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1 Introduction
In this paper, we are concerned with the Cauchy problem for the following seventh-order
dispersive equation:

up+ 9 u = 9> (u2), x,teR, (1.1)

u(x,0) = up(x). (1.2)
Kenig et al. [1] established that

ue+ 07w+ P(u, 05us,...,07u) =0, jeN,x,teR, (1.3)

u(x, 0) =Up (x)’ (].4')

is locally well-posed in some weighted Sobolev spaces for small initial data and for arbi-
trary initial data. Recently, Pilod [2] studied the following higher-order nonlinear disper-

sive equation:

2+l 9y gk
U+ 90 u = E @, j, 0 udlu, (1.5)
0=j1+/2<2f

where x, ¢ € R and u is a real- (or complex-) valued function and proved it is locally well-
posed in weighted Besov and Sobolev spaces for small initial data and proved ill-posedness
results when ag; # 0 for some k > j in the sense that (1.5) cannot have its flow map C? at
the origin in H*(R). Very recently, Guo et al. [3] studied the Cauchy problem for

U + 85‘ +q Bxuaﬁu + czuagu =0, (1.6)
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and he proved that it is locally well-posed in H*(R) with s > % with the aid of a short time
Bourgain space.
In this paper, inspired by [1-5], by using the Fourier restriction norm method, we estab-
lish that (1.1)-(1.2) is locally well-posed in Sobolev space H* with s > —%.
Now we give some notations and definitions. Throughout this paper, we always assume
that v is a smooth function, ¥s(t) = l[f(é), satisfying 0 < v <1, ¢ =1 when ¢ € [0,1],
suppy C [-1,2]and o =1 - &7, ox = x — &/ (k=1,2),

me=/a%%5%w@ma
R

”fHL?LI; = (/R (AV(x’ t)|p dx)p dt>qr ”f”LfLI; = ”f”y’;[

(£)F = 1+&2)3 for any £ € R, and .% u denotes the Fourier transformation of u with respect
to its all variables. .% ~'u denotes the Fourier inverse transformation of u with respect to
its all variables. .%,u denotes the Fourier transformation of u with respect to its space
variable. .Z'u denotes the Fourier inverse transformation of u with respect to its space
variable. .7 (R") is the Schwarz space and .’ (R") is its dual space. H*(R) is the Sobolev
space with norm ||f|| gsr) £ I <E>S<%cf”L§(R)' For any s,b € R, X;,(R?) is the Bourgain space
with phase function ¢(£) = —£7. That is, a function u(x, £) in .7 (R?) belongs to X; ,(R?) iff

A
il ey = 16)°(0)" F &, D) 12 gyszy < o

For any given interval L, X; ,(R x L) is the space of the restriction of all functions in X; ,(R?)
on R x L, and for u € X, ;(R x L) its norm is

llllx, ,®x) = inf{ 1 1x, , &2y UlrxL = u}.

When L = [0, T], X; (R x L) is abbreviated as Xs,Tb.
The main result of this paper is as follows.

Theorem 1.1 Assume that ug(x) € H*(R) with s > —%. Then the Cauchy problem for (1.1)
is locally well-posed.

The remainder of paper is arranged as follows. In Section 2, we make some prelimi-
naries. In Section 3, we give an important bilinear estimate. In Section 4, we establish
Theorem 1.1.

2 Preliminaries
Lemma2.1 Letb > % Then

lulls, < Cllaelx, (2.1)
17

5
|Ds u||Lmo < Cllullx,,, (2.2)

lullygrz < Clulx, (2:3)
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llzellx
0-%b

<Cllull + ,
L?

12

5
ful, =
| D ul 5, < Clulx, -

Proof For the proof of (2.1)-(2.5), we refer the readers to Lemma 2.1 of [5].

We have completed the proof of Lemma 2.1.

Lemma 2.2 Assume that b = % + €. Then

2

74, = CT Tt

where

ﬂﬁme&ﬂ:éﬁmw—ﬁﬁym&mﬁm@ﬂwﬁﬁp

Lemma 2.2 is the case of # = 3 of Lemma 3.1 of [5].

Lemma 2.3 Forany 0<§< %, and s € R, for b >0, we have

k=1

T=T1+T)

[vs@OW@uo ., < C57 ol

For -1 <b' <0 <b'+1, we have

H%(t)/ot W(t-t)udt

1+b'-b
< C8" ullx,,,.
Xx,h

Lemma 2.3 can be found as Lemma 2.4 of [6].

3 Bilinear estimates

In this section, we will give an important bilinear estimate.

We give an important relation before proving the bilinear estimate.

7 7 7 6
|G — 01 _02| = |E _gl _52 | ~ SminSmax’

where

Emin = min{|£], |&1], 1621},
Emax = max{|£], 161, &2}

Lemma 3.1 Lets> —% +2le, b= % +e,where0 Ke<1,b = —% +2¢. Then

2
7 [ [ o)
k=1

Xs,h/

2
< C[ [ hulx,,-

k=1

Page 3 of 9

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(3.2)
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Proof Let

Fi(Eo T) = (&) (o) " Fur G, ),
F(&,7) = (£)(0)! Fu(g, 1),

o=1-¢, O’k=‘l,’k—§]z, k=1,2.

To establish (3.2), it is sufficient to derive the following inequality:

[ K, r)|F|1"[|Fk|dsldndsdr<C||F||Lz IFlz VBl (33)
R2 JE=61+6

where

Ki(&,1,6,1) =

T= 11+r2 k=1

&2 (o) (&)

SLAR A . (3.4)
[T (&0 (on)®

Without loss of generality, we assume that F > 0, Fx > 0 (k = 1,2). To derive (3.3), it suffices
to prove that

- e i OF ] Fedév s de de <CIFlg IRl 1Bl - (35)
R T= +T

k=1

By using the symmetry between || and &,, without loss of generality, we can assume that
|&1] < |&2|. Obviously,

6
{E=t+&, =11+ 10,15 > &I} CUQk:

where

={Em &) eRLE=E+6,T=1+1, 8| < 5| <18},
{(gl!TI;S) € R4)$ :EI +$2)T =7 + 1Ty, |€2| = 18;'52' > 4|Sl|)|§1| =< 1}1
3= |

L6 1) ERNE=E +6,7 =1 + 1o, |&] > 18, 16| > 414, 1&] > 1},

2 2
Qy = {(51» 1,&,7) eRY,E = ka,f = ka, |&,] > 18,

k=1 k=1

1
1&1] < 152] = 4l&11, 18] < §|€1|:€152 =0y,

{(51,1'1»5,7)61{ 2§ =861+5,T =1 +7,15] 218,18 < |&| < 4|&], 6] > |i—|}

Q= {(E, 1,6 1) eRNE=E + 5,7 =11 + 1, |6] 218,18 < |&| < 4|61, &5 = 0.

We will denote the integrals in (3.5) corresponding to x (1 <k <6) by /i 1 <k <6),
respectively. Let f = ﬁ’lw%b,,fk = 9’1#, k=1,2.
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(1) Subregion ;. Since |&;| < |&;| <18, we have |§| < 36, which yields

C

Ki(&, 1,8, _
16,1,6,7) < o)V H/Z(=1(0k>b

Then, by the Plancherel identity, the Hélder inequality, and b < b, we derive

e ﬂ K VT Fedes drsd do

Z1+fz k=1

FII2,F
ff H“ L dgldrlder<C/ fifsf dxdt
R2 JE=61+62 (

-
=741 Hk 1 (ox)?

< Cllf e, 1"[ufk||L4 < ClIFllg, Hka”X s, = CIFlz, 1"[||Fk||Lz :

(2) Subregion 2. In this subregion, obviously, |&| ~ |£].
It is easily checked that

|§%(0)” C|51 Eflm

Ki(&,1,6,1)<C <
e Hl%:l(aky] Hk 1{ow)?

Consequently, by the Cauchy-Schwarz inequality and Lemma 2.2, we have

pecf [, KEner F]"[desldndsdr

T=T|+172

FI2, Flgb - £5)2
sc/ / Hia Bl&C =851 e, g ae
r2 JE=t1+6 ]_[k:1<ak)b

6 _ £611 172 F
/ |§1 522| Hkb:l kdéldﬁ
s [liz(ow)

2

<

< ClIFlz, 1‘[ AP
=1

< c‘ IFllz,

2
L§r

(3) Subregion Q3. In this subregion, we derive |£| ~ |&|. Thus,

HEEIC

I<l(él:rlr§’ t) =< C Hiﬂ(o’k)b

(i) Case |o| = max{|o|,|o1],|02]}. By (3.1), we derive

2+6b' —s+b’ 611
12+ 18~ _ |sl—s|/2

Ki(&,m,6,71)<C <
e Hiﬂ(ak)b l_[k 1 (o%)?

If -s+ b’ <0, then

’ Cenh
|§_—|2+6b |$l| s+b |€_-1 §6|1/2

Ki(&,1,6,1)<C <
e Te l_[i=1<0k>” Hk 1 (o%)?
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If —=s+b' >0, then

25471/ 6 _ £6/1/2
1§17 <C|51—§z|

Ki(&,1,6,1)<C < .
W m ST = O = I

This case can be proved similarly to ;.
(i) Case |oq| = max{|o |, |o1], |02 |}. Since (o)2* < (61)2*?, we have

21878 b 2+6b' —s+b
1<1(§1;71;§;'C)§C|E| 16117 (01) < €] &1 '

(o9)b(a)0 — (02)b(a)?
If —s+ b’ <0, we have
K mem <c 2
1 1S = (02)b(0>b’

consequently, by using the Cauchy-Schwarz inequality and (2.5) and (2.4), we have

2n-1

& "T FTI7L E
f / Zb—l_[’b“dgl dvy dt dr
R2 JEhe (02)?{0)

2
0 [ et []5dadn
j=1

=

I1Flz2,
2

Lsr

5
=ClFZ M EDA 5, Pl
< C|F 7 E) | 2, 1D o] 3,0 I F iz,

= CllAlz 1ENz2 1f2lx,

2
<ClIFlz [TIEN, -
j=1

If —s+b' >0, since s > —% + 21€, we have

|%~ |3—s+7b’

€55/
K&, m,6,7) < C<02>b<o->b = C<02)b(a>b'

This case can be proved similarly to the above case.

(iii) Case |oy| = max{|o|, |o1], |o2]}. This case is similar to (ii) case |o71| = max{|o|, |o1],

loal}.
(4) Subregion 24. In this subregion, || ~ |§;], and it is easy to obtain

|68 —g2| > Clell&l’,  [g°-&f| = Clal®, |60 -&2| > Cl&1°.

(i) Case |o| = max{|o|,|o1|,|02]}. By using, |&| ~ |&2|, when s > 0, we have

EP (@) _ 16 551" (0)”

Ki(&,1,6,1)<C =
16, 1,6,7) [T (on [T1 (o0

Page 6 of 9
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This case can be proved similarly to Subregion ;. When s < 0, we have

|E 17167

K¢, 6 71)<C————.
1(51 7,& 7) < (0)‘” H}'2:1<01')b

If |o| = max{|o|,|o1], |02}, since —% +2le <s <0, then

& |3+b/ & |—2s+6b’

[Te-i4on)”

5. _25+6b —
- C|S|1/2|E1|5/2|£|2 b |%-1| 2s+6b'-5/2
- [Tz (o)
_ -
B AL

I<1(‘§>:1’ 1, E! t) < C

By using the Cauchy-Schwarz inequality, we have

2
C K&, 1,6, T)F | | Exdé dtidéd
Ja < /1;2£=51+52 1&,1,6,7) E d& dr dé dr

T=T]+T2

2

<C/ / MFand&dnder
- R2 JE=61+62

2 b
T=T1+T) 1_[/(:1 (Gk> k=1

£8 £ 112 2
<C ————— | | Frd&r d
< 'Léﬁgz [T ton? [ [Exdéidn

T=T1+T2 k=1

F
VP,
L‘gr

2
< ClIElz, [TIE -

Jj=1

ii) Case max{|o|, |o1], |02]} = |o1|. Since (o be¥ < o1 b+b,,b using —Z +21e <5< 0, we
Yy g 4
have

/ /
Y N el |t

Kl 60) = o o™ = oo = (oo

This case can be proved similarly to max{|c|, |01, |o2|} = |o|.
(iii) Case max{|o|,|o1l, |o2|} = |oa].

This case can be proved similarly to max{|c |, |o1], |o2|} = |o1].
(5) Subregion Qs. In this region |&| ~ |&| ~ |&; |, thus, we have

3-s(& 4
Ki6,m,6,7) < C|$|27<>b~
Hk=1<ak)
(i) If |o| = max{|o|, |01, |o2|}, by using (3.1) and s > —% + %e, we have

—s+7b' 2 2
[ | YL

i o)~ Tlis(on)?

I<1('§1: 1, E! t) < C
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By using the Plancherel identity, the Holder inequality, and 2b < b as well as (2.5), we have

pecf [, ke r)F]‘[desldndsdr

T= rl+rz
// Hw%ﬁm@m
R Jistre T (on)?

T~ 1F1—[D8fkdxdt

2
R k=1

2 5
= Cl 77 F| o [ TPl s,
k=1
2 2
= CIFI, [T, 5, = CUFI, [T1FL, -
k=1 k=1

(ii) If |o1| = max{|o|, o1, |o2|}, then () (01) ™ < (01)? (). By using (3.1), we have

EP o0 _ BRIl l

(02)0(0)? = " (o2)P{0) T (o) {on)?

1<2(£:11 Tl’gr T) = C

By using the Plancherel identity, the Hélder inequality, (2.5) and 2b < b, we have

J5 < C/ /S‘S I(l(gl,fl,fyT)Fl_[de&dfldgdT

T= ‘[1+‘L'2

|~§| |‘§2|7
=C —a—F| | Fxdsidudéd
'/R2£§1+52 H kdé1dr d§ dt

=cfrmpls («i ) pisea

Dgg-l<i>
¥ (o)?
2

<C|F 1_[ F .
= Cll, TTEl,
-1

5
= C|F7R| 2 104

4
th

< ClIE Iz, Il
4

F
b b
(o) X025

4

(iii) If |o2| = max{|o|, |o1], |02}

This case can be proved similarly to the case |o1| = max{|o|, |o1], |o2|}.

(6) Subregion Q. In this region, we have |§| ~ |&| ~ |&].

This case can be proved similarly to the Subregion Qs.

We have completed the proof of Lemma 3.1. d

4 Proof of Theorem 1.1
The system (1.1)-(1.2) is equivalent to the following integral equation:

u(t) = W(t)uo + /t W(t-1)9;(u*)dr. (4.1)
0

Page 8 of 9
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We define

D(u) = V(W (@E)uo + Ws(2) / t W (t - 1)d} (u?) dr. (4.2)
0

Combining Lemmas 2.3 and 3.1 with the fixed point theorem, we easily obtain Theo-

rem 1.1.
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