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Abstract
The effects of a homogeneous-heterogeneous reaction on steady micropolar fluid
flow from a permeable stretching or shrinking sheet in a porous medium are
numerically investigated in this paper. The model developed by Chaudhary and
Merkin (Fluid Dyn. Res. 16:311-333, 1995) for a homogeneous-heterogeneous
reaction in boundary layer flow with equal diffusivities for reactant and autocatalysis
is used and extended in this study. The uniqueness of this problem lies in the fact that
the solutions are possible for all values of the stretching parameter λ > 0, while for
λ < 0 (shrinking surface), solutions are possible only for a limited range of values. The
effects of physical and fluid parameters such as the stretching parameter, micropolar
parameter, permeability parameter, Schmidt number, strength of homogeneous and
heterogeneous reaction parameter on the skin friction, velocity and concentration are
analyzed, and these results are presented through graphs. The solute concentration at
the surface is found to decrease with the strength of the homogeneous reaction, and
to increase with heterogeneous reactions, the permeability parameter and stretching
or shrinking parameters. The velocity at the surface was found to increase with the
micropolar parameter.
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1 Introduction
Micropolar fluids are fluids with internal structures in which coupling between the spin
of each particle and the microscope velocity field is taken into account. They represent
fluids consisting of rigid, randomly oriented or spherical particles suspended in a viscous
medium, where the deformation of fluid particles is ignored. Micropolar fluid theory was
introduced by Eringen [] in order to describe physical systems, which do not satisfy the
Navier-Stokes equations. The equations governing themicropolar fluid involve a spin vec-
tor and a microinertia tensor in addition to the velocity vector. The potential importance
of micropolar fluids in industrial applications has motivated many researchers to extend
the study in numerous ways to include various physical effects. The essence of the theory
of micropolar fluid lies in particle suspension (Hudimoto and Tokuoka []), liquid crystals
(Lockwood et al. []); animal blood (Ariman et al. []), exotic lubricants (Erigen []), etc.
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An excellent review of the various applications of micropolar fluid mechanics was pre-
sented by Ariman et al. [].
Boundary layer flow over a stretching surface is important as it occurs in several engi-

neering processes, for example, materials manufactured by extrusion. During the manu-
facturing process, a stretching sheet interacts with the ambient fluid both thermally and
mechanically. The study of boundary layer flow caused by a stretching surface was initi-
ated by Crane []. Recently, several works on the dynamic of the boundary layer flow over
a stretching surface have appeared in literature (Dutta et al. [], Hayat et al. [], Ishak []).
The effect of surface conditions on themicropolar flow driven by a porous stretching sheet
was studied by Kelson and Desseaux []. Mohammadein and Gorla [] examined the
flow of micropolar fluids bounded by a stretching sheet with prescribed wall heat flux,
viscous dissipation and internal heat generation. The effect of suction or injection at a
stretching surface was studied by Erickson et al. [] and Fox et al. []. The process of
suction is used in many engineering activities such as thermal oil recovery, removal of
reactants etc. Elbashbeshy and Bazid [] studied the flow and heat transfer in a porous
mediumover a stretching surface. Bhargava et al. [] investigated the flowof amixed con-
vection micropolar fluid driven by a porous stretching sheet with uniform section. Later,
Bhargava et al. [] studied the same flow of a micropolar flow over a nonlinear stretching
sheet. Abel et al. [] carried out a numerical study of hydromagneticmicropolar fluid flow
due to horizontal/vertical stretching sheet using a shooting method. They highlighted a
scientific approach for the choice of themissing initial values on which the convergence of
the shooting method highly depends. Recently, Narayana and Sibanda [] studied the ef-
fects of laminar flowof a nanoliquid filmover an unsteady stretching sheet. Kameswaran et
al. [] studied hydromagnetic nanofluid flow due to a stretching or shrinking sheet with
viscous dissipation and chemical reaction effects. Recently, Kameswaran et al. [] studied
homogeneous-heterogeneous reactions in a nanofluid flow over a permeable stretching
sheet.
Many chemically reacting systems involve both homogeneous and heterogeneous re-

actions, with examples occurring in combustion, catalysis and biochemical systems. The
interaction between the homogeneous reactions in the bulk of fluid and heterogeneous re-
actions occurring on some catalytic surfaces is generally very complex, involving the pro-
duction and consumption of reactant species at different rates both within the fluid and
on the catalytic surfaces. A simple mathematical model for homogeneous-heterogeneous
reactions in stagnation-point boundary-layer flow was initiated by Chaudhary and
Merkin []. They modeled the homogeneous (bulk) reaction by isothermal cubic ki-
netics and the heterogeneous (surface) reaction was assumed to have first-order kinetics.
Later Chaudhary and Merkin [] extended their previous work to include the effect of
loss of the autocatalyst. They studied the numerical solution near the leading edge of a
flat plate. A model for isothermal homogeneous-heterogeneous reactions in boundary
layer flow of a viscous fluid flow past a flat plate was studied by Merkin []. Ziabakhsh
et al. [] studied the problem of flow and diffusion of chemically reactive species over a
nonlinearly stretching sheet immersed in a porous medium. Chambre and Acrivos []
studied an isothermal chemical reaction on a catalytic in a laminar boundary layer flow.
They found the actual surface concentration without introducing unnecessary assump-
tions related to the reaction mechanism. The effects of flow near the two-dimensional
stagnation point flow on an infinite permeable wall with a homogeneous-heterogeneous
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reactionwas studied byKhan andPop []. They solved the governing nonlinear equations
using the implicit finite difference method. It was observed that the mass transfer param-
eter considerably affects the flow characteristics. Khan and Pop [] studied the effects
of homogeneous-heterogeneous reactions on the viscoelastic fluid toward a stretching
sheet. They observed that the concentration at the surface decreased with an increase in
the viscoelastic parameter.
The purpose of the present study is to analyze the influence of the permeability, the

homogeneous and heterogeneous reaction on the micropolar fluid towards a stretch-
ing/shrinking sheet. We transformed the governing momentum and concentration equa-
tions into a system of ordinary differential equations using a similarity variable and then
numerically solved the equations for some values of the governing parameters. To the best
of authors knowledge, such study has not been reported earlier in the literature.

2 Mathematical formulation
Consider steady, incompressible two-dimensional boundary layer flow of a micropolar
fluid through a porous medium. The Cartesian coordinates x and y are taken along the
surface and are normal to it, respectively, and u and v are the respective velocity com-
ponents. The flow is generated due to stretching or shrinking of the sheet caused by the
simultaneous application of two equal forces along the x-axis. Keeping the origin fixed, it
is assumed that the surface is stretched/shrunk with a linear velocity uw(x) =Uwx, where
Uw is a constant withUw >  for a stretching sheet,Uw <  for a shrinking sheet andUw = 
for a static sheet. We consider a simple model for the interaction between a homogeneous
(or bulk) reaction and a heterogeneous (or surface) reaction involving the two chemical
species A and B in a boundary layer flow proposed by Merkin [] and Chaudhary and
Merkin [, ] in the following form:

A + B → B, rate = kcab, (.)

A→ B, rate = ksa. (.)

Here a and b are concentrations of chemical species A and B, and ki (i = c, s) are the rate
constants. We also assume that both reaction processes are isothermal. It is also assumed
that the ambient fluidmoves with a velocity ue(x) =U∞x, whereU∞ is a constant, in which
there is a uniform concentration a of reactant A and in which there is no autocatalyst B
over a flat surface.
Under these assumptions, the governing equations lead to
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+
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where K is the permeability of the porous medium, ε is the porosity, μ is the dynamic
viscosity, μeff is the effective dynamic viscosity, κ is the vortex viscosity, ρ is the fluid
density, N is the microrotation, j = (ν/U∞) is the microinertia per unit mass and γ is the
spin gradient viscosity defined as

γ = μ( +Kp/)j, (.)

where Kp = κ/μ is the material or micropolar parameter. The corresponding boundary
conditions are

u() = uw(x), v() = vw, N() = –n
∂u
∂y

∣∣∣∣
y=

,

DA
∂a
∂y

∣∣∣∣
y=

= ksa(), DB
∂b
∂y

∣∣∣∣
y=

= –ksa(), (.)

u(∞) = ue(x), N(∞) = , a(∞) = a, b(∞) = ,

where vw is the constant mass flux with vw <  for suction and vw >  for injection (blow-
ing), respectively; n is a constant such that ≤ n≤ , where the case n =  is called strong
concentration (Guram and Smith []), indicates N =  near the surface and represents
concentrated particle flows in which the microelements close to the surface are unable
to rotate (Jena and Mathur []). The case n =  is used for the modeling of turbulent
boundary layer flow (Peddieson []). The case n = / indicates the vanishing of the an-
tisymmetrical part of the stress tensor and denotes weak concentration (Ahmadi []),
which is the case considered in the present study. We introduce the stream function ψ ,
where u = ∂ψ/∂y and v = –∂ψ/∂x, which satisfies the continuity equation identically. Us-
ing similarity variables of the form

ψ = (U∞ν)/xf (η), η = (U∞/ν)/y,

N = (U∞/ν)/u∞xp(η), g(η) = a/a, h(η) = b/a,
(.)

the governing equations are written as the following system of ordinary differential equa-
tions:

( +Kp)f ′′′ + ff ′′ +  –
(
f ′) +Kpp′ + χ

(
 – f ′) = , (.)

( +Kp/)p′′ + fp′ – f ′p –Kp
(
p + f ′′) = , (.)


Sc

g ′′ + fg ′ –Kgh = , (.)

δ

Sc
h′′ + fh′ +Kgh = , (.)

where χ = μeff ε

U∞Kρ
is the permeability parameter, Sc = (ν/DA) is the Schmidt number, K =

(kca/U∞) gives a measure of the strength of the homogeneous reaction, δ = (DB/DA) is
the ratio of the diffusion coefficient and primes denote differentiation with respect to η.
The boundary conditions (equation (.)) are written as

f () = s, f ′() = λ, p() = –nf ′′(), f ′(∞) = , p(∞) = , (.)

g ′() = Ksg(), δh′() = –Ksg(), g(∞) = , h(∞) = , (.)
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where s = – vw
(U∞ν)/ is the mass transfer parameter with s >  for suction, s <  for injec-

tion and s =  for an impermeable surface. λ = uw/ue is the stretching parameter where
λ >  corresponds to a stretching surface and λ <  corresponds to a shrinking surface.
Ks = (kslRe–//DA) measures the strength of the heterogeneous (surface) reaction and
Re = (U∞l/ν) is the Reynolds number.
It is expected that the diffusion coefficients of chemical species A and B are of compa-

rable size, which leads us to further assumption that the diffusion coefficients DA and DB

are equal, i.e., δ =  (Chaudhary and Merkin []). This assumption leads to the following
relation:

g(η) + h(η) = . (.)

Thus, equations (.) and (.) reduce to


Sc

g ′′ + fg ′ –Kg( – g) = , (.)

and the boundary conditions equation (.) take the form

g ′() = Ksg(), g(∞) = . (.)

The physical quantity of interest is the skin friction coefficient Cf . It characterizes the
surface drag. The shearing stress at the surface of the wall τw is given by

τw =
[
(μ + κ)

∂u
∂y

+ κN
]
y=

. (.)

The skin friction coefficient is defined as

Cf =
τw
ρuw

. (.)

Using the similarity variables in the above equation, we obtain

Cf
√
Rex = ( +K/)f ′′(), (.)

where Rex represents the local Reynolds number defined by Rex = xue(x)/ν . In the present
paper, we consider only the case s ≥  (suction) and n = / (weak concentration).

3 Results and discussion
The systemof ordinary differential equations (.), (.) and (.) alongwith the bound-
ary conditions (.) and (.) are solved numerically for some values of λ, Kp, Ks, k, χ
and Sc using Matlab bvp4c routine. We compare our results for a stretching sheet with
those reported by Wang [], Ishak et al. [] and Rosali et al. [] in Table ; and for the
shrinking sheet, we compare our results with those reported by Rosali et al. [] in Table .
These show an excellent agreement with our present results. This investigation confirms
that the existence and uniqueness of solution depends on the stretching/shrinking sheet
parameter. It is also found that the solutions of equations (.), (.) and (.) can be
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Table 1 Comparison of f ′′(0) for a stretching sheet obtained for different values of λ, for fixed
values of χ = 0, Kp = 0 and s = 0

λ Wang [33] Ishak et al. [34] Rosali et al. [35] Present
Kp = 0,
s = 0, χ = 0

Kp = 1,
s = 0.8, χ = 0.5

Kp = 0,
s = 0, χ = 0

Kp = 1,
s = 0.8, χ = 0.5

0 1.232588 1.232588 1.232588 1.476217 1.23258766 1.47621732
0.1 1.14656 1.146561 1.146561 1.353345 1.14656100 1.35334508
0.2 1.05113 1.051130 1.051130 1.224482 1.05112999 1.22448220
0.3 - - 0.946816 1.089841 0.94681612 1.08984055
0.4 - - 0.834072 0.949614 0.83407209 0.94961358
0.5 0.71330 0.713295 0.713295 0.803979 0.71329496 0.80397876
1 0 0 0 0 0 0
2 –1.88731 –1.887307 –1.887307 –1.941163 –1.88730667 –1.94116318
3 - –4.276541 –4.276541 –4.260253 –4.27654145 –4.26025264
4 - –7.086378 –7.086378 –6.904439 –7.08637761 –6.90443860
5 –10.26475 –10.264749 –10.264749 –9.837608 –10.26474931 –9.83760839

Table 2 Comparison of f ′′(0) for a shrinking sheet obtained for different values of λ, for fixed
values of χ = 0, Kp = 0 and s = 0

λ Rosali et al. [35] Present Present
Kp = 0.1, s = 0.5, n = 0.5

f ′′1(0) f ′′2(0) f ′′1(0) f ′′2(0) f ′′1(0) f ′′2(0)
–0.25 1.402241 - 1.40224081 1.476217 1.74572680 -
–0.5 1.495670 - 1.49566977 - 1.92932844 -
–0.75 1.489298 - 1.48929824 - 2.03317043 -
–1 1.328817 - 1.32881688 - 2.03159280 -
–1.05 1.266228 0.012200 1.26622794 0.01217792 1.99074154 -
–1.1 1.186681 0.049229 1.18668029 0.04922896 1.95891087 0.01321262
–1.15 1.082231 0.116702 1.08223117 0.11670214 1.91789479 0.5199976
–1.2 0.932474 0.233650 0.93247336 0.23364973 1.86997809 0.08590024
–1.2465 0.584288 0.554290 0.58428167 0.55429620 1.86978009 0.08580041
–1.3 - - - - 1.80045534 0.09071715
–1.4 - - - - 1.60910179 0.27924033
–1.5 - - - - 1.19739824 0.69637483
–1.5144 - - - - 0.96885469 0.92623122

obtained for all values of λ, while for the case of a shrinking surface (λ < ), the governing
equations have the solution only in the range of λ > λc, where λc is a critical value of λ,
which depends on the other parameter, and we have no solution for λ < λc. A dual solu-
tion appears for the range λc ≤ λ < –. We have plotted the velocity profile, concentration
profile and concentration at the surface for different parameters. In this problem, we have
shown single as well as dual solution. As was mentioned by Merkin [], Merrill et al.
[] and Rosali et al. [], the first solution is stable and physically realizable, while the
second solution is unstable. Although the second solution seems to be deprived of phys-
ical significance, it is interesting in nonlinear differential equation theory, since a similar
equation may reappear in some other situations where the corresponding solution could
have a more realistic meaning.
From Table , it is clear that the skin friction is a decreasing function of λ. All values

of the skin friction coefficient are positive for λ < , while they are negative when λ > .
Physically, the negative values of the skin friction coefficient correspond to the surface
exerting a drag force on the fluid and the opposite sign implies the inverse phenomenon.
The skin friction coefficient is zerowhen λ =  regardless of the values of other parameters.

http://www.boundaryvalueproblems.com/content/2013/1/77


Shaw et al. Boundary Value Problems 2013, 2013:77 Page 7 of 10
http://www.boundaryvalueproblems.com/content/2013/1/77

Figure 1 Effect of λ on (a) and (b) for Kp = 0.1, χ = 0.1, Sc = 1, K = 1, s = 0.5, n = 0.5, Ks = 1.

This is because for λ = , there is no shear stress at the surface as the surface and fluidmove
with the same velocity.
The effect of the stretching/shrinking parameter λ for λ <  is shown in Table . It is

evident that initially the skin friction is an increasing function of λ, but it decreases after
a certain value of λ. As mentioned earlier, the solution of the equations is possible only
in the range of λ > λc. It is evident that the value of λc depends on other parameters Kp, s
and n. The value of λc is approximate to –. when Kp =  and s = , while introducing
Kp = . and s = ., we get λc ≈ –.. It is also observed that the first solution is a
decreasing function of λ, whereas the second solution is an increasing function of λ. It is
interested to note that these both solutions coincide at λ = λc.
The variation of the velocity and concentration profiles is plotted as a function of η for

some values of λ in Figure . (i) For λ >  (stretching surface), the fluid velocity is becoming
increasingly greater than the free stream. In this case the fluid velocity decreases with the
value of η and converges at unity as per the condition. (ii) For λ =  (static surface), the fluid
velocity initially is stationary, but with η value it increases in a nonlinear way. (iii) For λ < 
(shrinking surface), the fluid velocity is initially negative, but it increases with η, and after
a certain value of η, it becomes positive. For the concentration profile, all the curves are
started from the origin and they increase nonlinearly with η to follow ‘S’ shape and finally
reach unity according to the given condition. For λ = –. and –., the graphs contain a
dual solution. From the boundary condition, it is clear that the velocity at the surface is
equal to λ; and so with increase in λ, the momentum boundary layer thickness increases
for the case of the first solution, while an opposite phenomenon appears for the second
solutionwhich concurs with the results reported by Bhattacharyya et al. []. It shows that
for the first solution, the concentration boundary layer thickness increases with increase
in λ, while it decreases for the second solution.
The effect of the micropolar parameter and suction parameter on the velocity and con-

centration profile is shown in Figure . A comparison is made for the Newtonian fluid
(Kp = ) and the micropolar fluid (Kp > ). It shows that momentum boundary layer thick-
ness is more for the micropolar fluid rather than for the Newtonian one, i.e., the microp-
olar parameter increases the velocity of the fluid, which is similar to the results given by
Ishak et al. []. A similar phenomenon is observed for concentration boundary thick-
ness. The velocity of the fluid is reduced due to suction, and this leads to an increase in
the solute concentration.
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Figure 2 Variation of Kp and s on (a) and (b) for λ = 2, χ = 0.5, Sc = 1, K = 1, n = 0.5, Ks = 1.

Figure 3 Effect of λ on (a) and (b) for Kp = 0.1, χ = 0.1, Sc = 1, s = 0.5, n = 0.5.

The effect of the homogeneous and heterogeneous reaction on the concentration profile
is shown in Figure . The effect of heterogeneous and homogeneous reactions separately
is shown through Figures (a) and (b), respectively. We considered λ = –. and so a dual
solution appeared. It is evident that the concentration boundary layer of the reactants is
increasing with η in both cases, and after a certain η value, they all coincide, i.e., after
a certain η value, the homogeneous and heterogeneous reactions have no effect on the
concentration of the reactants. This critical value of η (η∞) depends on the strength of the
homogeneous reaction and increases with the value of K , but it does not depend on the
strength of the heterogeneous reaction. A similar phenomenon is observed for the second
solution. The graphs for the second solution with Ks = . and  coincide. It is observed
that the first solution is more stable and converges more easily than the second solution.
The concentration of the reactants depends on the Schmidt number (Sc) and heteroge-

neous reaction parameter. The variation of the concentrationwithK for different values of
the Schmidt number andKs is shown in Figure . The Schmidt number is the ratio between
a viscous diffusion rate and amolecular diffusion rate. For a fixedmolecular diffusion rate,
with increase in Schmidt number, the viscous diffusion rate increases, which reduces the
velocity of the nanofluid and helps to increase the concentration of the nanofluid. Homo-
geneous reaction parameter and heterogeneous reaction parameter influence the reaction
rate of the solute and help to reduce the concentration of the reactants, which concurswith
the results reported by Khan and Pop [].
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Figure 4 Concentration at the surface effect on (a) and (b) for Kp = 1, χ = 0.5, s = 0.8, n = 0.5.

4 Conclusions
The present analysis investigates the effect of the homogeneous and heterogeneous re-
action on the micropolar fluid flow through a porous medium past a porous stretch-
ing/shrinking sheet with suction. The momentum and concentration equations were
transformed into a set of coupled nonlinear differential equations using similarity transfor-
mations and solved numerically by Matlab bvpc package. We compared our results with
those in the literature for some limiting case. A dual solution appeared for the shrinking
sheet case. The effect of the dual solution is shown by tables and graphs. The momentum
boundary layer thickness increased for the case of the first solution, while an opposite
phenomenon appeared for the second solution and a similar phenomenon was observed
for concentration profile. It was observed that the concentration at the surface decreased
with the strengths of the homogeneous and heterogeneous reactions. The solute concen-
tration, however, increased with the permeability and stretching/shrinking parameters.
The velocity of the fluid and the concentration of the reactants at the surface increase
with the stretching/shrinking parameter. Also, velocity increases due to the increase in
micropolar parameter. The concentration of the reactants decreases with the strength of
the homogeneous and heterogeneous reaction.
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