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Abstract

We construct the first examples of capillary surfaces of positive genus, embedded in
the unit ball of R® with vanishing mean curvature and locally constant contact angles
along their three boundary curves. These surfaces come in families depending on
one parameter and they converge to the triple equatorial disk. Such surfaces are
obtained by deforming the Costa-Hoffman-Meeks minimal surfaces.
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1 Introduction
The study of capillarity started in the beginning of the 19th century by the work of PS de
Laplace and T Young. They considered a liquid contained in a vertical tube of small radius
dipped in a reservoir and studied the shape of the free surface interface between the liquid
and the air. Such a surface is called capillary surface. More generally a capillary surface is
the surface interface between a liquid situated adjacent to another immiscible liquid or
gas.

PS de Laplace proved that the height u of a capillary surface over a domain Q C R?

satisfies the differential equation

v
2H=div( “ ):ku+k, (1)

V1+|Vul?

where H is the mean curvature, A is a constant to be determined by physical condition (vol-
ume of the fluid and boundary conditions) and k is positive (resp. negative) when denser
fluid lies below (resp. above) the interface.

T Young, who considered the case A = 0, understood that the capillary surface meets
the tube (or more generally the container) making an angle, called contact angle, which
depends on the liquid and on the material which composes the container and not on the
gravity. For liquids in tubes (i.e. cylindrical containers) we see that the following additional

boundary condition (Young condition) is satisfied:

Vu
V. ———— =cosa.

V1+|Vul?
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Here v is the unit normal vector to the tube along the boundary of the surface. It says that
the capillary surface meets the tube in a constant contact angle (equal to «). See Finn [1],
for a survey on more recent discoveries about capillarity.

Existence and uniqueness for the solution of capillarity problem for graphs over do-
mains of R” n > 2 (also in the more general form where H = f, for an assigned function f),
has been extensively studied in the past, see e.g. Gerhardt [2], Lieberman [3], Simon and
Spruck [4], Spruck [5], Uraltseva [6].

A more recent series of works (see e.g. [7-9]) deals with the existence and regularity
of capillary graphs with constant mean curvature in vertical cylinders containing corners
or cusps. Huff and McCuan [10] showed the existence of Scherk-type capillary minimal
graphs.

Very recently, Calle and Shahriyari in [11] have solved the prescribed mean curvature
equation with a boundary contact angle condition. They show the existence of graphs
over domains in M” x R, where M" is a n-dimensional Riemannian submanifold of R"*!,
In [12] Lira and Wanderley show the existence of Killing graphs with prescribed mean
curvature and prescribed contact angle along their boundary in a wide class of Riemannian
manifolds endowed with a Killing vector field.

Fall and Mercuri in [13] constructed by a perturbation method disk-type minimal sur-
faces embedded in an infinite cylinder in R® and which intersect its boundary orthogo-
nally. In [14] they extended this result to Riemannian manifolds.

In [15] Fall showed that, given a bounded domain of R? there exist embedded constant
mean curvature (cmc) surfaces contained in €2 and whose boundary intersects dS2 orthog-
onally. Also he showed that, given a stable stationary point p for the mean curvature of
0%, there exists near p a family of embedded surfaces with cmc equal to £}, which, after
scaling and translation, converges to a hemisphere of radius 1 as ¢ — 0.

In [16] Fall and Mahmoudi showed that if Q is a domain of R”*! and K a k-dimensional
non-degenerate minimal submanifold, then there exists a family of embedded constant
mean curvature hypersurfaces which, as their mean curvature tends to infinity, concen-
trate along K and intersect 92 orthogonally.

In this work we show the existence of higher genus minimal capillary surfaces by a
perturbation method. Let B® be the unit ball centered at the origin of R3. For each
kell,...,+00) and t € (0, 7p), with 7y small enough, there exists a surface S; of genus &,
embedded in B® with non-empty boundary which consists in three simple closed curves
At» Ay Ap which lie in B2 and such that

H(p):o, peSr;
Nl(p) : Ui(p) = wi(r): p € )"iri = t;m,b;

()

where H(p) denotes the mean curvature at the point p; N;(p) and v;(p) denote, respec-
tively, the unit normal vector to the surface S; and to 9B® at p € A;. The functions
(Ve(T), Y (), ¥p(7)) = (¥ (1), 0, ¥ (7)) are decreasing smooth and non-zero for 7 € (0, 7p).
We will describe them below.

The solution of the previous system is based on the deformation of a compact piece of a
scaled Costa-Hoffman-Meeks minimal surface contained in the unit ball. More precisely
we consider the image by a homothety of ratio 7. Such a surface is denoted by M .. As
we will explain in Section 2.1, My ; is asymptotic to a top half catenoid, to a bottom half
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catenoid and to a horizontal plane. The functions (Y(t), ¥,,(t), ¥»(t)) are defined to be
the values of the scalar product N;(p) - v;(p) we obtain if we replace S; by the two halves
catenoid and the plane. In particular v, = 0.

We provide the first examples of capillary type surfaces with non-trivial topology, having
vanishing mean curvature and locally constant contact angles with the sphere. They are
equal to the contact angles made by the asymptotic catenoids and the plane described
above with the sphere. Such surfaces are obtained by deformation of minimal surfaces by
a function in the space described by Definition 2.1.

Here is the statement of the result we get. The cartesian coordinates in R? are denoted

bY (xl)x21x3)'

Theorem 1.1 Foreach k € [1,...,+00), there exists 1y € R positive and small enough, such
thatforeach T € (0, 7o) there exists a surface S, embedded in B?, of genus k, whose boundary
dS; C 0B is composed by three simple Jordan curves Ay, Ay, Ay, and satisfying

H(p) =0, PES,
Ni(p) - vi(p) = ¥i(x), peh.

3)

Such surfaces are invariant under the action of the rotation of angle % about the x3-axis,
under the action of the reflection in the x, = 0 plane and under the action of the composition

of a rotation of angle "5 about the x3-axis and the reflection in the x3 = 0 plane.

We observe that for values of 7 in the range of validity of our theorem ¥,(7), ¥,(r) # 0. In
other terms the surface cannot make a constant angle equal to 77 /2 with 3B along A;, As.
We point out that lim;_,¢ ¥;(7) = 0. As 7 is the homothety ratio, this says that, as 7 tends
to 0 the limit of S; consists in the triple equatorial disk.

The proof can easily be modified in order to handle the case of capillary surfaces with
boundary on a vertical cylinder.

Among the works dealing with capillary surfaces in a ball we cite [17] by Ros and Souam.
They showed that a stable minimal capillary surface (that is, stationary surfaces with non-
negative second variation of the area) in a ball of R? is a totally geodesic disk or a surfaces
of genus 1 with boundary having at most 3 connected components. Consequently, at least
for k > 1, the surfaces described by Theorem 1.1 are unstable.

The interest in capillary surfaces in the unit ball has been rekindled by the recent works
of Fraser and Schoen [18, 19]. They considered free boundary minimal surfaces embedded
in the unit ball of R”, i.e. surfaces which meet orthogonally the boundary of the ball.

Free boundary minimal submanifolds are critical for the problem of extremizing the vol-
ume among deformations which preserve the ball. Such solutions arise from variational
min/max constructions, and examples include equatorial disks, the (critical) catenoid, as
well as the cone over any minimal submanifold of the sphere. If ¥ is a compact Rieman-
nian surface with 9% # ¢ then the Dirichlet-to-Neumann operator maps a function # on
9% to the normal derivative of the harmonic extension of # to the interior. A submani-
fold properly immersed in the unit ball is a free boundary submanifold if and only if its
coordinate functions are Steklov eigenfunctions with eigenvalue 1. Using this characteri-
zation they prove the existence of free boundary minimal surfaces in the unit ball of R? of
genus 0 with boundary having k connected components, for any finite k > 1. The authors
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conjecture the existence of higher genus examples of free boundary embedded minimal
surfaces which have three boundary components and converge to the union of the critical
vertical catenoid and the equatorial disk.

The minimal surfaces described in Theorem 1.1 come in 1-parameter families, they have
finite genus > 1, they meet orthogonally the boundary of the ball only along the middle
boundary curve. Furthermore, for any value of the genus, the limit for values of the pa-

rameter close to zero consists in the triple equatorial disk.

2 Preliminaries

The proof of the existence of solutions of the capillarity type problem is based on the
deformation of a compact piece of the minimal surfaces My .. We describe this family of
surfaces in Section 2.1.

We will show that it is possible to deform a surface ¥ in this family in order to get a
surface satisfying (3). More precisely we will prove the existence of a function u defined on
¥ and of small norm such that its normal graph S, over X has vanishing mean curvature
and the scalar product of the unit normal vectors, (N, ); - vi, equals v; at each point of the
ith component of 35, with i € {1,2,3}.

We will adapt to our setting some arguments used in [20, 21].

2.1 The scaled Costa-Hoffman-Meeks surface
The Costa-Hoffman-Meeks surface of genus k € [1,..., +00) embedded in R? (see [22]) is
denoted by M.
After suitable rotation and translation, M enjoys the following properties.
1. It has one planar end E,, asymptotic to the horizontal plane x5 = 0, one top end E;
and one bottom end Ej, that are, respectively, asymptotic to the upper end and to
the lower end of a catenoid having the x3-axis as axis of rotation. The planar end E,,

is located between the two catenoidal ends.

21
k+1

the action of the reflection in the x5 = 0 plane and under the action of the

2. Itisinvariant under the action of the rotation of angle +% about the x3-axis, under
composition of a rotation of angle "5 about the x3-axis and the reflection in the
x3 = 0 plane.

3. Itintersects the x3 = 0 plane in k + 1 straight lines, which intersect themselves at the

origin with angles equal to {75. The intersection of My with the plane x3 = const
(#0) is a single Jordan curve. The intersection of M with the upper half space
x3 > 0 (resp. with the lower half space x3 < 0) is topologically an open annulus.

The parameterization of the end E; is denoted by X;, with i = ¢, b, m, and the parameter-
ization of the corresponding end E;; of My, is denoted by X; ;. We recall that My is the
image of Mj by the homothety of ratio 7.

Now we provide a local description of the surface My ; near its ends and we introduce

the coordinates that we will use.

2.2 The planar end

The planar end E,, ; of the surface My . can be parametrized by

T™*
|

KX, () := <—,Tum(x)> e R?, (4)

|2
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where x € B, (0) - {0} C R2. Here py > 0 is fixed small enough. In the sequel, where neces-
sary, we will consider on B, (0) also the polar coordinates (p, ) € [0, po] x S*. The function

u, satisfies the minimal surface equation, which has the following form:

4
2H, = ﬁdiv((*) -0, )

T 1+ |x|*|Vul|?)V/2

It can be shown (see [20]) that the function u,, can be extended at the origin continuously
by using Weierstrass representation. In particular we can prove that u,, € C*%(B,,) and
Uy = ch,a(|x|k+l), where the OCZ’O’ (g) denotes a function that, together with its partial
derivatives of order less than or equal to # + « is bounded by a constant times g. Fur-
thermore, by taking into account the symmetries of the surface, it is possible to show the

function u,,, in polar coordinates, has to be collinear to cos(j(k + 1)8), with j > 1 and odd.
2.3 The catenoidal ends
The parametrization of the standard catenoid C, whose axis of revolution is the x3-axis,
is denoted by X.. We have

X.(s,60) := (coshscos®,coshssin®, s) € R3,

where (s,0) € R x S'. The unit normal vector field to C is given by

n.(s,0) := (cosB,sin@, —sinhs). (6)

coshs
The catenoid C may be divided in two pieces, denoted by C., which are defined as the
image by X, of (R x S!). For any 7 > 0, we define the catenoid C; as the image of C by
a homothety of ratio 7. Its parametrization is denoted by X, := 7X,. Of course, by this
transformation, the two surfaces correspond to C. They are denoted by C; ..
Up to some dilation, we can assume that the two ends E;, and E,; of Mj . are asymp-
totic to some translated copy of the two halves of the catenoid parametrized by X, . in the

vertical direction. Therefore, E;, and Ej; can be parametrized, respectively, by
Xiz=Xer + Wil + Oy €3 (7)
for (s,0) € (sg,00) x St,
Xp,z 1= Xer — Wple — Opres 8)

for (s,8) € (—o0,—s¢) x S!, where 0:,05. € R, functions wy, w; tend exponentially fast
to 0 as s goes to oo reflecting the fact that the ends are asymptotic to a catenoidal end.

k+1)s), Furthermore, taking into account the

More precisely it is known that w; = OCZ,O( (re
symmetries of the surface, it is easy to show the functions w;, wp, in terms of the (s,0)
coordinates, have to be collinear to cos(j(k + 1)8), with j € N and must satisfy w,(s,0) =
~wy(=s,0 — 7). Furthermore we have o;,; = 0;,;. In the sequel we will omit the indices ¢,

b and we will use the notation o,. We assume that o, < k12, « being a constant.
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For all p < pg and s > 5o, we define
M (s, p) := My, — [Xt,r ((s, 00) X Sl) U Xp o ((—oo, —s) X Sl) UXr (Bp(O))]. 9)

The parametrizations of the three ends of M, induce a decomposition of My, into
slightly overlapping components: a compact piece My .(so + 1, 00/2) and three noncom-
pact pieces X; . ((so, 00) x '), Xp,. (=00, =s0) x S') and X,,, (B, (0)).

We define a weighted space of functions on My ..

Definition 2.1 Given £ €N, « € (0,1) and § € R, the space Cf’“ (My,;) is defined to be the

o

loa (M) for which the following norm is finite:

space of functions in C

”W||C§‘“(Mk,r) = ”W”CL‘X(M/(’T(SOH,pQ/Z)) +[lwo Xi,e ||C£’Q(Bp0(0))

(~00,-s0]xS1)’

+ ”W o Xt,t ||C§’a([so,+oo)><51

) +[lw OXb,r ||C§’a(

where

-5
et 15y, 00151y = SUP(€™ I lletagssinyxsn)-

$>50

)
”fHCf‘“((—oo,—so]xSl) = sup (e S”f”c‘""([s—l,s]xsl))
§<-50

and which are invariant with respect to the reflection in the x, = O plane, that is, w(p) =

w(p) for all p € My ., where p := (x1, —x2,%3) if p = (%1,%2,%3), invariant with respect to a

rotation of angle % about the x3 axis and to the composition of a rotation of angle

about the x3 axis and the reflection in the x3 = 0 plane.

T
k+1

We remark that there is no weight on the middle end. In fact we compactify this end and
we consider a weighted space of functions defined on a two ended surface.

The proof of Theorem 1.1 consists of two steps. Firstly we will show that for each choice
of the genus k there exists, for t sufficiently small, a family of functions u € Clsz’“ (M) such
that their normal graph over M, satisfies the first equation in (3). To do that we need to
find the expression of the mean curvature operator for normal graphs of functions de-
fined on My ;. This is the aim of following section. Secondly we prove that in the family of
solutions described above there is a function satisfying also the capillarity condition in (3).

3 The mean curvature of a graph over M, ,

It is well known that the mean curvature H,, of the normal graph of a function « over a
minimal surface ¥ can be decomposed as 2H,, = Lxu + Q(u), where Ly denotes a linear
second order elliptic operator and Q is a nonlinear differential operator of higher order.
The operator Ly, is known under the name of Jacobi operator and it is defined as the

linearized of the mean curvature operator. For a minimal surface ¥ in R? its expression is
Ly := Ax + |As]?
z = As + Az

where Ay denotes the Laplace-Beltrami operator and |Ay | is the norm of the second fun-
damental form on the surface.
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As for the majority of minimal surfaces, unfortunately the explicit expression of the
mean curvature operator of the Costa-Hoffman-Meeks surfaces is not known. The knowl-
edge of the geometric behavior of such surfaces (we recall that their ends are asymptotic to
the two halves of a catenoid and to a plane) allows us to get information about the operator

L

«. and more generally of the mean curvature operator at the ends of the surfaces.

3.1 Mean curvature operator at the catenoidal ends
The surface parametrized by X, + wn, is minimal if and only if the function w satisfies

the minimal surface equation
1
2H,, = —Lcw + Q:(w) =0, (10)
T

L¢ being the Jacobi operator of the catenoid, i.e.

L 1 (82 52 2w )
W= ——— W+ 0w+ ——— |,
¢ cosh’s oo cosh’s

and

1 w 1 w
T = T T . 11
Q:(w) 7 cosh? sQZ’ (r coshs) t7 costhg’ (1: coshs) 1

Here Q, Q; are nonlinear second order differential operators which are bounded in C/(R x
S, for every [, and satisfy Q,(0) = Q3(0) = 0, VQ,(0) = VQ3(0) = 0, V2Q3(0) = 0 together
with

j-1
1Qi(v2) - Qi(w) ”co,a([sym]xsl) < C(S‘ig ||Vi||cl“([s,s+1]xsl)> lva = villcaessenxsy  (12)
=1,

for all s € R and all vy, v, such that [|[v;]|cae ss,17xst) < 1. The positive constant ¢ does not
depend on s.

Finally we observe that the operator (cosh 5)2 = Lc maps the functional space
(coshs)°C?® ((so, +00) X Sl) into (coshs)’C%* ((so, +00) X Sl).

3.2 Mean curvature operator at the planar end

If we linearize the nonlinear equation (5) we obtain

— la*V

Vu-Vv ) 13)

le4 <
L,v=
\/1+|x| [Viu|? \/ L+ |x[*|Vul|?)?

If we consider u = 0 we get an operator which equals, up to a multiplication by 7, the Jacobi
operator of the plane, that is, Lg2 = |x|*Ag. The graph surface of the function  is denoted
by ¥, and its mean curvature by H,. Then H,,,, the mean curvature of the graph of the
function u + v, in terms of H,,, is

4
2H,., =2H, + L,v+ uQM(IJCIZVV x*V?v), (14)
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where Q,, satisfies
Qu(or O) = 0, VQM(O, 0) =0.

Since we assume that X, is a minimal surface, we have H, = 0. So we get the following
equation:

2H,., = @ (Aov+ 1+ x*[Vul2(Lyv + Qu(|x* Vv, |x[*V?V))), (15)
where L, v is a second order linear operator with operator with coefficients in Oci,ot (Jx|**).
We recall that if the function v satisfies the equation H,,,, = 0 with « = 1,, then the graph
of the function 7 (u,, + v) is minimal. Now we are interested in finding the equation which
a function w must satisfy in such a way the surface parametrized by X,, . + wes, that is
the graph of w over the middle end E,,, ;, is minimal. That is equivalent to require that the
graph of tu,, + w is minimal. Then we can obtain the wanted equation by replacing v by
w/t in (15). So we get

x* /1 1- x|? x?
L <—A0w ++/1+ |x|4| Vul? <—Luw +Qy (LVW, uv%))) =0. (16)
T T T T T

If we set Q; () := @,/1 + |x|4|Vu|2QM(@V~, @Vz-) to simplify the notation, we can
write this equation in the following way:

|x|* |x|* ) 77
— Dow + 7\/1 + x4 Vu|2L,w + Q ,T(w) = 0. 17)
T

We obser_ve that the operator #]LRz = Ay clearly maps the space C*%(B,,) into the
space C%%(B,,).

3.3 Properties of the Jacobi operator of My ,
The Jacobi operator of My ., up to a multiplicative factor, is asymptotic, respectively, to
the operators |x|*Ag and L¢ at the planar end and the catenoidal end.

In this subsection we will describe the mapping properties of an elliptic operator related
to LLay, . - It will be used to solve the first equation of (3).

The volume form on My, is denoted by dvole,r. In the parameterization of the ends
introduced above, such form can be written as y, dsd6f and y, dsdf near the catenoidal
type ends and as y,, dx; dx, near the middle end. Now we can define globally on M, a
smooth function

y : My, — [0,00) (18)
that is identically equal to T2 on My . (so — 1,200) and equal to y; (resp. ¥, V) on the end
E;. (resp. Ep, E»). They are defined in such a way that for (s,0) € (sg,00) x S!, (s,0) €

(=00, —sp) x S' we have, respectively,

Y 0 X;+(s,0) ~t2cosh’s and y oX,.(s,0) ~ % cosh’s.
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Finally on B, we have

2

T
x|

It is possible to check that

Los:Cy* (Myr) — C* (Mi,z),

w i yLag, (W)

is a bounded linear operator.

As in [21] (see also [20] for the same result in a less symmetric setting), using the non-
degeneracy of the Costa-Hoffman-Meeks surfaces shown in [23, 24], it is possible to show
the following result.

Proposition 3.1 If§ € (1,2), then the operator L. s is surjective and has a kernel of dimen-
sion one. Moreover, there exists a right inverse G, s for L. s whose norm is bounded.

4 Construction of a family of solutions to Hs, =0
In this section we will prove the existence of a family of embedded minimal surfaces and
which are close to the piece of surface M; ; contained in the unit ball B3.

We set

pri=T
and we define s; to be the value of s such that

(tcoshs)? + (0, +1s)? = 1. (19)
We get

s;=—Int +In2 + O(7).

We define r; so that

2
Sz =ln<i).
T

The value of p, has been chosen so that the image of x € B;(0), with |x| = p;, by the map
Xo,: (%) = (tx/|x|%,0) € R® (compare (4)) is the circumference I',,, of radius 1 in the hori-
zontal plane x3 = 0. Moreover, s is the value of s for which +(o; + ts) is the height of the
curves I'y, T’ which are the intersection of the unit sphere with the top and bottom halves
of the catenoid parametrized by C; and translated vertically by +o7, respectively.

We define MkT,T to be equal to My, from which we have removed the image of (s;, +00) x
S' by X, the image of (00, —s;) x S! by X}, and the image of B, (0) by X, ;. The bound-
ary curves of M kT . do not lie in the unit sphere but they are in a tubular neighborhood of
the curves I';, I'p, I'y,. In the sequel we will use also the cylindrical coordinates (r,0, z) (of
course z = x3). The circumferences I';, I';, are contained, respectively, in the horizontal
planes z = +(o; + ts;) and their vertical projection on the z = 0 plane is the circumference
of radius 7 coshs, = 1 — O(r%1n*1/7). The middle boundary curve of MkTJ is located in a
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small neighborhood of I',;,. Points in the middle boundary curve have a height which can
be estimated by O(z**2).

By using (4), (7), and (8) we get easily the following lemma. It describes the region of the
surface My, which is a graph over the annular domain A = {(r,0) | |[r—1| <t} ofthex3 =0
plane.

Lemma 4.1 There exists to > 0 such that, for all T € (0, to) an annular part of the ends E, .,
E,. and E,, . of My, can be written as vertical graphs over the annulus A of the functions

Z(r,0) =0, + T ln(g) + Op2a (%), (20)
T b
b
Zb(r,é’) = —Zt<r,9 - m); (21)

0D
Zm(r,0) = (’)CZ,a (r (;) ) (22)

Here (r,0) are the polar coordinates in the x5 = 0 plane. The functions ch,a (f) are defined

in the annulus A and are bounded in Cg"" topology by a constant (independent by f) mul-
tiplied by f, where the partial derivatives are computed with respect to the vector fields ro,
and 9.

We will make a slight modification to the parametrization of the ends E; ;, E; ; and E,,, .,
for s and p in a small neighborhood of s, and p,, respectively.

The unit normal vector field to M . is denoted by 7. Firstly we modify the vector field
1, into a transverse unit vector field 7. 71; is a smooth interpolation of the following vector
fields defined on different pieces of the surface:

« at the top (resp. bottom) catenoidal end, the unit normal vector #.(s;, -) (resp.
n.(=s;,-)) for s in a small neighborhood of s = s; (resp. s = —s;); we recall that
n.(+£s;,-) are the unit normal vectors to the translated copy of the halves catenoid
parametrized by X, & o, e3 along the curves I';, I'p;

« at the middle planar end, the vertical vector field e3 for p in a small neighborhood of
P = pe;

« the normal vector field 7, on the remaining part of the surface.

We observe that at the top end E; ., we can give the following estimate:

| 7% cosh? s(Lag, , v — (¢ cosh® s)_l(assv +9pgv))| < c|(cosh? s)_1v|. (23)

This follows easily from (10) together with the fact that w, decays at least like (cosh?s)™!
on E; ;. Similar considerations hold at the bottom end Ej, ;. Near the middle planar end
E,, ., we observe that the following estimate holds:

’t2|x|_4 (LM,(JV - |x|4t_2A0v)‘ < c’ |x|2k+3VV‘. (24)

This follows easily from (13) together with the fact that u,, decays at least like |x|**! on E,,, ;.
The mean curvature of the graph ¥, of a function u in the direction of the vector field
71, is the image of u by a second order nonlinear elliptic operator:

2H(u) = Lygr u+ Leu+ Qe(w),
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where ]LMkT is the Jacobi operator of M,(Tr, Q; is a nonlinear second order differential
)T ’

operator and L, is a linear operator which takes into account the change of the normal
vector field 7, into 7.

The operator L,is supported in a neighborhood of {#s,} x S! and of {p,} x S!. It is pos-
sible to show that the coefficients of L, are uniformly bounded by a constant times 2. First
we observe that (iz;,n,) =1+ OCZ,a(rz) in a neighborhood of {£s,} x S! and of {p,} x S
and the result of [20] Appendix B show that the change of vector field induces a linear
operator whose coefficients are bounded by a constant times 2.

Aswe will see in the sequel, the function u € Caz’“ (M, ) which solves H(X,)) = 0, depends

nonlinearly by a triple of functions defined on the boundary curves of M,{T. Here is the
definition of the functional space we will consider.
Definition 4.2 Given k > 1, € (0,1), the space [C™* (Sl)]fym is defined to be the space
of triples of functions ® = (¢, ¢, ¢5) such that ¢; € C**(S') and even, ¢, is collinear to
cos(j(k +1)0), with j > 1; ¢,, is collinear to cos({(k + 1)8), with [ > 1 and odd, ¢, = —¢,(60 —
%:7)» and whose norm, defined below, is finite.

Pl cner 51, 1= 1ellcnaisty + 1@mlleme(st) + @pllenes)- (25)
Now we consider the triple of functions ® = (¢;, @, ¢p) € [C>%(S!) g’ym,
2
<
@l c2e(sny3,, =«T° (26)

We define wq to be the function equal to
1. x4Hy,(s; —s,-) on the image of X, ., where yx, is a cut-off function equal to 0 for
s <sp + 1 and identically equal to 1 for s € [so + 2,5;];
2. x-Hg, (s +s;,-) on the image of X}, ., where x_ is a cut-off function equal to 0 for
s> —so — 1 and identically equal to 1 for s € [—s;, —so — 2];
3. me:[pT,(pm(y -) on the image of X,,, ., where x,, is a cut-off function equal to 0 for
p = po and identically equal to 1 for p € [pr, po/2];
4. zero on the remaining part of the surface MkTJ.
The cut-off functions just introduced must enjoy the same symmetry properties as the
functions in C§’“ (My.). H and H are harmonic extension operators introduced, respec-
tively, in Propositions A.1 and A.2.
We will prove that, under appropriates hypotheses, the graph X, over MkT,T of the func-
tion u = wg + v, is a surface whose mean curvature vanishes.
The equation to solve is

H(%,)=0.
Since we are looking for solutions having the form u = we + v, we can write it as
]LME (wo +v) +L(W¢ + 1)+ Q. (wg +v) =0.

The resolution of the previous equation is obtained by the one of the following fixed point
problem:

v=T(®,v) (27)
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with
T(®,) = Gr5 0 E (v (~Le(wo +v) - Lyz wo = Q:(wo +v))),

where § € (1,2), the operator G, is defined in Proposition 3.1 and &; is a linear extension
operator such that

Ec:CY* (M) — CI* (M),

where Cg’“ (MkT,f) denotes the space of functions of Cg’“ (M, ;) restricted to M,ZT. It is de-
fined by &;v =vin MkTJ, &.v =0 in the image of [s, + 1, +00) x S! by X; ., in the image of
(=00, -8, —1] x §' by X}, and in the image of B, j» by X, . Finally £, v is an interpolation
of these values in the remaining part of My, such that

(Ev)oXir(5,0)=(1+s, — s)(v o Xy, (SI,O)), for (s,0) € [sy,s; +1] x S,

(Ev)oXpo(s,0)=(1+s, +s)(voX;,,,(sr,8)), for (s,0) € [-s;, — 1, -s,] x S%,

(V) 0 X (p,0) = (ip - 1> (vo Xy (p:,0)) for (p,0) € [pc/2,pc] x S

T

Remark 4.3 From the definition of &, if suppv N (B,, — B, 2) # ¥, then

” (Ev)o Xm,e HCO""(I_B,JO) =< Cpf_a lvoXu. ”Cor"‘(BpO ~Bp; )"

This phenomenon of explosion of the norm does not occur near the catenoidal type ends:

” (51—1/) o Xt,?.’ Hco,a([s()’Jroo)XSl) <clvo Xt,l’ ”CO'“([S(),ST] xSh).

A similar equation holds for the bottom end. In the following we will assume « > 0 and
close to zero.

The existence of a solution v € CSZ"" (M ;) for (27) is a consequence of the following re-
sult, which proves that T(®, -) is a contraction mapping.

Proposition 4.4 Let § € (1,2), o € (0,1/4) and © = (¢z, O, p) € [Cz""(Sl)]fym satisfying
(26) and enjoying the properties given above. There exist constants ¢, > 0 and t, > 0, such
that

IT@,0)| gy, < et (28)

and, for all T € (0,7,),

| T(®,v2) - T(®,v)]| < et vy = v g2

C* (Mpr) = M)’

|T(®2,v) - T(®1,v) | < v @3 - D1l e2aen)

C?’a (Mk,r) ]gym,

where c is a positive constant, for all v,v,,vy € Co*(My.) and satisfying ||v| 2 < 2¢, T
and for all boundary data ®; = (@1i Pm,i» i) € [C**(SH]3

syms © = 1,2, enjoying the same

properties as P.
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Proof We recall that the Jacobi operator associated to My ;, is asymptotic (up to a multi-
plication by 1/72) to the Jacobi operator of the catenoid (respectively, of the plane) plane
at the catenoidal ends (respectively, at the planar end). The function wy is identically zero
far from the ends where the explicit expression of Ly, . is not known: this is the reason for
our particular choice in the definition of wg. Then from the definition of w¢ and thanks
to Proposition 3.1 we obtain the estimate

[ €L wo) | oy,
= [ Laar, = (02 + 82)) W0 0 Xe) | c0m 1 sty
# O Ly, = (02 + 83)) 0 0 X0 oy, g sy

+ IO;(X ” (y]LMZ:T - AO)(WCID OXm,‘L’) ||C0,a([phpo]><51)

= C” cosh™ s(we 0 X0 ” O ([sg+1,5:1x51)

+c H cosh™ s(we o Xb,f) ” Cg’“([—sf,—so—l] xS1)

+ Cr_a ||P2k+3V(W<I> o XWI,T) ”CO'O‘([pz,po]XSl)

4 5/2

<CeT  + 6T 572,

<¢T
To obtain this estimate we used the following ones:

sup e ” cosh™ s(wo 0 Xir) ” coe ([

5,5+1]x S1)
[so+1,57]xS!

<c sup e e Ve gyl crasy
[sg+1,s7] xSt

<ce ™ || pellczasty < cet?
(a similar estimate holds for the bottom end) and

p;a || p2k+3v(w® o Xm,‘L') || CO""([pr,po]Xsl)

— 5/2
< ctpell@mllerasyy < cet®

together with the fact that s, = —In7 + In2 + O(z) and p, = 7, from which e 27 < c72,

Using the estimates of the coefficients of L. and the definition of y (see (18)), we obtain

||ET(VLTW¢)||C§'“(M,”) < CfZHWCD OXt’T”Cg’a([soﬂ,sr]xsl)

2
+ et we 0 Xpo ”C?’a([—sr,—so—l]xSl)

2— 4—
+cT7 [ W 0 Xr llcoe (pr,po)xst) < CeT

As for the last term, we recall that the expression of the operator Q; depends on the type
of end we are considering (see (17) and (11)). We have

“Er (V QT(W‘I))) HC,(;)'“(M/(,I) < C 'L'5/2.


http://www.boundaryvalueproblems.com/content/2014/1/130

Morabito Boundary Value Problems 2014, 2014:130 Page 14 of 23
http://www.boundaryvalueproblems.com/content/2014/1/130

In fact

[€:(r Qe wo)) | oy .,

2 2

Wo Wo
<ct " 0 X4t +cT h o

T coshs C2% (s +1L,5¢]x5Y) T coshs 2 ([-5¢ ~s0-11xS1)
2 2
Zoa) || 1
+er 120 2y o Xy <c "2
T C2([pg,p0]xSY)

As for the second estimate, we recall that
T(®,V) = Gr 0 E (v (~Le(Wo + V) = Lag, wo — Qe (Wo +v))).
Then

| 7(@,v2) = T(@,v0) | 2o
< € (rLetva =) g, + €6 (7 (Qelows +v1) = Qe +v2)) | oy,

We observe that from the considerations above it follows that

”85 (Vzt (vy — Vl)) ”Cg'“ (M) =< ct? lva — w1 ”C?‘Q(Mk,,)

and
”51— ()/ (Qr (Wo +v1) = Qc (wo + VZ))) ||C§'Q(Mk,f)
<clv-wl ( 2o X
=cl[va = Vill g2y T O Agr
5" M)\ | £ coshs €O ([50+1,5,] xS1)
2
Wo — X
oX 712 uw<1> o Xz )
T coshs CO ([—s7,-59-1]xS1) T COe([pr,po]xSh)
3/2

=6t va - Vl”cg'“(Mkr)‘

Then

3/2
” T(d), VZ) - T(q), Vl) ”C?’Q(Mk,r) <ct ||V2 - “C,?,Q(Mk,r)'
To get the last estimate it suffices to observe that

| T(®2,v) - T(P1,v) ||c§'“(Mk,f)

=< H g‘r (VZZ(WQDQ — Wo, )) “C((;)'a(Mk,r) + ”58 (J/ (Qs (WCI>2 + V) - Q‘[ (W<]>1 + V))) ||cg,a(Mk,r)

<T@y = @l graqsty,, + Vllca g 192 = Prlliraqsiyp,,

<ct??|d, - @1 lljc2e sty 0

3 .
sym

Theorem 4.5 Let 8 € (1,2), « € (0,1/4) and B := {w € C;* (My..)| ||w||C§,a <2¢,7%?}. Then
the nonlinear mapping T(®, -) defined above has a unique fixed point v in B.
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Proof The previous lemma shows that, if T is chosen small enough, the nonlinear map-
ping T(®, -) is a contraction mapping from the ball B of radius 2¢, 7% in C;**(My ) into
itself. This value follows from the estimate of the norm of T'(®,0). Consequently thanks
to Schéuder fixed point theorem, T'(®, -) has a unique fixed point w in this ball. d

This argument provides a new surface M} (P) whose mean curvature equals zero,
which is close to MkT’f and has three boundary curves.
The surface M/er (®) is, close to its upper and lower boundary curve, the graph over the

catenoidal ends in the direction given by the vector #, of the functions

2r
Uy(r,0) = Hy, (st —In —,9) + Vi(r,0),
T

b
Uy(r,0) = —Ut<r,9 - m),

where s; = —In7 +1In2+ O(t). Nearby the middle boundary the surface is the vertical graph
of

Um(ryg) = I:Ipf,wm (;; 0) + Vm(r: 9);

with p; = t. All the functions V}, i = ¢, b, m, depend nonlinearly on , ®.

4-5

Lemma 4.6 The function Vi(t,¢;), for i = t, b, satisfies || Vi(t,0:) (s )l c2e(8,-py,y) < €T
and

” V'i(T: ‘Pi,z)(': ) - ‘/i(‘f, §0i,1)('; ) HCZ'O‘(Bl—B?,M) =< 673/2_5 ||(Pi,2 —@i1 ||C2"1(Sl)‘ (29)
The function V,,(t, o) satisfies || Vi (T, 0m) (- ')”62-‘1@1—33/4) <12 and
|| Vm(T, wm,Z)(‘r ) - Vm(7:> gom,l)(‘r ) ||Cz’a(Bl—33/4) = CTB/Z ||§0m,2 — ¥m,1 ”Cz""(Sl)' (30)

Proof We recall that the functions V;, V}, V,, are the restrictions to E; ., Ep, E,; . of a
fixed point v for the operator T(®,-). The estimates of their norm are a consequence of
Proposition 4.4. Observe that to derive the estimate of the norm of V; and V}, we use the
better estimate for the norm of the fixed point v which holds at the catenoidal type ends.
Precisely stated: ||v o X; ||C§,a < ¢, t* with i = t,b. Then (29) follows from

|| ‘/i(T: <Pi,2)('; ) - ‘/i(""’ ¢i,1)(': ) ||C2‘a(1§1—33/4)

< Ce(ssr || (T(q>2) ‘/l) - T(¢11 ‘/l)) OXi,‘[ ”Cg’a(Q,‘XSl)’

for i = £, b, with Q; = [sg,s.] and Q2 = [—s;, —s0]. To get the estimate (30) we observe that

” Vm(f: (pm,Z)(" ) - Vm(f’ (pm,l)('r ) ”Cz,a(gl_33/4)

=< C” (T(q)Zr Vm) - T(cblv Vm)) OXm,‘E ||C2’°‘([pr,po]><51)'
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Remark 4.7 In next section we will use previous result to prove Theorem 1.1 under the
additional assumption § € (1,5/4). Consequently in (29) it appears a positive power of .
The previous result can be reformulated as follows: all of the mappings V(z,-) are con-
tracting. Furthermore the norm ||V;| is O(t 5 ).

5 Proof of Theorem 1.1
The surface M,zr (®) we constructed in previous section, has three boundary curves. Such
curves do not lie in the sphere 3B3. So we introduce a new surface f\/[kT’T (®):= M (®)NB>.

To prove the main theorem we need to show that there exists ® such that also the second
equation of (3) is satisfied.

We recall that we modified the immersion of MkT’T in R? in order to have the normal
vector 71, to MkTJ equal to the normal vectors n.(+s;,-) in a neighborhood of its top and
bottom boundary curves and equal to e; in a neighborhood of the middle boundary curve.
Precisely, at the catenoidal type ends, from (6), #, in a neighborhood of the boundary

curves equals the vector fields (here we use the basis (7, 6,2))

1 0 sinh(s;)
cosh(s;)”~ cosh(s;) )’
1 inh(s;

0 sinh(s ))'

cosh(sy)” * cosh(s;)

ny = (nt,r;nt,b’x Vlt,z) = <

np = (Mpys Mpg, Np ) = <

Near the boundary curves, the surface fV[kTJ (@) is the graph in the direction of the vectors

n;, i = t,m, b, over the ends okaT’r of the functions U;(r,0) for i = t,m, b.

As a consequence the top and bottom ends of M,(TJ(QD), near the boundary curves, can
be parametrized as follows:

- 2
U(r,0) = <r,9,af +T ln<—r> + O(‘L’B)> + Uy (r,0)ny,
T

where

T

2
U,(r,0) = H,, (sr - ln<—>,9> +0(r3),
~ 2r 3
Uy(r,0)=r,0,—o, —tIn| — | + O(r ) — Uy(r,0)ny,
T
where

Uy(r,0) = —LIt<r,9 - %) (L (r,0) 1= (1,0, Uy(r, ).

Let 7; be the function of 6 defined as
|01,0))” = 1. (31)

In other terms 7;(0) is the value of the r-variable for which II;(7(0), ) is the parametriza-
tion of a curve on the sphere 9B3. More precisely it is one of the boundary curves
of MY ().
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Using the expression of {; we get the following estimate:
”;'1(9) - ri”cZ,a(Sl) =< CT2) (32)

where r; denotes r; for i = t,b and r; =1 when i = m. They are the values taken by r for
s=s;and p = p;.

In order to compute a unit normal vector to dB* along the boundary curves of M kT (@)
we will consider cylindrical coordinates (r,0,z). It is clear that the vector ¥ = (r,0,2) is
orthogonal to 3B3 at the point (,6, z). So three unit normal vectors to 98> along the top
(resp. bottom, middle) boundary curve of ]\7I,<TJ(<I>) are obtained replacing r by 7;(0) and z
by I;(0,7;) in the formula giving . We get

2”

D = (7% + Uy (7, 014y, 0,00 + T ln(—) + Up(7e, O)nez + O(T3)>’
T

2
Dy = <;b — Uy(7p, 0)11p,y, 0, 07 — rln(ﬂ> — Up(7p, 0)1p, + o(r3)>,
T

and ‘jm = (;m: 0, um(?mre) + O(TB))'
A non-unit normal vector to M,(T . (®) along its boundary curves is given, in the frame
(?; 5} z), bY
Nm = (_ ~m,r(e), - ~m,9(0)’ 1);

where

~m,r(e) = arum(r: 9)|7=?m(9)’ Nm,@(e) = 88um(r; G)I,;

Fm(6)

N; = (3,U; A 3pUL)

lr=7;0)
for i = t, b with
~ ‘E 3
arUt = (]. + aruﬂ’lt,r, 0, ; + B,Utnt,z + O(‘L’ )),
35 UL, = (39 Upny 1, 99 Usny, + O(%)),
~ ‘E 3
0yl = (1= 3, LUy, 0, = 0,y + Oz )),
Uy = (=36 Upnp,, 1, ~3p Upny, + O(72)).

We get

where
~ T 3 ~
Nt,r = —; — 3rutnt,z + O(T ), Nt,z =1+ arutnt,rr

~ T 3
Ny ==0gU\ 1tz — =gy | + O(T )(1 + 0, Usny, — dgUsny,),
r
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~ T 3 ~
Ny = = + 9, Upnp; + O(?), Ny, =1-0,Upnp,,
r
~ T 3
Npy = 0gUp| np, + —npy | + O(‘L’ )(1 =0, Upnyp, + g Upny,).
r
In Section 4 we proved the existence of a family of solutions to the first equation of (3).

It remains to show the existence of one solution in such a family which satisfies the other

equations in (3). It is clear that the last equations in (3) are equivalent to

A= Ne-ve _ Neve _ 0

TN Ng| T
A, =N, v, =0, (33)
Ny By Npwp
INp| INp|

|v| denotes the length of the vector v. If I';, I'j, are the intersection curves of the asymptotic
halves catenoid and 382, then Ny, N and vy, v, are, respectively, the normal vectors to the
asymptotic halves catenoid and to 3B along I';, T',. We observe that vy, v, have unit length.
Such normal vectors can be computed as done for N;, Nj, and ¥, 7.

The computation of the scalar product yields

S 2r 3 T
N -V . =|-T+o;+TIn| — +O(r )+(Ut—78,LIt)ntZ——L[tn”
|r—rt((~)) T » r )

2r
+ o +tIn| — | )o,Uiny, ,
T lr=7;(6)

- 2r 3 T
Np-vy . =|lt—0,—tIn| — +O(‘L’ )—(ub—ra,ub)n,,z——ubnb,
‘rfrb(é?) T > r )y

2r
+ (or + tln(—))(ﬂ,l,[bnb,r] .
T lr=5; 0)

We can compute N; - v; by using previous formula: indeed it suffices to assume U; = 0

and to replace 7,(0) by r;. We get

2 2
N;- Vi|,,, = —T+07+7T 1“(%) + O(‘L’S), N - Vb|,,, =T —0r —tln(%) + O(rs).

The square of the length of the normal vectors N,, N, are
2
S T T
|Nt| = <1 + —2 + 28,«Ut (l’lt‘r + _nt’z>
r r
. 2
+ (0,Uy)* + (9 U)* (Vlt,z - —Vlt,r> + O(T3)> )
r r=F1(0)

2
~ T T
IN|? = (1 tgt 20U, <—nb,, + ;nb,z>

7p(0)

2
+ (8),1,[[,)2 + (BQUI;)Z (Vlb,z + ;nb,r) + O(T?’))

By construction of U;, Uy, and the fact that n,,, 1, = O(z?), it follows that |N;|?, |Nj|>
can be estimated as 1 + ;—: +0(t®) and 1+ ;—Z +O(73), respectively. If we replace 74(6), 7(9)
t b
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by r, = ry, and we set U, = Uy, = 0, we get the values of |N;|?, |N,|>. In conclusion |N;|?,
IN,|? are small perturbations of [N;|2, |Nj|?.

AIIItVLVIt - ]\lm‘ = 0 is equivalent to (N; - 7,)|N;| = (N; - v;)|N;|. In view of
previous observations this last equation can be seen as a small perturbation of the simpler
equation |N;|(N; - U, — N; - v) = 0.

The advantage of solving N, - U, = N; - v, is that it reduces to

The equation A, =

T
Ty(g:) = |:(Ut -1, Uny; + O(TS) - ;Utnt,r

2r r
+|or+7In{ — ) o, Uine, + TIn| — =0.
t "t/ dy0)

Similarly, instead of solving A, = 0, we consider the simpler equation Ny -9y = Np - v,

which reduces to

T
Ty(pp) = [—(Ub — 3, Up)np, + O(7%) - ;Ubnb,r

2r rp
+|\o;+tInl — ) )9, Upnp, + TIn| — =0.
T r o

|r7rb((~)
The equation N, -V, =0is equivalent to

T(@) = [L[m —rdo, U, + O(Ts)] =0.

lr=F1u(6)

To establish the proof we need to find a more explicit expression of 9, U;. We get easily

M\u‘\
N\m

2 1
8, U,(r,0) = 9,H,, (s, —ln—r,9> + Oc“’( ) = —=03H,,(s,0), Lot Ocla( )
T r s=sr—In 7~
i
0 Up(r,0) = —0,U; rye—m ’

T - 5
BVUW,(r,Q)=—r—28/,Hpr,¢m(p,9)‘ . +Oclu( 7).

P=75

Observe that if we evaluate first two functions at r = r;(= r; = ) (the value taken by r if

s =s;) and third one at r = 1(= r,,;) (the value taken by r if p = p;) then we get
OUL(0),. = ——070,(6) + Ot (t?),
O Uu(r,0),_, = —0"0m(0) + Ocl,a (7:7),
3, Uy (r,0),,_,, = ——a*wb(e) +Ogra(z3),

where 9* is the operator defined as follows. If ¢ = Z}El ¢;jcos(j0), then

- Z/’@» cos(j0).

jz1
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Let us consider the operator

A [, — ()]

3
sym sym’

D = (06, @m> 01) = (Ae(@), Am(@m), Ab(9p)),

see (33).
The definition of the space [C** (Sl)]fym is similar to definition 4.2, with the unique dif-
ference of the lower regularity.
We want to show the existence of a solution of A;(®) = 0.
We define the operator T : [C** (Sl)]Z’Ym — [CL"‘(SI)]SYm by

® — (Tule), Trnl@m), To(gw))-

Proposition 5.1 There exists ko > 0 such that if k > ko then there exists Ty > 0 for which,
foreach t € (0, 1), then A (®) = 0 has a solution in By, the ball centered at (0,0,0) and of

radius kT in [C**(S")]3 -

Proof Let us consider the operator

L [C2 (8], = [€7(5Y));

sym’

RN [(got + 0% )y, + O(IB),gom +0* O, + O(rs), ~(p + 0" p)1pz + O(TB)].

The operator I, can be seen as an approximation of 7, : indeed we get I; from T’; omitting
some nonlinear terms and evaluating the remaining ones at r; instead of 7;(6).
Equation I, (®) = 0 has a unique solution, because the operator Id +9* : H*(S!) — L*(S?)

is easily seen to be invertible. By elliptic regularity theory this result extends to the operator
Id+9*:C>*(SY) = C*(S").

From (32) and Lemma 4.6 we obtain ||(4; — I;)(¥) ”[Clra(sl)]gym <ct??, forany W € B, C
[che (Sl)]fym. We would like to show existence of a solution to A,(®) = 0 by the Leray-
Schauder degree theory but the nonlinear operator I; — A; is not compact. We apply the
same technique as in Proposition 15 of [25].

Let us introduce a family of smoothing operators 7, for g € (0,1), defined by
ST(Y1, Y, ¥r3) = (DTYry, D4Yra, DT3)
with

D1 Za,- cos(if) — Z ia;cos(if)

i>1 i>1
for (Y, V2, ¥3) € [C1¥(SY)]3. The operator S7 satisfies for fixed 0 <o’ < <1

”S‘I\IJ” [Cle(s1)]3 = C“‘Ij”[cl’“(sl)]?” ( )
34
|| v — SIy || [cle’ (sy3 = an/_a (R4l [cle(sh3»

where ¢ does not depend on g.
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We approximate A, by the family of compact operators A? defined as follows:
Al:=1, +S70 (A, - I1).

Now we can apply Leray-Schauder degree theory to prove the existence of a solution @,
to AZ(®) = 0 in B, for T € (0, 79), with 7y small enough and « > Ky with « chosen large
enough.

Since the norm of @, is bounded uniformly in g, we can extract a sequence {g;} con-
verging to 0 such that {®,;} converges in [CZ""/(SI)]Sym for any fixed &’ < . Thanks to the
continuity of AZ and to (34), the limit of this sequence converges to a solution of A, (®) = 0
for all T € (0, 7o). O

The zero of A, provides the boundary data ® for which the surface M,ZI(QD) meets dB>
in order to make (33) satisfied. That finishes the proof of Theorem 1.1.

Appendix

Results in this section are about the existence of some harmonic extension operators.
The following result gives a harmonic extension of a function on R? \ Dj.

Proposition A.1 There exists an operator

]:1/3 . C2,a(sl) N CZ,O((SI x [15’ +OO)),

such that for each even function ¢(0) € C>*(SY), which is L>-orthogonal to the constant
function then w = I:IM solves

Aw=0 onS! x [p,+00),

w=¢ onS x{p}
Moreover,

14l (51 x 5,000 < €llllcoanisty (35)
for some constant ¢ > 0.

Proof We consider the decomposition of the function ¢ with respect to the basis {cos(i6)},
that is,

oo
Q= Z(p,» cos(if).
i=1
Then the solution w,, is given by

w(p,0) = Z(g)lwi cos(if).

i=1
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Since g <1, then (g)i < (%), we can conclude that [w(8, p)| < c|e(0)| and then ||w| 2« <

cllellcza-

Proposition A.2 There exists an operator

such that for all ¢ € C>(SY), even function and orthogonal to e;, i = 0,1 in the L%-sense, the

H:C*(S") — €% (S x [0,+00)),

function w = H,, solves

(02 +3)w=0 inS" x [0,+00),

w=g on S' x {0}.

Moreover

”Htﬂ ”C%’g (S1x[0,+00)) = C“ @ ”C2,a (s1)»

for some constant ¢ > 0.

H,

The proof is immediate once we observe that, if ¢ = ijz @;jcos(j0), then the solution is
0= 2 s €7 gjcos(j).
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