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Abstract
We continue earlier studies on the indicated configuration, improving previous
estimates, providing explicit expressions for the relevant forces and a formal
algorithmic procedure for their calculation, and sharpening and extending the
predictions for qualitative distinctions among varying types of behavior that can
occur. We include graphical representations for some of the more significant relations,
as an aid to interpretation and for eventual design of experiments to test the physical
relevance of the new material.

1 Background remarks
The present work is a continuation of [] and of [], where the behavior of the solutions
of the capillary equation for the surface height of liquid in an infinite tank is described, in
terms of the contact angles of the liquid with two infinite parallel plates that are partially
immersed into the liquid and held rigidly. We describe here an algorithmic procedure for
explicitly calculating the forces of attraction or repulsion between the plates � and �,
depending on the respective contact angles γ and γ with the fluid, on the sides of the
plates that face each other. As pointed out in [] and in [], the net forces in question do
not depend on the contact angles at the triple interfaces on the opposite (outer) sides of
the plates; that is a consequence of the hypothesis that the fluid surface extends to infinity
in the two directions exterior to the plate configuration and orthogonal to it. We may
thus concentrate attention on the integral curves for the fluid height u(x) on a section of
the channel joining the plates; these curves are determined as solutions of the ‘capillary
equation’

(
ux/

√
 + ux

)
x
≡ (sinψ)x = κu, (.)

where ψ is inclination of the curve with the horizontal, and u is the height above the level
at infinity. This equation asserts geometrically that the planar curvature (sinψ)x of the
interface is proportional to the height u(x) above the (uniquely determined) level u =  at
infinite distance from the plates (see, e.g., Theorem . of []).We assume in this work that
the proportionality factor κ > , as occurs for a non-zero gravity acceleration g directed
downward toward the fluid. Physically, κ = ρg/σ , where ρ is density change across the
interface and σ is the surface tension arising from the fluid/fluid interface.
We are interested in categorizing the ranges of qualitatively distinct behavior that can

occur. In accord with engineering practice and in cognizance of relevant uniqueness prop-
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erties, the distinctions are best displayed in terms of non-dimensional parameters: setting
ξ = x/a,U = u/a, B = κa, where a is the distance between the plates, (.) takes the form

(sinψ)ξ = BU . (.+)

In the non-dimensional coordinates, the plates are always two units apart. The physical
concept of plate separation is replaced by the magnitude

√
B.

We proved in [] that for arbitrary a > , there is a unique solution u(x, y) of (.) in the
interval between the plates, achieving prescribed inclinationsψ,ψ (equivalently, contact
angles γ, γ) on the respective plates. Correspondingly, there is a unique solution of (.+)
for arbitrary B >  and contact angles. We obtain an explicit representation in terms of ψ

as parameter by rewriting (.+) in the form

dξ

dψ
=
cosψ

BU
, (.a)

dU
dψ

=
sinψ

BU
. (.b)

The latter relation separates:

sinψ dψ = BU dU , (.)

from which

BU = BU
α – (cosψ – cosψα) (.)

for any solution of (.) with inclination ψα at height Uα .
From (.a) now follows that for any two points (ξ ,ψ) and (ξβ ,ψβ ) on the solution (.),

there holds:

√
B(ξβ – ξ ) =

∫ ψβ

ψ

cos τ dτ√
BU

α – (cos τ – cosψα)
(.)

on any interval on which ψ is monotonic in ξ . Note that (.) relates three distinct points
on the solution curve, any two of which may coincide. We shall have to take pains in each
instance to ensure that the correct branches for the roots are used. One sees easily that
aside from the trivial solutionU ≡  of (.+), inflections of a solution curve occur exactly
at crossing points of that curve with the ξ -axis, that at most one such point occurs on any
solution, and that the sense of monotonicity of ψ reverses at every such point. Thus when
such a crossing occurs, the integral in (.) must be split into two parts with the senses of
integration reversed. We observe that only a single inflection can occur on any solution
curve, see the assertions () to () in Sec. II of [].
Solutions in the infinite intervals exterior to the plates are uniquely determined by the

contact angle on the plates facing the respective interval and by the requirement of being
defined in an infinite interval; see Theorem . in []. These solutions are asymptotic to
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Figure 1 Large plate separation.

the ξ -axis but do not contact it; they admit the representations

ξ = ξα –
√
B

∫ ψα

ψ

√
 + cos τ cot τ dτ ,

U =
√

B
( – cosψ).

(.)

Here ξα refers to the plate position, and ψα is the inclination on that plate. Note that four
distinct solutions appear, depending on the signs of the non-constant roots. The constant
root

√
B is taken as positive.

In Figures , , , particular integral curves T, I, II, III, IV, IV, and V are sketched for
the subset S of solutions of (.) in the interval between the plates and meeting � in the
prescribed angle γ, and for successively decreasing plate separations. We have chosen
for convenience  ≤ γ < π/. In the figures, some of the curves are extended beyond the
plates as solutions, at least to the extent to which they can be represented as graphs. The
sketched curves serve as barriers for distinguishing the qualitative structures of general
solutions. No two of the curves in S can cross each other within the interval in which
both are graphs, and the regions between adjacent barriers serve to distinguish specific
global behaviors.

http://www.boundaryvalueproblems.com/content/2013/1/277
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Figure 2 Intermediate plate separation.

In the ensuing context, we discuss in detail the specific roles of the indicated curves. For
convenience, we provide here a preliminary outline of essential features.
• The curves I and V are determined by (.) with α =  and choosing respectively the
positive and negative signs for the non-constant roots. IV is the unique curve of S

meeting � at its crossing point (ξ, ) with the ξ -axis. These three curves are rigidly
attached to � and are independent both of the position of �, and of the contact
angle γ.

• T is the ‘top’ barrier, in the sense that there are no higher solution curves of S.
• II is the unique curve of S meeting � at its crossing point with the ξ -axis.
• III is the symmetric solution, meeting � in angle γ and � in angle γ = π – γ. It
crosses the ξ -axis at the midpoint between the plates, independent of plate separation.

• IV is the unique curve of S that meets � in angle π .
When the plates are sufficiently far apart (B large enough), neither IV nor V extends to
�, and IV lies above both these curves between the plates. As the plates come together,
a critical separation B is attained, for which IV passes through (ξ, ) and can then be
shown to coincide with IV. Figure  prevails when the plates exceed this separation so
thatB > B; we refer to such configurations as large separations. Closing the gap further, IV
moves below IV, remaining at first above V, and the relevant picture becomes Figure .
Further gap closure leads to a valueBcr at which IV andV coincide, againwith the common

http://www.boundaryvalueproblems.com/content/2013/1/277
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Figure 3 Small plate separation.

curve extending exactly to �. For B < Bcr, V will lie above IV in the interval connected
to � in which both curves are graphs, and Figure  must be replaced by Figure . From
(.) we find that the critical separation for this change is


√
Bcr = 

√
κacr =

√


∫ π/

ψ

√
 + cos τ cot τ dτ , (.)

using positive roots. The corresponding value 
√
B is determined by (.). The two cru-

cial values for
√
B are illustrated in Figure .

We established in [] and in [] that solution curves joining � and � are attracting
when the extended curve has a positive minimum or negative maximum. Denoting that
height by u, and the (horizontal) attracting force by F , we are led to a non-dimensional
attracting force

F =

σ
F = κu = BU

 , (.)

in units of σ , with B = κa.
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Figure 4 The half plate separations B and Bcr .

When the extended curve is asymptotic to the ξ -axis at infinity, then U =  and there
is no force between the plates. The final alternative is that the extended curve meets the
axis at some point ξ. When that occurs, the curve is either the trivial solution U ≡  or
else it crosses the axis in an angle ψ �=  at a uniquely determined point ξ and there will
be a repelling force

F =

σ
F = ( – cosψ) (.)

in units of σ , tending to separate the plates. We note the immediate universal bound,
|F | <  for every repelling configuration.

2 Configurations
We consider the family S of solutions in the interval between � and �. We have from
(.) that if BU

 > ( – cosψ), then the solution will not cross the ξ -axis; if U > , the
curve will then attain a minimum height U >  at a point where cosψ = ; thus at this
pointwe findBU

 = BU
 –(–cosψ); in further continuation the curve becomes vertical

at a height U for which BU
 = BU

 +  cosψ. If in (.) we set ξ to be the position ξ of
the plate �, then we find


√
B =

∫ ψ

–π/

cos τ dτ√
BU

 – (cos τ – cosψ)
. (.)

For given ‘dimensionless plate separation’ 
√
B, relation (.) uniquely determines the (pos-

itive) height U for which the solution meets � in the contact angle γ =  and � in the
prescribed angle γ. The value U thus found is the highest initial position U for which the
solution in S extends to meet the plate �. We designate this solution with T. It forms an
upper barrier for all solutions in S that extend as graphs to meet �.
The dependence of the plate heights U, U on

√
B is illustrated in Figure .

Referring to any of Figures , , , we see that the two plates together with T and I de-
termine a non-null closed region RT-I, topologically a disk, which is simply covered by a
subset of solutions in S, all of which yield attracting forces (or zero force in the unique
case of I). We obtain such a region for every choice of ‘plate separation’ 

√
B > .

http://www.boundaryvalueproblems.com/content/2013/1/277
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Figure 5 The intersection heights U1, U2 with the plates, as functions of half plate separation
√
B;

γ2 = π /6.

If B > Bcr, then for the given γ no further attracting solutions can be found; all further
solutions in S will be repelling. But if B = Bcr, then IV andV coincide, providing a negative
solution yielding zero force; if B < Bcr, then IV moves below V and there is a new region
RV-IV of negative solutions providing attracting forces (Figure ). Thus when the plates
are close enough to each other, two complementary regions appear, one of positive solutions
and the other of negative solutions, both of which yield attracting forces between the plates.
The curve II is the unique element of S whose height vanishes on �. The regionRI-II

between I and II is again simply covered by solutions in S. All these curves lie in the
upper half-plane within RI-II but intercept the ξ -axis when extended, and thus provide
repelling forces.
III is the symmetric solution, achieving on � the contact angle γ = π – γ. This curve

has special properties as we shall see below. Within the regionRII-III, all curves of S are
repelling; all curves cross the axis and the sense of monotonicity of ψ in x reverses on
crossing, so that special precautions must be taken in the representations. Corresponding
comments apply forRIII-IV when B > Bcr. In that event, there are no solutions in S below
IV, and IV then plays to some extent the role at the bottom that T plays at the top, the
adjacent solutions being, however, repelling rather than attracting.
If B < Bcr, then a region of repelling solutions RIII-V is created, as is the new region

RV-IV of attracting solutions. IV, however, retains its property of being a lower barrier
below which there are no elements of S.

3 Barrier curves
All barrier curves have the common inclination ψ = π/ – γ on �. They are distin-
guished by the choices of angles γ =ψ + π/ with which they intersect �.

3.1 The barriers T and IV
By definition, for the upper curve T, we have γ T

 = ; equivalently, ψT
 = –π/. Equation

(.) determines the height uT . The counterpart for negative solutions is the curve IV
at the bottom, which needs a bit more discussion. We introduce the further barrier IV

which meets � in angle γ at the level u = . This curve becomes vertical at a critical
‘dimensionless separation’ 

√
B > 

√
Bcr, and we find


√
B =

∫ π/

ψ

cos τ dτ√
(cosψ – cos τ )

(.)

http://www.boundaryvalueproblems.com/content/2013/1/277
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using positive roots. If B < B, then IV lies below IV, so that U <  on IV, and we may
write


√
B

∫ π/

ψ

cos τ dτ√
BU

 + (cosψ – cos τ )
, (.)

a relation uniquely determining the (negative) U at which IVmeets �.
If B > B, then IV contains both positive and negative heights, and account must be

taken of the change in sense of its curvature at the crossing point with the ξ -axis, where
U = . Denoting the inclination at that point by ψ, we obtain using (.) separately on the
negative and positive portions of the curve,


√
B =

∫ π/

ψ

cos τ dτ√
(cosψ – cos τ )

+
∫ ψ

ψ

cos τ dτ√
(cosψ – cos τ )

(.)

which can be used to determine ψ. The (negative) heightU and (positive) heightU can
then be determined from the analogues of (.)

BU
 =  cosψ,

BU
 = (cosψ – cosψ).

(.)

3.2 The barriers I and V
These are determined by (.), using appropriate signs for the roots. Note that U

 is the
same for both curves. Under our choice  ≤ γ < π/, I always extends tomeet both plates,
however V does so only if B≤ Bcr.

3.3 The barrier II
II is the particular curve inS with zero height on�. The crossing angleψ

 is determined
as in (.) by


√
B =

∫ ψ

ψ


cos τ dτ√
(cosψ

 – cos τ )
(.)

since there is no contribution from below the axis. We then obtain the heightU from the
second of relations (.).

3.4 The barrier III
III is the symmetric curve with contact angle π – γ on �. It cuts the ξ -axis at the mid-
point between the plates, and thus by analogy with (.) the angle ψ of that intercept
can be obtained from

√
B =

∫ ψ

ψ

cos τ dτ√
(cos ψ – cos τ )

. (.)

Again we find U from the second equation in (.). By symmetry, U = –U.
The barrier III has the unique property, that if γ is fixed and the separation a → ,

the configuration remains repelling, with III asymptotic to the symmetric linear segment
inclined at π/ – γ to the axis and joining the plates.

http://www.boundaryvalueproblems.com/content/2013/1/277
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Figure 6 The angle ψ0
1 from (4.2).

Figure 7 The net attracting force, from (4.4), with γ2 = π /6. The force vanishes when γ1 = γ 0
1 .

4 Force calculations
We proceed to calculate the forces between the plates in varying configurations. In prac-
tice, the accessible parameters will generally be the contact angles ψ and ψ on the sides
of the plates facing each other, and the dimensionless plate separation

√
B. Other param-

eters, such as the height of the contact points U and U with the plates or the height of a
local extremum or position of the crossing point with the ξ -axis, can be substituted via re-
lations (.)-(.). Our basic force relations are (.) and (.), corresponding respectively
to the attracting and repelling cases. The results for varying configurations are illustrated
in Figures -.

4AP Attracting forces, positive solutions
These are encountered only in RT-I (see Section ). As shown in [], the dimensionless
force is determined, in units of σ , from

F = BU
 , (.)

see (.). For T we have γ =  (ψ = –π/). For I, letting ψ
 denote the inclination at the

crossing with �, we find using (.) that


√

√
B =

∫ ψ

ψ


√
 + cos τ cot τ dτ (.)

http://www.boundaryvalueproblems.com/content/2013/1/277


Bhatnagar and Finn Boundary Value Problems 2013, 2013:277 Page 10 of 21
http://www.boundaryvalueproblems.com/content/2013/1/277

Figure 8 Attracting forces, negative solutions: plots of (4.5) and (4.6) assuming γ2 = π /6. Solid lines
indicate forces at the specified ψ1 (right vertical axis). Dashed line indicates ψ0

1 (left vertical axis).

Figure 9 Repelling forces, positive solutions: plots of (4.2), (4.7), (4.8), γ2 = π /6. Solid lines indicate
forces at the specified ψ1 (right vertical axis). Dashed lines indicate specified angles (left vertical axis).

which uniquely determines ψ
 for any prescribed separation a. Thus, for the given ψ,

attracting solutions prevail whenever –π/ ≤ ψ < ψ
 .

To calculate the net force between the plates, we return to (.), replacing the reference
point (ξ,U) by the (positive) minimizing point of height U and setting ξ = ξ. We find,
since cosψ =  at the local minimum,


√
B =

∫ ψ

ψ

cos τ dτ√
BU

 + ( – cos τ )
. (.)

http://www.boundaryvalueproblems.com/content/2013/1/277
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Figure 10 Equations (4.7) and (4.9); γ2 = π /6.

Figure 11 Equation (4.10); γ2 = π /6.

In view of (.), we may rewrite this relation in the form


√
B =

∫ ψ

ψ

cos τ dτ√
F + ( – cos τ )

, (.)

which determines F uniquely in terms of the contact angles on the plates and the separa-
tion.

4AN Attracting forces, negative solutions
If B > Bcr (see (.)), there are no such solutions. When the plates are close enough so
that B < Bcr, a new regionRV-IV appears (Figure ) in which the (extended) solutions have
negative maxima, and the net force will again be attracting. We may emulate the AP

http://www.boundaryvalueproblems.com/content/2013/1/277
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Figure 12 Forces on the symmetric curve III.

Figure 13 Plots in range Bcr < B < B0 based on (4.18) and (4.19). Note that for γ2 = π /6,
√
Bcr = 0.0594

and
√
B0 = 0.1834 hold.

discussion. The crossing angle ψ
 of V with � is now determined by


√

√
B =

∫ ψ


ψ

√
 + cos τ cot τ dτ . (.)

Attracting solutions can be found with any ψ in the range ψ
 < ψ < π/, and the net

attracting force is obtained from


√
B =

∫ ψ

ψ

cos τ dτ√
F + ( – cos τ )

(.)

using the positive root.

4RP Repelling forces, positive solutions
Repelling solutions all cross the ξ -axis and thus change sign; however, wemay characterize
those that are positive between the plates as those lying in the region RI-II. Denoting by

http://www.boundaryvalueproblems.com/content/2013/1/277
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ψ
 the inclination of II at the crossing point with �, we find by procedures analogous to

those above


√

√
B =

∫ ψ

ψ


cos τ dτ√
cosψ

 – cos τ
(.)

which determines ψ
 in terms of the separation. Solutions will be positive between the

plates and repelling whenever ψ
 < ψ ≤ ψ

 . In view of (.), the repelling force F in this
range will be determined by


√
B =

∫ ψ

ψ

cos τ dτ√
( – cos τ ) –F

. (.)

4RPN Repelling forces, changing sign
In the region RII-III, we have ψ

 < ψ ≤ π/ – γ. Solutions continue to repel, however
their heights change sign between the plates. We shall see below that this has significant
effects on limiting behavior as a → . Since the orientations change at the crossing points,
we must split the integration in (.) into two parts. Applying (.) separately over each
of the two segments a and a into which the crossing point divides the interval a and
adding, we find


√
B =

∫ ψ

ψ

cos τ dτ√
(cosψ – cos τ )

+
∫ ψ

ψ

cos τ dτ√
(cosψ – cos τ )

(.)

which determines the crossing angle ψ. According to (.), the normalized force F can
be computed directly from


√
B =

∫ ψ

ψ

cos τ dτ√
( – cos τ ) –F

+
∫ ψ

ψ

cos τ dτ√
( – cos τ ) –F

. (.)

4S The symmetric curve III
This curve has a special interest. Regardless of plate separation, it crosses the axis at the
midpoint between the plates, and thus yields repelling force for every separation. Relation
(.) simplifies to

√
B =

∫ ψ

ψ

cos τ dτ√
(cos ψ – cos τ )

(.)

or, equivalently,

√
B =

∫ ψ

ψ

cos τ dτ√
( – cos τ ) –F

. (.F )

From (.) follows

√
B >

∫ ψ

ψ

cos τ dτ√
( – cos τ )

=
√


∫ ψ

ψ

√
 + cos τ cot τ dτ >

√

ln

sinψ

sin ψ
(.)
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from which e–
√
κa sinψ < sinψ. In the other direction, we note that ψ < ψ, and thus

e–
√
κa sinψ < sin ψ < sinψ (.)

leading to bounds in both directions for the repelling force F = ( – cos ψ). These
bounds are precise asymptotically as a → . For large separations, (.) loses in pre-
cision. We improve it by observing that the actual solution in the positive portion of the
interval between the plates lies below the line segment joining the crossing point to the
height U on �. Thus,

tan ψ < u/a =U. (.)

Using (.), we find BU
 = (cos ψ – cosψ), so that

tan ψ <

B
(cos ψ – cosψ) (.)

from which

 – cos ψ <

B

cos ψ

 + cos ψ
(cos ψ – cosψ)

<

B
( – cosψ) (.)

yielding a perfunctory but conceptually useful bound for F that could be improved in
detail by using again the left-hand side of (.). Actually, the force for large a vanishes
exponentially in a as follows from the general estimates of Siegel [].
If B is small, we find from (.) and the monotonicity of ψ in x on each side of the

halfway point between the plates that as a →  the inclination of III between the plates
tends uniformly to ψ. As a consequence, we find that the normalized repelling force of the
solution III tends in the limit to the magnitude

F = ( – cosψ), (.)

as the plates approach each other. Corresponding to fixed contact angles γ and γ on the
plates, no other solution curve S shares this behavior.
The above force calculations apply for any choice of separation a. To continue with

solutions joining the plates but situated below III, we distinguish cases according to the
plate separation.

4.1 B > B0
In this event IV lies above IV, see Figure . The range of inclinations ψ achieved in
the corresponding regionRIII-IV is π/ – γ <ψ ≤ π . All solution curves cross the x-axis
between the plates, and the force calculation proceeds as in (.), (.), with the extended
range for ψ. We shall see, however, in Section  that from the point of view of limiting
behavior as the plates approach each other, it would not be appropriate to join this region
with the preceding one. No solutions meeting both plates and achieving the contact angle
γ on � exist below IV.
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4.2 B0 > B > Bcr
IV lies below IV but aboveV, see Figure . IVmeets� in an inclinationψ, determined
by


√

√
B =

∫ ψ

ψ

cos τ dτ√
cosψ – cos τ

. (.)

In the region RIII-IV , we have π/ – γ < ψ < ψ, the solution curves cross the x-axis
between the plates, and we may again use the procedure indicated by (.), (.). In the
remaining region RIV-IV, there is no crossing point between the plates, the fluid level is
negative with ψ decreasing in ξ , and the force is obtained from the modified version of
(.):


√
B =

∫ ψ

ψ

cos τ dτ√
( – cos τ ) –F

. (.)

4.3 B < Bcr
Now IV lies below V, see Figure . We obtain a regionRIII-IV which falls in the range of
. above, then a regionRIV-V yielding repelling solutions with no axis crossing between
the plates. ψ lies in the range ψ <ψ < ψ∞, where ψ∞ is determined from


√

√
B =

∫ ψ∞

ψ

cos τ dτ√
 – cos τ

. (.)

The net force arising from each curve inRIV-V is then obtained from (.).

5 Limiting behavior for small separation
With given contact angles on the two plates (corresponding to prescribed materials), we
investigate the consequences of varying the separation of the plates. We effect the change
conveniently by holding � fixed and displacing � in either direction. It is crucial to
observe that in such a displacement, the barriers I, IV and V are rigidly attached to �

(and hence remain fixed), and the barrier III continues to pass through the midpoint on
the x-axis. II and IVmove downward as a decreases. The set S of solutions examined is
rigidly attached to� and does not change as� is shifted; however, the choice of elements
within S must change to maintain prescribed conditions on �. Note that the geometric
locus of II - when considered as an element of S determined by its contact angles with the
plates - moves upward in the family with decreasing a, but when considered as defined by
its property of passing through the intersection of � with the x-axis, it moves downward.
We distinguish the initial R-regions and examine what happens to a typical solution

curve in each such region, with decreasing a.

5.1 Curves above T
In a given configuration, there are no solutions above T that meet � in angle γ and
extend to �. If we allow a to decrease with γ and γ fixed, a new T+ appears, lying
above T. There are no solutions above T+, but the original S is extended with the new
(attracting) solutions in the region RT+-T, consisting of solutions that previously did not
extend to �. Every curve above T and meeting � in angle γ eventually falls into this
category, as a decreases toward zero.
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5.2 Curves above I
We consider a particular such curve C of S, displace � toward �, and ask what must
be done to preserve the original angle γ on �. Since C is convex upward, the angle γ

with � will increase when � is displaced toward �. To retain the original angle γ, one
must move to a curve above the original one. As a consequence, every curve of S lying
above I moves upward and remains attracting following the displacement. Additionally,
new attracting curves will appear above T, as noted in ..
Each of the curves considered has a positive minimum U, or else achieves (in the par-

ticular case of I) a minimum zero at infinity. We can determine the net attracting force by
estimating U and using (.). Adapting (.) to the configurations considered, we find


√
B =

∫ ψ

ψ

cos τ dτ√
BU

 + ( – cos τ )
. (.)

Here ψ can be arbitrary in the interval –π/ ≤ ψ ≤ ψ
 < ψ, where ψ

 is the inclination
of the barrier I at its intersection with �. We distinguish the cases in which the mini-
mizing point occurs outside the interval between the plates (ψ > ) from those for which
it occurs within that interval (ψ < ). In the former case, we have  ≤ ψ < ψ, and by
inserting the end values ψ or ψ into the root under the integral sign, we get

(sinψ – sinψ)

B
– ( – cosψ) < BU

 <
(sinψ – sinψ)

B
– ( – cosψ). (.a)

In the latter case, cosψ achieves its maximum (= ) interior to the interval (ψ,ψ), and
the indicated procedure yields instead the slightly weaker estimate

(sinψ – sinψ)

B
– ( – cosψ) < BU

 <
(sinψ – sinψ)

B
. (.b)

The crossover value ψ
 is uniquely determined by the particular case (.) of (.).

The normalized attracting force F can now be estimated using (.). Relations (.a),
(.b) provide an explicit version of Laplace’s discovery [] that the attracting forces remain
attracting and become unbounded as the inverse square of the distance between the plates,
as the separation decreases to zero.

5.3 Negative attractors
In the event B < Bcr, a second interval RIV-V of (negative) attracting solutions appears
above IV and belowV. For γ in the range  ≤ γ < π/ we have chosen, the discussion for
these solutions is analogous and somewhat simpler than the one just given, as in no case
does the (negative) maximum U appear between the plates. Again attracting solutions
remain attracting as plate separation decreases; the estimate (.a) prevails, albeit with ψ

and ψ interchanged.

5.4 Repelling caseRI-II

This case is discussed in explicit detail in []; we include here in outline form some essen-
tial features, returning for explicit convenience to direct physical notation. To begin, let
us look at the point p on �, as in Figure . When � is displaced an amount δ toward
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�, the horizontally displaced pδ
 will encounter too large an inclination from the element

of S passing through that point, as that element will have the same inclination ψ on �

as does the indicated solution S+
 , and at every position x between the plates, its height

u is smaller than that of that solution and thus by (.) its curvature is smaller. Thus the
inclination of the field element at pδ

 exceeds that at q, which in turn exceeds that at p.
Therefore in order to attain the initial slope again, one will have to move upward on the
displaced plate �δ

 . Since ψ > , and high enough points on �δ
 yield ψδ

 < , a (unique)
such point can always be found.
We observe now that on the original vertical segment of � joining I and II, ψ < ψ <

ψ
 < ψ holds (see Figures , ,  for notation). Thus the angle ψ is attained at some

intermediate point on I between � and �. We choose δ so that �δ
 passes through that

point. The solution curve then has the identical data on the two vertical plates as does I,
and by the uniqueness theorem (see []) must coincide with I.
Looking more closely, we see that by moving � continuously toward �, we obtain

a continuous family of solutions joining the plates, with left-hand end points rising in the
motion, and such that at some intermediate position strictly between the plates, the solution
will coincide with the portion of I to the right of that point. Once that happens, all further
motion of � to the right leads to attracting solutions to which the material of preceding
sections applies.
Note that for the given ψ on �, this ‘crossover’ behavior occurs for all ψ in the range

between ψ and ψ
 . The ‘crossover position’ xc = x + δc between the plates, where the

solution curve joins with I and yields zero net force, is determined explicitly from the
relation

√
κ(a – δc) =

∫ ψ

ψ

√
 + cos τ cot τ dτ . (.)

For any chosen ψ within its range, we obtain a picture of a succession of solution curves,
defined over successively shorter subintervals attached to � between the plates, each
successively closer to I and yielding successively smaller repelling forces, until the solution
curve coincides with a non-null portion of I, providing zero force. See Figure .
The force magnitude is obtained using (.). We adapt (.) to obtain the inclination ψ

from

a
√
κ =

∫ ψ

ψ

cos τ dτ√
cosψ – cos τ

. (.)

Having determined ψ, the position of crossing with the x-axis can be found from the
expression for its distance d from �:

d
√
κ =

∫ ψ

ψ

cos τ dτ√
cosψ – cos τ

. (.)

5.5 Repelling caseRII-III

These are still repelling solutions as they continue to cross the x-axis. Nevertheless, there
are significant changes from the case just considered, as the initial heights on � are neg-
ative. The sense of curvature of the solution curves reverses in the negative region, and
account must be taken of that change in two senses.
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Figure 14 Behavior of solution curves with changing plate separation; contact angles prescribed.

We note first that the range of angles ψ that arises is ψ < ψ < ψ = π/ – γ. To de-
termine the force arising from a given solution curve, we need only determine according
to (.) the angle ψ of intercept with the x-axis. Using (.) separately in the positive and
in the negative regions and adding, we obtain


√
κa =

∫ ψ

ψ

cos τ dτ√
cosψ – cos τ

+
∫ ψ

ψ

cos τ dτ√
cosψ – cos τ

(.)

which determines ψ and hence the force. We may then obtain the distance d to � of
the intercept, from the relation

√
κd =

∫ ψ

ψ

cos τ dτ√
cosψ – cos τ

. (.)

A further change in behavior occurs in that if one moves � a small distance δ toward �,
one finds that to maintain the same initial angle ψ, one must look downward instead of
upward as before. As a consequence, the new solution curve lies below the previous one,
it will be further from I than was the previous one, and will increase the repelling force
rather than decreasing it as above.
Nevertheless, it turns out that the sequence of solutions thus constructed converges to a

segment of I just as did the previous one. This assertion may at first seem in conflict with
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the behavior just described; however, one can show that although the solution curves at
first diverge from I, their starting points on the intersections with the successive�δ

 planes
actually rise and become positive prior to reaching �. Once that happens, the discussion
of . applies again without change, and the corresponding behavior is observed. A com-
plete proof of this behavior appears in [].
We see that if the initially chosenψ lies in the rangeRII-III, then, as the plates are brought

together, the repelling force will initially strengthen to a maximum, and then will weaken
to a critical separation at which the solution coincides with I and yields zero force, and
will finally become attracting with force increasing as the inverse square of the separation,
according to (.a), (.b).
We can characterize these critical configurations explicitly. The maximum repelling

force is achieved corresponding to a starting point lying on the x-axis with solution in-
clined at angle ψ. We thus set uα = , ψα = ψ in (.), and in (.) we let xβ denote the
coordinate of the crossing point. We find

√
κ(x – xβ ) =

∫ ψ

ψ

cos τ dτ√
cosψ – cos τ

(.)

which yields a unique value xβ such that a solution with inclination ψ at that point will
achieve the inclination ψ on �. From (.) we find for the maximum force FM in this
procedure

FM = σ ( – cosψ), (.)

a remarkable formula yielding explicitly the maximum repelling force achievable by bring-
ing the plates together, whenever the prescribed datum ψ is chosen from the rangeRII-III.
As a corollary, we see that the absolute maximum repelling force for all configurations

on or above the symmetric one III appears with III itself, when ψ =ψ.

5.6 The symmetric curve III
As we move downward through the range RII-III, the angle ψ increases from the angle
ψ with which II cuts the x-axis to the angle π – γ = ψ, achieved by III. The curve III
itself fails, however, to become attracting with decreasing separation; we see that imme-
diately since, due to its symmetry, it cuts the x-axis for every separation. In Section S we
have already established upper and lower bounds for the repelling force in this case, no-
tably the non-zero limit F = ( – cosψ) as the plates approach each other. The material
above together with what is to follow shows that III is isolated in this respect; every other
configuration with fixed angles on the plates becomes attracting as the plates come together,
of magnitude rising to infinity as the inverse square of the separation distance. Thus there is
a very striking singular limiting behavior in configurations adjacent to the symmetric one.
Physically, this corresponds to liquid going to positive infinity when it is initially above III,
and to negative infinity when it is initially below III. It should be of interest to observe this
transition experimentally.
We continue to discuss the remaining cases that occur; to this purpose we return to

non-dimensional notation.
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.. Large separation: a > a
This is illustrated in Figure . A new regionRIII-IV appears with ψ in the range ψ <ψ <
π/. Since all these angles exceed ψ, they cannot reappear on the curve I as happens for
initial datum above that of III, and thus the convergence to a segment of I does not recur
here. We observe that the range of ψ that appears is identical to the range of ψ on the
portion of V between the plates. Since ψ is monotonic on V, there is a unique point on
this arc at which the initially chosen value of ψ appears, see Figure . Denote by x∗ the
x-coordinate of that point.
When � is moved toward �, one finds one must move downward from the initial

height in order to achieve again the same initial inclination ψ. Thus the succession of
solution curves moves toward V, with the repelling force decreasing. The exotic behavior
noted in . above, with repelling force initially increasing as the plates come together, does
not reappear for the region below III.
When � is situated at x∗, the data of the relevant solution curve at its two endpoints

coincide with those of V at those points, and thus the two curves coincide on the interval
(x∗,x),with vanishing force. Further approach of� toward� yields attracting solutions,
with forces controlled by (.a), (.b).
Setting a∗ = x – x∗, the position x∗ is determined from the relation


√
a∗√κ =

∫ ψ

ψ

√
 + cos τ cot τ dτ (.)

with x the coordinate of �. For any a < a∗, the force F will be attracting, and we may
determine it from

a
√

κ =
∫ ψ

ψ

cos τ dτ√
F/σ + ( – cos τ )

. (.)

In the present case a > a, there are no solutions below IV joining the plates and which
meet � in the prescribed angle γ. For characterization of IV, see Section ..

.. Intermediate separation: a > a > acr
The relevant picture for the initial configuration is now Figure . We obtain two new re-
gions for repelling solutions, viz.RIII-IV andRIV-IV.

... RIII-IV All solutions are repelling and cross the axis between the plates. The
configuration is fully analogous to that ofRII-III, and analogous considerations apply. See
Section .. The repelling forces successively increase to a maximum of σ ( – cosψ),
then solutions move to V and proceed to cross over and become attracting.

... RIV-IV All solutions are repelling and cross the axis outside the plates. The sit-
uation is essentially that ofRI-II. As the platesmove together, the repelling force decreases
monotonically to zero and then attracting forces prevail. See Section ..

.. Small separation: a < acr
The situation is now essentially analogous to the initial discussion for curves lying
above III. We remark the technical distinction that the minimizing point on the upper
barrier arc T lies always between the plates; those for the corresponding lower barriers lie
to the right of �, although they approach that plate with decreasing separation a.
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6 Notes added in proof
. After completing this work, we were informed by JohnMcCuan of an earlier paper [] in
which some of the material relates closely to the topic of the present study. Our contribu-
tion can be regarded as an improvement on Section  of [], in the sense that we study the
question in the context of the fully nonlinear equations, in preference to the linearization
adopted in that reference. The particular geometry of the configuration permits us to in-
tegrate the equations explicitly in original form, yielding expressions that describe general
physical laws. Beyond the evident improvements in precision and detail, wewere led to the
discovery that the net attracting (repelling) force on the plates is independent of the con-
tact angles that occur on their outer sides; thus the restriction made in [] to plates with
identical angles on the two sides is superfluous. We find also the general theorem that the
net force is repelling or attracting, according as the (extended) solution curve joining the
plates in a vertical section does or does not contain a zero for the height on its traverse, the
net force being then provided respectively by the elementary formulas (.) or (.). We
obtain additionally a more complete description of the limiting behavior as given plates
approach each other (this behavior becomes dramatically singular for solutions close to
the symmetric one; see Section  of the present work).
. The exact formal theory was additionally a help for us toward avoiding misleading

inferences suggested by the linearization, among them the erroneous statement in []
opening the final paragraph on p.: ‘This result shows that vertical plates. . .will attract
if they have like menisci and otherwise repel. . . ’. In fact (as shown in Section AP) for any
plate separation and acute angle γ, the solutions in the non-null subset ofRT-I for which
γ > π/ have unlike menisci at the plates and for these solutions the plates nevertheless
attract each other.
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