byj(x,v)DivDjvew
2 i1 |

20
oa+pf

2
/ Py — P / P vo > 0 (5.6)
Q a+pBJg

for all (x,w) > (0,0), (x,w) € C3°(2) x CF(R).

Similarly, we may obtain an opposite inequality. Thus we have

N N
f Zaij(x, u)D;uD;x +/ Zbij(x, v)D;vDjw

ij=1 ij=1

N N
1 1
+ 5_/ E Dyaij(x, u)DiuDjuy + E/ E D;bjj(x,v)DivDjvew
Q2 =1 =1

20
oa+f

2
f 2Py - 22 / 1P vo = 0 (5.7)
Q a+pB Jg

for all (x,w) € C°(2) x C5°(S2). That is, (u,v) is a critical point of I, and a solution for
system (1.1). By doing approximations, we have (u,v) in the place of (x, ) of (5.7)

N N
/Za,j(x,u)DiuDju+/ Zbi,»(x,v)Diijv
Q Q

ij=1 ij=1

N
1
+§/ ZDsaij(x,u)uDiuDju

ij=1

N
1
+§/ § Dsbi,(x,v)vDiijv—Zf lu|“v|? = 0. (5.8)
Q Q

ij=1

Setting (¢, ¥) = (4, v,) in (5.1), we have

N
Mn/(|vun|4+ |VVn|4) +/ Zﬂzj(xjun)DiunDjun
Q Q

ij=1

N N
1
+ A ;bij(x, Vn)DiVnDjVn + E A UZﬂDsﬂij(x; un)unDiunDjun

N
1
+ 5‘/ ZDssz(x)Vn)VnDiVnDjVn _2/ |M;'1|O[|VVI|}3 =0. (59)

ij=1 v
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Using fQ [t |* [V] P — fQ |ul*|v|f as n — oo, (5.8), (5.9) and lower semi-continuity, we
obtain

unf(|wn|4+ Va4 = 0,
Q

N N
/ Z ai(%, un)Diu,Djut, — / Z a;(x, u)DiuDju,
Q Q

bj=1 ij=1
N N
/ § bij(x, Vrl)DiVnDjVn - / Z b,j(x, V)DiVD]'V
£ ij=1 2 ij=1
as n — Q.

In particular, we have

U, — U, V,— Vv in Wé’z(Q),

u,Vu, — uvVu, vV, = vV in L2(Q)
and
I, (w,ve) = Ly, v)
as n — 0o. This completes the proof of Theorem 2.1. g

Next, we apply the mountain pass theorem to obtain the existence of critical points of ,,.

Set
T, = {(u, v) € Wyt(Q) x ng‘*(sz)’
N N
/ Z ai,»(x, M)DlI/tD}M + / Z b,j(x, V)DiVDI‘V < ,02}
ij=1 =1
for p > 0.

Let us consider the functional

N
1 1
Liwv) = op / (1Val* + V") + f D i@ u)DuuDju
Q Qin

1 [ 2 o
+ E/S;Zbij(x,v)Diijv— /Q(u*) (v )ﬁ. (5.10)

Pyt oa+p

Here and in what follows, we denote #* = max{u, 0}. The functional I, satisfies (PS), con-
dition. Similarly, we may verify that I, satisfies (PS). condition. By the ¢-Young inequality,
for any ¢ > 0, there exists C, > 0 such that

) () el v €)™
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and
asp wtp
4
/ |u|* P < C(/ M2|Vu|2> < (f Za,,(x, u)D;uD; u) ,
Q Q Pt
/ v|* < C</ v2|Vv|2) <C / Zbi/(x, v)DvDyv .
@ @ Q=1
Then
- v
o+ ﬁ Q
2 a+ 2 a+
>_ s/(u*) B Cg/(uar) B
a+fB Jo o+ p
wb 2C N wp
&
o+ ﬂ (/ Zﬂz/(x; M)D uD; M) - o+ ﬂ (/;Z Zbi,(x, V)DiVDjV)
ij=1 ij=1
2C arp 2C,  asp
— gp 2 = p 2
oa+p o+ pf
> - ! 0*
oa+f
for ¢, p small. Thus we have
R 1 2
I;(u, v) > / Zal} x, u)DiuDju + — f Zb,,(x, v)DyvDjy — —— / (u*)a(lf')ﬁ
2 Jo* Py P a+B Jg

1 1 11
> op-——pt= |- p*
2 a+p 2 oa+f

for (u,v) € 9%, and for p > 0 small enough. Choose (¢,v) > (0,0), (x,w) € C°(2) x
C3°(R2) and T > 0. Define a path (g,4) : [0,1] — Wé"’(SZ) X WSA(Q) by (g(8), k() =
(tTo,tTy). When T is large enough, we have

I (g(1),h(1)) < 0

/ Za,, x,¢(1))Dig1)Dig(1) + / Zb,, (x,h(1))Dih(1)D;h(1) >

ij=1 ij=1

and

sup I (g(t), h(t)) <m
te(0,1]

for some m independent of u € (0,1].
Define

¢, = inf su (1), h(t)),
“ @her te[()pl] (g )
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where

I ={(gh) e C([0,1], Wy*(Q) x Wy*(Q))|

(€(0),4(0)) = (0,0), (¢(1), h(1)) = (T'p, T)}.

From the mountain pass theorem we obtain that

(11,
C —_——
=\2 a+p P

is a critical value of I;.

Let (u,,v,) be a critical point corresponding to c¢,. We have (u,,v,) > (0,0). Thus
(u,,v,) is a positive critical point of I, by the strong maximum principle. In summary,
we have the following.

Proposition 5.1 There exist positive constants p and m independent of v such that I, has
a positive critical point (u,,v,,) satisfying

2<I( )<
1% Uy, V m.
2 /3 = 4pu\Fpr V) =

Finally, we give the proof of Theorem 2.2.

Proofof Theorem 2.2 For a positive solution of system (1.1), the proof follows from Propo-
sition 5.1 and Theorem 2.1. A similar argument gives a negative solution of system (1.1).
This completes the proof of Theorem 2.2. |
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