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Abstract

We consider T-periodic parametrized retarded functional differential equations, with
infinite delay, on (possibly) noncompact manifolds. Using a topological approach,
based on the notions of degree of a tangent vector field and of the fixed point index,
we prove a global continuation result for T-periodic solutions of such equations.

Our main theorem is a generalization to the case of retarded equations of a global
continuation result obtained by the last two authors for ordinary differential
equations on manifolds. As corollaries we obtain a Rabinowitz-type global bifurcation
result and a continuation principle of Mawhin type.
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1 Introduction
In this paper we prove a global continuation result for periodic solutions of the following
retarded functional differential equation (RFDE for short) on a manifold, depending on a
parameter A > 0:

X (E) = Mf(t,xy). (L1)

Let us present the setting of the problem. Consider a boundaryless smooth m-dimen-
sional manifold M C R¥ and, given any p € M, let T,M C R¥ stand for the tangent space
of M at p. Denote by M= BU((—00, 0], M) the set of bounded and uniformly continuous
maps from (—00, 0] into M, and observe that this is a metric space as a subset of the Banach
space Rk .= BU((—00, 0], R¥) with the usual supremum norm. Given T' > 0, let f: R x M—
R¥ be a continuous function verifying the following conditions:

L ft,@) =f(t+T,9),V(t, @) € R x M;

2. f(t,9) € T,0)M, V(t,9) € R x M;

3. fislocally Lipschitz in the second variable.

A solution of (1.1) is a function x with values in the ambient manifold M, defined on
an open real interval / with inf] = —oco, bounded and uniformly continuous on any closed
half-line (00, b] C J such that the equality &'(¢) = Af(¢,x;) is eventually verified. We use
here the standard notation in functional equations: whenever it makes sense, x; € M de-
notes the function 6 — x(t + 0).
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To proceed with the exposition of our problem, we need some further notation. Given
p € M, p~ denotes the constant p-valued function defined on R or on any convenient
subinterval of R. The actual domain of p~ will be clear from the context. Moreover, given
any A C M, A~ stands for the set {p~ : p € A}. All the functions of A~ will be consid-
ered defined on the same interval, suggested by the context. By C7(M) we mean the set
of all continuous T-periodic maps x: R — M. This set, which contains M~, is a met-
ric subspace of the Banach space Cr(R¥) with the standard supremum norm. We call
(A, x) € [0,+00) x Cr(M) a T-periodic pair of equation (1.1) if x: R — M is a solution
of (1.1) corresponding to A. Among these pairs, we distinguish the trivial ones, that is,
the elements of the set {0} x M~, which can be isometrically identified with M. Notice
that any T-periodic pair of the type (0,x) is trivial since the function x turns out to be
necessarily constant. An element p € M will be called a bifurcation point of (1.1) if any
neighborhood of (0, p7) in [0, +00) x C7(M) contains nontrivial T-periodic pairs. Roughly
speaking, p € M is a bifurcation point if any of its neighborhoods in M contains T'-periodic
orbits corresponding to arbitrarily small values of A > 0.

The main outcome of this paper, Theorem 3.3 below, is a global continuation result for
T-periodic solutions of equation (1.1). That is, given an open subset 2 of [0, +00) x Cr(M),
it is a result which provides sufficient conditions for the existence of a global bifurcating
branch in 2, meaning a connected subset of 2 of nontrivial T-periodic pairs whose closure
in Q is noncompact and intersects the set of trivial T-periodic pairs. The proof of Theo-
rem 3.3 is based on a relation, obtained in a technical result, Lemma 3.8 below, between
the degree (in an open subset of M) of the tangent vector field

T
w(p) = %/0 f(t,p_)dt, pPEM,
and the fixed point index of a sort of Poincaré T-translation operator acting inside the
Banach space C([-T,0],R¥).

The prelude of our approach can be found in some papers of the last two authors (see,
for instance, [1]), where the notions of degree of a tangent vector field and of fixed point
index of a suitable Poincaré T-translation operator are related in order to get continuation
results for ODEs on differentiable manifolds.

Theorem 3.3 extends and unifies two results recently obtained by the authors in [2]
and [3]. In [2] the ambient manifold M is not necessarily compact, but our investigation
regards delay differential equations with finite time lag. On the other hand, in [3] we con-
sider RFDEs with infinite delay; nevertheless, in this case M is compact and the map f is
defined on R x C((—00, 0], M) with a topology which is too weak, making the continuity
assumption on f a too heavy condition.

We point out that, in order to obtain our continuation result for RFDEs with infinite
delay without assuming the compactness of the ambient manifold M, we had to tackle
strong technical difficulties. Therefore, we were forced to undertake a thorough prelim-
inary investigation on the general properties of RFDEs with infinite delay on (possibly)
noncompact manifolds. This was the purpose of our recent paper [4].

In our opinion the existence of a global bifurcating branch ensured by Theorem 3.3
should hold also without the assumption that f is locally Lipschitz in the second variable.
However, we are not able to prove or disprove this conjecture because of some difficulties
arising in this case. One is that the uniqueness of the initial value problem for equation
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(1.1) is not ensured and, consequently, a Poincaré T-translation operator is not defined as a
single valued map. A classical tool to overcome this obstacle, usually applied in analogous
problems, consists in considering a sequence of C* maps approximating f. In our situation,
however, because of the peculiar domain of f, we do not know how to realize this approach,
and this is another difficulty.

We conclude the paper with some consequences of Theorem 3.3. One is a Rabinowitz-
type global bifurcation result [5] obtained by assuming that the degree of the above tangent
vector field w is nonzero on an open subset of M. Another corollary is deduced when M is
compact: we get an existence result already proved in [6], and we extend an analogous one
obtained in [3] in which the continuity assumption on f is too heavy. A third interesting
case occurs when the degree of w is nonzero on a relatively compact open subset of M and
suitable a priori bounds hold for the T-periodic orbits of equation (1.1): in this case, we
obtain a continuation principle & la Mawhin [7, 8].

The different and related cases of RFDEs with finite delay in Euclidean spaces have been
investigated by many authors. For general reference, we suggest the monograph by Hale
and Verduyn Lunel [9]. We refer also to the works of Gaines and Mawhin [10], Nussbaum
[11, 12] and Mallet-Paret, Nussbaum and Paraskevopoulos [13]. For RFDEs with infinite
delay in Euclidean spaces, we recommend the article of Hale and Kato [14], the book by
Hino, Murakami and Naito [15], and the more recent paper of Oliva and Rocha [16]. For
RFDEs with finite delay on manifolds, we suggest the papers of Oliva [17, 18]. Finally, for
RFDEs with infinite delay on manifolds we cite [4].

2 Preliminaries

2.1 Fixed point index

We recall that a metrizable space X is an absolute neighborhood retract (ANR) if, whenever
it is homeomorphically embedded as a closed subset C of a metric space ), there exist an
open neighborhood V of Cin ) and a retraction r: V — C (see, e.g., [19, 20]). Polyhedra
and differentiable manifolds are examples of ANRs. Let us also recall that a continuous
map between topological spaces is called locally compact if each point in its domain has
a neighborhood whose image is contained in a compact set.

Let X be a metric ANR and consider a locally compact (continuous) X'-valued map k
defined on a subset D(k) of X. Given an open subset U of A’ contained in D(k), if the set
of fixed points of k in U is compact, the pair (k, U) is called admissible. We point out that
such a condition is clearly satisfied if I C D(k), k(L) is compact and k(p) # p for all p in
the boundary of U. To any admissible pair (k, I[), one can associate an integer ind v (k, U)
- the fixed point index of k in U - which satisfies properties analogous to those of the
classical Leray-Schauder degree [21]. The reader can see, for instance, [12, 22-24] for a
comprehensive presentation of the index theory for ANRs. As regards the connection with
the homology theory, we refer to standard algebraic topology textbooks (e.g., [25, 26]).

We summarize below the main properties of the fixed point index.

« (Existence) Ifindx (k, U) # 0, then k admits at least one fixed point in U.

« (Normalization) If X is compact, then indx (k, X) = A(k), where A (k) denotes the

Lefschetz number of k.

« (Additivity) Given two disjoint open subsets U, Uy of U, if any fixed point of k in U is

contained in Uy U U, then indx (k, U) = indy (k, U;) + ind x (k, U>).

« (Excision) Given an open subset Uy of U, if k has no fixed points in U\U,, then

indy (k, U) = ind y (k, U).
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+ (Commutativity) Let X and Y be metric ANRs. Suppose that U and V' are open subsets
of X and Y respectively and that k: U — Y and h: V — X are locally compact maps.
Assume that the set of fixed points of either hk in kX (V) or kh in h™*(U) is compact.
Then the other set is compact as well and indx (hk,k=(V)) = indy (kh, h~1(U)).

+ (Generalized homotopy invariance) Let I be a compact real interval and W be an
open subset of X x I. For any A € I, denote W, ={x e X : (x,A) e W} Let H: W — X
be a locally compact map such that the set {(x,\) € W : H(x, 1) = x} is compact. Then
indx (H(-,A), W3) is independent of A.

2.2 Degree of a vector field

Let us recall some basic notions on degree theory for tangent vector fields on differentiable
manifolds. Let v: M — R* be a continuous (autonomous) tangent vector field on a smooth
manifold M, and let U be an open subset of M. We say that the pair (v, U) is admissible
(or, equivalently, that v is admissible in ) if v-1(0) N U is compact. In this case, one can
assign to the pair (v, U) an integer, deg(v, U), called the degree (or Euler characteristic, or
rotation) of the tangent vector field v in U which, roughly speaking, counts algebraically
the number of zeros of v in U (for general references, see, e.g., [27-30]). Notice that the
condition for v™1(0) N U to be compact is clearly satisfied if I/ is a relatively compact open
subset of M and v(p) # 0 for all p in the boundary of U.

As a consequence of the Poincaré-Hopf theorem, when M is compact, deg(v, M) equals
x (M), the Euler-Poincaré characteristic of M.

In the particular case when I/ is an open subset of R¥, deg(v, ll) is just the classical
Brouwer degree of v in U when the map v is regarded as a vector field; namely, the degree
deg(v,U,0) of v in U with target value 0 € R¥. All the standard properties of the Brouwer
degree in the flat case, such as homotopy invariance, excision, additivity, existence, still
hold in the more general context of differentiable manifolds. To see this, one can use an
equivalent definition of degree of a tangent vector field based on the fixed point index
theory as presented in [1] and [31].

Let us stress that, actually, in [1] and [31] the definition of degree of a tangent vector field
on M is given in terms of the fixed point index of a Poincaré-type translation operator
associated to a suitable ODE on M. Such a definition provides a formula that will play a
central role in Lemma 3.8 below, and this will be a crucial step in the proof of our main
result.

We point out that no orientability of M is required for deg(v, U) to be defined. This
highlights the fact that the extension of the Brouwer degree for tangent vector fields in the
non-flat case does not coincide with the one regarding maps between oriented manifolds
with a given target value (as illustrated, for example, in [28, 29]). This dichotomy of the
notion of degree in the non-flat situation is not evident in RX: it is masked by the fact that
an equation of the type f(x) = ¥ can be written as f(x) — y = 0. Anyhow, in the context of
RFDEs (ODEs included), it is the degree of a vector field that plays a significative role.

It is known that if (v, U) is admissible, then

deg(v, U) = (-1)" deg(-v, L), (2.1)

where m denotes the dimension of M. Moreover, if v has an isolated zero p and U is an
isolating (open) neighborhood of p, then deg(v, U) is called the index of v at p. The excision
property ensures that this is a well-defined integer.
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2.3 Retarded functional differential equations
Given an arbitrary subset A of R¥, we denote by BU((-o0,0],A) the set of bounded and
uniformly continuous maps from (—o0, 0] into A. For brevity, we will use the notation

A= BU((-00,0],A).

Notice that R¥ is a Banach space, being closed in the space BC((—00, 0], R¥) of the bounded
and continuous functions from (—oo, 0] into R¥ (endowed with the standard supremum
norm).

Throughout the paper, the norm in R¥ will be denoted by | - | and the norm in the infinite
dimensional space RK by || - ||. Thus, the distance between two elements ¢ and v of A will
be denoted ||¢ — ||, even when ¢ — i does not belong to A. We observe that A, as a metric
space, is complete if and only if A is closed in RX,

Let M be a boundaryless smooth manifold in R¥. A continuous map

g:Rx[T/I—HR"

is said to be a retarded functional tangent vector field over M if g(¢,p) € T,0)M for all
(t,¢) € R x M. In the sequel, any map with this property will be briefly called a functional
field (over M).

Let us consider a retarded functional differential equation (RFDE) of the type

x,(t) :g(t,xt)r (22)

where g: R x M — RF is a functional field over M. Here, as usual and whenever it makes
sense, givent € R, by x; € M we mean the function 6 — x(t +0).

A solution of (2.2) is a function x: ] — M, defined on an open real interval J with inf] =
—00, bounded and uniformly continuous on any closed half-line (—oo, b] C J, which verifies
eventually the equality x'(¢) = g(¢,x;). That is, x: ] — M is a solution of (2.2) if x; € M for
all £ € J and there exists T € ] such thatx is C! on the interval (z, supJ) and x/(¢) = g(¢,x;) for
all £ € (z,sup/). Observe that the derivative of a solution x may not exist at ¢ = 7. However,
the right derivative D,x(t) of x at T always exists and is equal to g(z,x). Also, notice that
t > x, is a continuous curve in M since x is uniformly continuous on any closed half-line
(—00,b] of J.

A solution of (2.2) is said to be maximal if it is not a proper restriction of another solu-
tion. As in the case of ODEs, Zorn’s lemma implies that any solution is the restriction of a
maximal solution.

Given 1 € M, let us associate to equation (2.2) the initial value problem

x'(t) = g(t, %),

X0 =1.

(2.3)

A solution of (2.3) isa solution x: /] — M of (2.2) such that sup/ > 0, x'(¢t) = g(¢,x;) fort > 0
and xg = 7.

The continuous dependence of the solutions on initial data is stated in Theorem 2.1
below and is a straightforward consequence of Theorem 4.4 of [4].
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Theorem 2.1 Let M be a boundaryless smooth manifold and g: R x M— R bea Sfunc-
tional field. Assume, for any n € M, the uniqueness of the maximal solution of problem
(2.3). Then, given T > 0, the set

D= {77 € M : the maximal solution of (2.3) is defined up to T}

is open and the map n € D+ x7 € M, where x"(-) is the unique maximal solution of prob-
lem (2.3), is continuous.

More generally, we will need to consider initial value problems depending on a parame-
ter such as equation (1.1) with the initial condition x( = 7. For these problems the contin-
uous dependence is ensured by the following consequence of Theorem 2.1.

Corollary 2.2 (Continuous dependence) Let M be a boundaryless smooth manifold and
h: RS x R x M — Rk a parametrized functional field. For any a € R® and n € M, assume

the uniqueness of the maximal solution of the problem

x(t) = hia, t,%,), (2.4)

X0 =1.
Then, given T > 0, the set

D = {(oc, n) e R¥ x M : the maximal solution of (2.4) is defined up to T}

is open and the map (a,n) € D' +— x(;"") € M, where x“"(-) is the unique maximal solution

of problem (2.4), is continuous.

Proof Apply Theorem 2.1 to the problem

(B'(2), %' (2)) = (0, H(B(2), £, x1)),
(/3(0),960) = (Ol, 77)

that can be regarded as an initial value problem of a RFDE on the ambient manifold R* x
MC R.S‘Jr/(' O

In Theorem 2.1 and in Corollary 2.2 above, the hypothesis of the uniqueness of the max-
imal solution of problems (2.3) and (2.4) is essential in order to make their statements
meaningful. Sufficient conditions for the uniqueness are presented in Remark 2.3 below.

Remark 2.3 A functional field g: R x M — R¥ is said to be compactly Lipschitz (for short,
c-Lipschitz) if, given any compact subset Q of R x M, there exists L > 0 such that

lgt, o) gt ¥)| < Llp -y

for all (¢, ), (¢, ¥) € Q. Moreover, we will say that g is locally c-Lipschitz if for any (t,n) €
R x M there exists an open neighborhood of (7, n) in which g is c-Lipschitz. In spite of the
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fact that a locally Lipschitz map is not necessarily (globally) Lipschitz, one could actually
show that if g is locally c-Lipschitz, then it is also (globally) c-Lipschitz. As a consequence,
if g islocally Lipschitz in the second variable, then it is c-Lipschitz as well. In [4] we proved
that if g is a c-Lipschitz functional field, then problem (2.3) has a unique maximal solution
foranyn e M. For a characterization of compact subsets of M see, e.g., [32, Part 1,1V.6.5].

We close this section with the following lemma whose elementary proof is given for the
sake of completeness.

Lemma 2.4 Let F: X — ) be a continuous map between metric spaces and let {y,} be a
sequence of continuous functions from a compact interval [a, b] (or, more generally, from
a compact space) into X. If {y,(s)} converges to y(s) uniformly for s € [a,b], then also
F(yu(s)) = F(y(s)) uniformly for s € [a, b].

Proof Notice that if K is a compact subset of X', then for any ¢ > 0 there exists § > 0 such
that x € X, k € K, distx(x, k) < & imply disty (F(x), F(k)) < ¢. Now, our assertion follows
immediately by taking the compact K to be the image of the limit function y : [4,b] — X.

O

3 Branches of periodic solutions
Let M be a boundaryless smooth m-dimensional manifold in R*. Given T > 0, let

M :=C([-T,0],M)

denote the metric subspace of C([-T,0],R¥) of the M-valued continuous functions on
[=T,0] and set

M, :={y e M:y(=T) = y(0)}.

Moreover, denote by C(R*) the Banach space of the continuous T-periodic maps x: R —
R¥ (with the standard supremum norm) and by C7(M) the metric subspace of C7(R¥) of
the M-valued maps. Observe that, since M is locally compact, then M and Cr(M) (but not
M) are locally complete. Moreover, they are complete if and only if M is closed.

Letf: R x M — R¥ bea functional field over M. Given T > 0, assume that f is T-periodic
in the first variable. Consider the following REDE depending on a parameter A > 0:

X' (&) = M (t,xe). (3.1)

As in the introduction, we call (1, x) € [0, +00) x Cr(M) a T-periodic pair (of (3.1)) if the
function x: R — M is a (T-periodic) solution of (3.1) corresponding to 1. Let us denote
by X the set of all T-periodic pairs of (3.1). Lemma 3.1 below states some properties of X
that will be used in the sequel.

Lemma 3.1 The set X is closed in [0, +00) x Cp(M) and locally compact.

Proof Let {(A",x")} be a sequence of T-periodic pairs of (3.1) converging to (1%,x°) in
[0, +00) x Cr(M). Because of Lemma 2.4, f(¢£,x”) converges uniformly to f(¢,x?) for ¢ € R.
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Thus, (") (t) = A"f(t, %) — A°f(t,4?) uniformly and, therefore, (x°)'(¢) = A°f(£,4?), that
is, (A%, 4°) belongs to X. This proves that X is closed in [0, +00) x Cr(M).

Now, as observed above, Cr(M) is locally complete. Consequently, X is locally complete
as well, as a closed subset of a locally complete space. Moreover, by using Ascoli’s theorem,

we get that it is actually a locally compact space. d

We recall that, given p € M, with the notation p~ we mean the constant p-valued
function defined on some real interval that will be clear from the context. Moreover, a
T-periodic pair of the type (0,p") is said to be trivial, and an element p € M is a bifurca-
tion point of equation (3.1) if any neighborhood of (0,p7) in [0, +00) x Cy(M) contains a
nontrivial T-periodic pair (i.e., a T-periodic pair (A, x) with A > 0). In some sense, p is a bi-
furcation point if, for A > 0 sufficiently small, there are T-periodic orbits of (3.1) arbitrarily
close to p.

In the sequel, we are interested in the existence of branches of nontrivial T-periodic
pairs that, roughly speaking, emanate from a trivial pair (0, p~), with p a bifurcation point
of (3.1). To this end, we introduce the mean value tangent vector field w : M — RX given
by

T
w@:%ﬁf@ﬁﬂt (3.2)

Throughout the paper, w will play a crucial role in obtaining our continuation results for
(3.1). First, in Theorem 3.2 below, we provide a necessary condition for p € M to be a

bifurcation point.

Theorem 3.2 Let x € Cy(M) be such that (0,x) is an accumulation point of nontrivial
T-periodic pairs of (3.1). Then there exists p € M such that x(t) = p, for any t € R, and
w(p) = 0. Thus, any bifurcation point of (3.1) is a zero of w.

Proof By assumption there exists a sequence {(1",x")} of T-periodic pairs of (3.1) such
that A" > 0, A" — 0, and %" (t) — x(t) uniformly on R. As proved in Lemma 3.1, the set X
of the T-periodic pairs is closed in [0, +00) x Cr(M). Thus, the pair (0,x) belongs to X
and, consequently, the function x must be constant, say x = p~ for some p € M. Clearly,
the point p is a bifurcation point of (3.1).

Now, given n € N, recalling that (7)) = x”(0) and that A # 0, we get

T
/ f(tay)dt=0.
0

Observe that the sequence of curves t — (£, %)) € R x M converges uniformlytot +— (¢,p7)
for t € [0, T]. Hence, because of Lemma 2.4, f (¢, x}) — f (¢, p~) uniformly for ¢ € [0, T] and
the assertion follows passing to the limit in the above integral. O

Let now 2 be an open subset of [0, +00) x Cr(M). Our main result (Theorem 3.3 be-
low) provides a sufficient condition for the existence of a bifurcation point p in M with
(0,p~) € Q. More precisely, we give conditions which ensure the existence of a connected
subset of €2 of nontrivial T-periodic pairs of equation (3.1) (a global bifurcating branch for
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short), whose closure in €2 is noncompact and intersects the set of trivial T-periodic pairs
contained in Q.

Theorem 3.3 Let M C R¥ be a boundaryless smooth manifold, f : R x M — R be a func-
tional field on M, T-periodic in the first variable and locally Lipschitz in the second one,
and w: M — R be the autonomous tangent vector field

T
w(p) = %/0 f(tp7)de.

Let 2 be an open subset of [0, +00) x Cr(M) and let j: M — [0, +00) x Cp(M) be the map
p > (0,p7). Assume that deg(w,j () is defined and nonzero. Then there exists a con-
nected subset of Q2 of nontrivial T-periodic pairs of equation (3.1) whose closure in 2 is
noncompact and intersects {0} x Cr(M) in a (nonempty) subset of {(0,p~) € 2 : w(p) = 0}.

Remark 3.4 (On the meaning of global bifurcating branch) In addition to the hypotheses
of Theorem 3.3, assume that f sends bounded subsets of R x M into bounded subsets of
R%, and that M is closed in R¥ (or, more generally, that the closure € of Q in [0, +00) x
Cr(M) is complete).

Then a connected subset T" of Q2 as in Theorem 3.3 is either unbounded or, if bounded, its
closure T in Q reaches the boundary 32 of Q2.

To see this, assume that T is bounded. Then, being f (T') bounded, because of Ascoli’s
theorem, I is actually totally bounded. Thus, T is compact, being totally bounded and,
additionally, complete since T is contained in Q. On the other hand, according to Theo-
rem 3.3, the closure I'g of " in Q is noncompact. Consequently, the set T"\ g, is nonempty,
and this means that I" reaches the boundary of Q.

The proof of Theorem 3.3 requires some preliminary steps. In the first one, we define a
parametrized Poincaré-type T-translation operator whose fixed points are the restrictions
to the interval [T, 0] of the T-periodic solutions of (3.1). For this purpose, we need to
introduce a suitable backward extension of the elements of M. The properties of such
an extension are contained in Lemma 3.5 below, obtained in [33]. In what follows, by a
T -periodic map on an interval /, we mean the restriction to J of a T-periodic map defined
onR.

Lemma 3.5 There exist an open neighborhood U of]vI* in M and a continuous map from
U to M,y v v/, with the following properties:

1. ¥ is an extension of ;

2. J is T-periodic on (—oo,-TT;

3. 1; is T-periodic on (—00,0], whenever ¥ € M..

Let now U be an open subset of M as in the previous lemma and let f be as in Theo-
rem 3.3. Given A > 0 and v € U, consider the initial value problem

x'(t) = A (&, 1),
X0 = J;

(3.3)

where 1/~f is the extension of i as in Lemma 3.5.
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Let
D= {(A, ¥) € [0,400) x U : the maximal solution of (3.3) is defined up to T}.

The set D is nonempty since it contains {0} x U (notice that for A = 0, the solution of
problem (3.3) is constant for ¢ > 0). Moreover, it follows by Corollary 2.2 that D is open in
[0, +00) x M.

Given (A, v¥) € D, denote by x%¥) the maximal solution of problem (3.3) and define

P:D—>M
by

POLY)O) =a*D(O +T), 6e[-T,0].
Observe that P(A, v) is the restriction of x(Tk"Z) € M to the interval [~ T, 0].
The following lemmas regard crucial properties of the operator P. The proof of the first
one is standard and will be omitted.

Lemma 3.6 The fixed points of P(A,-) correspond to the T-periodic solutions of equation
(3.1) in the following sense: V is a fixed point of P(X,-) if and only if it is the restriction to
[-T,0] of a T-periodic solution.

Lemma 3.7 The operator P is continuous and locally compact.

Proof The continuity of P follows immediately from the continuous dependence on data
stated in Corollary 2.2 and by the continuity of the map v — ¥ of Lemma 3.5 and of the
map that associates to any ¢ € M its restriction to the interval [-T,0].

Let us prove that P is locally compact. Take (A%, € D and denote, for simplicity, by
x° the maximal solution x*"¥*) of (3.3) corresponding to (A°, V). Clearly, x° is defined
at least up to T and P(A%,%°)(0) =x°(0 + T) for any 0 € [-T, 0]. Set

K={(tx?)eRxM:te[0,T]}.

Observe that K is compact, being the image of [0, 7] under the (continuous) curve ¢
(t,x2). Let O be an open neighborhood of K in R x M and ¢ > 0 such that If (¢, )| < cforall
(t,¢) € O. Let us show that there exists an open neighborhood W of (A%, 4°) in D such that
if (A, ¥) € W, then (¢, xE)"w)) € Ofort € [0, T], where x%¥) is the maximal solution of (3.3)
corresponding to (A, J). By contradiction, for any n € N suppose there exist (A", ") €
D and t" € [0, T] such that (A", y") — (1%, %°) and (¢",4},) ¢ O, where x" denotes the
maximal solution x*"¥") of (3.3) corresponding to (A", {ﬁ). We may assume t” — 7 €
[0, T]. Now, from the fact that in M the convergence is uniform, we get the equicontinuity
of the sequence {x7}. This easily implies that (¢”,x},,) — (7,4%). A contradiction, since O
is open and (7,x?) belongs to K € O. Thus, the existence of the required W is proved.
Consequently, for any (%, %) € W, the maximal solution x*¥) of (3.3) corresponding to
(A, ¥) is such that |(x*P)Y (8)] = |Af (&, x")| < |Alc for all £ € [0, T].
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Therefore, by Ascoli’s theorem and taking into account the local completeness of M, we
get that P maps W into a compact subset of M. This proves that P is locally compact. [J

The following result establishes the relationship between the fixed point index of the
Poincaré-type operator P(A,-) and the degree of the mean value vector field w. It will be

crucial in the proof of Lemma 3.10.

Lemma 3.8 Let V be an open subset off\7[ such that V N{p~ € M: w(p) = 0} is compact
and let € > 0 be such that

() [0,¢] x V is contained in the domain D of P;

(b) P([0,e] x V) is relatively compact;

() P, ) £ for 0 <X <& and  in the boundary 3V of V.
Counsider the open set V = {p € M : p~ € V}. Then deg(—w, V) is well defined and

indg (P(,-),V) = deg(-w, V), 0<i<e.

Proof Let U be an open subset of M as in Lemma 3.5. Given A >0,ue[0,1] and ¥ € U,
consider the initial value problem

®(8) = M1 = w)f & x0) + pw(x(2))),
X0 = J,

(3.4)

where ¥ is associated to ¥ as in Lemma 3.5. Since f is locally Lipschitz in the second vari-
able, then it is easy to see that w is locally Lipschitz as well. Hence, for any A € [0, +00) and
w € [0,1], the uniqueness of the solution of problem (3.4) is ensured (recall Remark 2.3).
Denote by x%71) the maximal solution of problem (3.4), and put

E= {(A, ¥, ) € [0,+00) x U x [0,1] 2%V s defined up to T}
and

D' ={(n ) €[0,+00) x U: (A, ¥, ) € E forall u € [0,1]}.
Corollary 2.2 implies that E is open in [0,+00) x U x [0,1]. Therefore, D’ is open in
[0, +00) x M because of the compactness of [0,1]. Moreover, observe that the slice Dj,
of D' at A = 0 coincides with U and that D’ is contained in the domain D of the operator P
defined above. Define H: D' x [0,1] — M by

HOu ¥, 10)0) =790 + T), 6 €[-T,0].

Clearly, H(:,-,0) coincides with P on D', while H(:,-,1) is the (infinite dimensional) oper-

ator associated to the undelayed problem

X' (t) = aw(x(t)),
X0 = I’/\f{
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As in Lemmas 3.6 and 3.7, one can show that the fixed points of H(A, -, i) correspond to
the T-periodic solutions of the equation

& (8) = M= p)f (&%) + pw(x(2))),

and that H is continuous and locally compact.
The assertion now will follow by proving some intermediate results on the homotopy H.
These results will be carried out in several steps. In what follows set

Z={peM:wp)=0}
and, according to our notation,
zZ = {p’ e[\A/I:peZ}.

Step 1. There exist o > 0 and an open subset V' of]\7[, containingV N Z~, with V' C V),
and such that

@) [0,0] x V' C D (ie, for0 <A <o, H(A,-,) is defined in V' x [0,1]);
(b") H([0,0] x V' x [0,1]) is relatively compact.

To prove Step 1, observe that {0} x (VN Z~) x [0,1] is compact and contained in D" x
[0,1], which is open in [0, +00) X M x [0,1], and recall that H is locally compact.

Step 2. For small values of > > 0, H(\, ¥, &) # ¥ for any ¥ € 3V’ and u € [0,1].

By contradiction, suppose there exists a sequence {(A", ¥", u")} in D’ x [0,1] such that
A">0, A" = 0, ¥" € 3V and H(\", ¢", u") = ¥". Without loss of generality, taking into
account (b’), we may assume that 9" — 1 and also that u” — 1°. Denote by x” the
T -periodic solution KT of (3.4) corresponding to (A", lﬂp\;‘,,u”). Since ¥" is the re-
striction of x” to [T, 0], then {x"(¢)} converges uniformly on R to x°(¢), where x° is the
solution of (3.4) corresponding to the fixed point y* of H(0, -, u°). Therefore, there exists
p € M such that x°(t) = p for any ¢ € R and, as in the proof of Theorem 3.2, we can show
that w(p) = 0. Thus, ¥° = p~ belongs to 3}’ N Z~, contradicting the choice of V'. This
proves Step 2.

Step 3. For small values of > > 0, H(A, ¥r,0) # ¥ for any ¥ € V\V.

The proof is analogous to that of Step 2, noting that H(x, ¥,0) = P(A, ¥) for (A, ) € D’
and taking into account assumption b) and the fact that V\V" is closed in M.

Step 4. Let k: V' — M be defined by k(¥) = ¥(0) and consider the open set V' = {p €
M :p~ € V'}. Then there exists o’ € (0,0] such that H(A, {r,1) # ¥ for any (A, ) € (0,0'] x
VA\EL(V)).

By contradiction, suppose there exists a sequence {(A”, ¥")} in D" such that A" > 0, " —
0, " € V\k™ (V') and H(A",¥",1) = ¢". Without loss of generality, taking into account
(b'), we may assume that 1" — 0. Therefore, by the continuity of H, we get H(0,v%°,1) =
¥0 so that 1° is a constant function of V'\k~'(V"). This is impossible, since any constant
function of V' is contained in k~1(V").

Step 5. Let V' and o' be as in Step 4 and let Q: [0,6'] x V! — M be the T-translation

Ap,l

operator Q(,p) = x*P"V(T), where x ) is the maximal solution of the undelayed prob-
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lem

X (t) = aw(x(t)),

Xo=p .
Then, for small values of A, indy(Q(A, -), V') is defined and
indg (H(,-,1),V") = indp (Q(, ), V7).

To see this, let k: V' — M be as in Step 4 and, given A € (0,0'], define k;: V' — M
by 1, (p)(0) = 22PN + T),0 € [-T,0]. Clearly, k is a locally compact map since it takes
values in the locally compact space M. Moreover, 4, is actually compact since /1, (V’) is
contained in H([0,0] x V' x [0,1]) which is relatively compact by (b’) of Step 1. Now,
observe that the composition /; k coincides with H(A,-,1) in k"1(V”’) and that the set of
fixed points of H(},-,1) in V' is compact by (b’) of Step 1 and is contained in k~'(V") by
Step 4. Thus, the set of fixed points of /; k in k"}(V) is compact so that, by applying the
commutativity property of the fixed point index to the maps k and #;,, we get

indg; (B k, k™ (V7)) = indag (ki 151 (V).

Consequently, since it is easy to verify that the composition &/, coincides with Q(2,-) in
h;*(V'), we obtain

indg (H(, 1),k (V') = indp (Q(, ), 151 (V')
and, because of Step 4, by the excision property of the index,
indg (H(%,-,1),V') =indg (H(, -, 1),k (V')).

To complete the proof of Step 5, let us show that for A sufficiently small, Q(%,p) # p for
p € V\I;1(V'). By contradiction, suppose there exists a sequence {(A",p")} in [0,0'] x
V7 such that A" > 0, A" — 0, p" € V\h;i (V') and Q(A",p") = p". Hence, there exists a
sequence {y"} in V' such that ¥"(0) = p” and H(\",¥",1) = ¥". Because of (b’) of Step 1,
we may assume that ¥ — 1/° so that, in particular, p” — p°, where p° = ¥/°(0). Now, by
an argument similar to that used in the proof of Theorem 3.2, we get that ° is constant
and w(p°) = 0. Thus, p° € Z. Moreover, since [),,,(V/\/;1(V')) = 3V, we also obtain that
p° belongs to 3V, contradicting the choice of V. Finally, again by excision, we get

indy (Q(A, ), 151 (V') = indw (Q(A, ), V'),

and thus Step 5 is proved.

Let us now go back to the proof of our lemma. Step 1 and Step 2 above imply that there
exist ¢’ > 0 and an open subset V' of ]\7[, containing V N Z~, with V' CV and such that if
0 <A < ¢/, then indg(H(A, -, 1), V') is defined and is independent of u € [0,1]. Moreover,
reducing ¢’ if necessary, by Step 3 and by assumption (b), it follows that for A € (0,¢’], the
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fixed points of H(%,-,0) = P(A,-) in V are a compact subset of }'. Therefore, by the excision
property and the homotopy invariance of the index, we get

indg (P(x,-), V) = indg; (P(,-), V') =indg (H(%,,0),V') = indg (H(, -, 1), V).
On the other hand, by Step 5, if A > 0 is sufficiently small, we have

indg (H(1,-,1),V") = indy (Q(%, ), V).
Moreover, as shown in [1],

indy (Q(1, ), V') = deg(-w, V).

Finally, notice that deg(—w, V) is well defined since V' N Z is compact being homeomor-
phic to V N Z~. Also, observe that there are no zeros of w in V\V". Thus, by the excision
property of the degree, we obtain

deg(-w, V') = deg(-w, V).

This shows that for small values of A > 0, indg;(P(%, ), V) = deg(—w, V). The assertion of
the lemma now follows by applying the homotopy invariance of the fixed point index to
P(x,-)on V. O

Lemma 3.10 below, whose proof makes use of the following Wyburn-type topological
lemma, is another important step in the construction of the proof of Theorem 3.3.

Lemma 3.9 ([31]) Let K be a compact subset of a locally compact metric space Y. Assume
that any compact subset of Y containing K has nonempty boundary. Then Y\K contains a
connected set whose closure is noncompact and intersects K.

Before presenting Lemma 3.10, we introduce the sets
S={(y)eD:P(,y)=v¢} and S,={(Av¥)eS:1>0},
and we recall that Z C M denotes the set of zeros of the tangent vector field w.
Lemma 3.10 Let Y be a locally compact open subset of ({0} x Z7) U S,. Assume that
K:=Y N ({0} x Z7) is compact and that deg(w,V) # 0, where V. C M, is an isolating
neighborhood of {p € M : (0,p~) € K}. Then the pair (Y,K) verifies the assumptions of

Lemma 3.9.

Proof First of all, observe that by Lemma 3.7, S is closed in D and locally compact. In
addition, K is clearly nonempty being deg(w, V') # 0. Now, let G be an open subset of D
such that

GN(({o} xZz)us,) =Y.
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To prove the assertion, suppose by contradiction that there exists a compact open neigh-
borhood C of K in Y. Consequently, we can find an open subset W of G such that WcCG
and C= WNY =W NY. Therefore, denoted by G the slice

Go={y eM:(0,¥) € G},

we have that Gy N Z~ is a compact subset of M and is contained in the open slice W, C
Wo C Goof Wati =0.LetVbean open subset of W, such that V C V< WyandVNZ =
Wo N Z~. Since C is compact and because of the local compactness of P, we may suppose
that P(W) is relatively compact. Consequently, there exists ¢ > 0 such that

1. [0,e] xVCW;

2. P(A,¥) # v for y € W;\V and 0 < A < ¢ (here, as usual, W; denotes the slice

(W € M: (1, ¥) € W)).

Notice that P([0,¢] x V) is relatively compact. This follows easily from the above con-
dition 1 and the relative compactness of P(W).

We can now apply Lemma 3.8 and the excision properties of the fixed point index and
of the degree obtaining, forany 0 < 1 <,

indg (P(A,-), W3) = indg (P(%, ), V) = deg(-w, V), 3.5)

where V = {p € M : p~ € V}. Observe that V is an isolating neighborhood of {p € M :
(0,p7) € K}. Thus, by formula (2.1), by the above equalities (3.5) and the assumption
deg(w, V) #0, we get

indg (P(,-), W) #0, 0<A<e.

Since C is compact, by the generalized homotopy invariance property of the fixed point
index, we get that indg;(P(%, -), W) does not depend on A > 0. Hence,

indg (P(x,-), W) #0, VA >0.

On the other hand, because of the compactness of C, for some positive A the slice C; =
{¢ € Wi : P(A, %) = ¥} is empty. Thus,

indg; (P(%-), W5) =0,

and we have a contradiction. Therefore, (Y, K) verifies the assumptions of Lemma 3.9 and
the proof is complete. d

Proof of Theorem 3.3 Let p: [0,+00) x Cr(M) — [0, +00) X M, be the isometry given by
p(h,x) = (A, ), where ¥ is the restriction of x to the interval [- T, 0]. As previously, let X C
[0, +00) x Cr(M) denote the set of the T-periodic pairs of (3.1) and, as in Lemma 3.10, let
S be the set of the pairs (1, ¥) such that P(, ) = . Observe that S is actually contained in
[0, +00) x M,. Taking into account Lemma 3.6, X and S correspond under p. Analogously
to the definition of S,, let us denote

X, ={(x) eX:a1>0}.
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In addition, consider
AR {p" € Cr(M): w(p) = 0}.

Theorem 3.2 implies that ({0} x ZT) U X, is a closed subset of X. Therefore, it is locally
compact since so is X according to Lemma 3.1. Now, consider

Y =an(({o} x z")uXx,).
Observe that Y7 is locally compact, being open in ({0} x Z7) U X,. Then
Y:=p(YT)

is locally compact and open in ({0} x Z7) US,. Denote by KT and K the subsets of Y and
Y defined as

K'={(nx)eY":1=0} and K=p(K").
Now, observe that j7}(Q) is an isolating neighborhood of
{p eM: (O,p‘) € I(}.

Since deg(w,j}(RQ)) # 0, we can apply Lemma 3.10 concluding that (Y, K) verifies the as-
sumptions of Lemma 3.9. Therefore, also (Y7,KT) verifies the same assumptions since
the pairs (Y,K) and (Y7,KT) correspond under the isometry p. Therefore, Lemma 3.9
implies that YT\KT contains a connected set I whose closure (in Y7) is noncompact and
intersects K. Now, observe that according to Theorem 3.2, YT is closed in . Thus, the
closures of T in Y7 and in  coincide. This concludes the proof. d

We give now some consequences of Theorem 3.3. The first one is in the spirit of a cele-
brated result due to Rabinowitz [5].

Corollary 3.11 (Rabinowitz-type global bifurcation result) Let M and f be as in Theo-
rem 3.3. Assume that M is closed in R and that f sends bounded subsets of R x M into
bounded subsets of R¥. Let V' be an open subset of M such that deg(w, V) # 0, where w
is the mean value tangent vector field defined in formula (3.2). Then equation (3.1) has a
connected subset of nontrivial T-periodic pairs whose closure contains some (0,p~), with
p €V, and is either unbounded or goes back to some (0,q~), where g ¢ V.

Proof Let Q2 be the open set obtained by removing from [0, +00) x Cr(M) the closed set
{(0,g7) : g ¢ V}. In other words,

Q= ([0,+00) x Cr(M)) \ ({0} x (M \ V)").
Observe that Q is complete due to the closedness of M. Consider, by Theorem 3.3, a con-

nected set I' € Q of nontrivial T-periodic pairs with noncompact closure (in £2) and in-
tersecting {0} x C7(M) in a subset of {(0,p~) € Q2 : w(p) = 0}. Suppose that I" is bounded.


http://www.boundaryvalueproblems.com/content/2013/1/21

Benevieri et al. Boundary Value Problems 2013, 2013:21 Page 17 of 19
http://www.boundaryvalueproblems.com/content/2013/1/21

From Remark 3.4 it follows that T \ T'q, where I'q denotes the closure of I' in €, is
nonempty and hence contains a point (0,4~) which does not belong to €, that is, such
thatg ¢ V. O

Remark 3.12 The assumption of Corollary 3.11 above on the existence of an open sub-
set V of M such that deg(w, V) # 0 is clearly satisfied in the case when w has an isolated
zero with nonzero index. For example, if w(p) = 0 and w is C! with injective derivative
wi(p): T,M — RX, then p is an isolated zero of w and its index is either 1 or —1. In fact,
in this case, w'(p) sends T,M into itself and, consequently, its determinant is well defined
and nonzero. The index of p is just the sign of this determinant (see, e.g., [29]).

The next consequence of Theorem 3.3 provides an existence result for T-periodic
solutions already obtained in [6]. Moreover, it improves an analogous result in [3], in
which the map f is continuous on R x C((—00, 0], M), with the compact-open topology
in C((—00, 0], M). In fact, such a coarse topology makes the assumption of the continuity
of f a more restrictive condition than the one we require here.

Corollary 3.13 Let M and f be as in Theorem 3.3. Assume that f sends bounded subsets
of R x M into bounded subsets of RX. In addition, suppose that M is compact with Euler-
Poincaré characteristic x(M) # 0. Then equation (3.1) has a connected unbounded set of
nontrivial T-periodic pairs whose closure meets {0} x Cr(M). Therefore, since Cp(M) is
bounded, equation (3.1) has a T-periodic solution for any X > 0.

Proof Choose V = M. By the Poincaré-Hopf theorem, we have
deg(w, M) = x (M) #0,

where w is the mean value tangent vector field defined in formula (3.2). The assertion
follows from Corollary 3.11. O

Corollary 3.14 below is a kind of continuation principle in the spirit of a well-known
result due to Jean Mawhin for ODEs in R¥ [7, 8] and extends an analogous one for ODEs
on differentiable manifolds [31]. In what follows, by a T-periodic orbit of x'(t) = Af (¢, %),
we mean the image of a T-periodic solution of this equation.

Corollary 3.14 (Mawhin-type continuation principle) Let M and f be as in Theorem 3.3
and let w be the mean value tangent vector field defined in formula (3.2). Assume that f
sends bounded subsets of R x M into bounded subsets of RX. Let V' be a relatively compact
open subset of M and assume that

1. w(p) # 0 along the boundary 3V of V;

2. deg(w, V) #0;

3. for any x € (0,1, the T-periodic orbits of x'(t) = Af (t,x;) lying in V do not meet 3 V.
Then the equation

X (t) =f(t, %)

has a T-periodic orbit in V.
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Proof Define Q = [0,1) x Cr(V). Observe that C(V) = Cr(V). Therefore,
a2 = ({1} x Cr(V)) U ([0,1) x Cr(V)\ Cr(V)).

According to Theorem 3.3, call I" a connected subset of Q2 of nontrivial T-periodic pairs
of the equation /() = Af(£,x;), whose closure in Q is noncompact and intersects {0} x
Cr(M) in a subset of {(0,p™) € Q: w(p) = 0}.

As V has compact closure in M, then the closure of Q2 in [0, +00) x Cr(M) is complete,
being

Q=1[0,1] x Cr(V).

Since f sends bounded subsets of R x M into bounded subsets of R, recalling Re-
mark 3.4, one has that the closure T of I' in the whole space (which coincides with the
closure in ©) must intersect 9<2.

Now, because of the above condition 3, T" cannot contain elements of (0,1) x Cr(V) \
Cr(V). In addition, condition 1 and Theorem 3.2 imply that T" does not contain elements
of {0} x (C7(V) \ Cr(V)). Therefore, the nonempty set ' N 3K is composed of pairs of
the form (1, x), where x is a T-periodic solution of x'(¢) = f (¢, x,) whose image is contained
inV. (|
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