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Abstract
We construct the first examples of capillary surfaces of positive genus, embedded in
the unit ball of R3 with vanishing mean curvature and locally constant contact angles
along their three boundary curves. These surfaces come in families depending on
one parameter and they converge to the triple equatorial disk. Such surfaces are
obtained by deforming the Costa-Hoffman-Meeks minimal surfaces.
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1 Introduction
The study of capillarity started in the beginning of the th century by the work of PS de
Laplace and T Young. They considered a liquid contained in a vertical tube of small radius
dipped in a reservoir and studied the shape of the free surface interface between the liquid
and the air. Such a surface is called capillary surface. More generally a capillary surface is
the surface interface between a liquid situated adjacent to another immiscible liquid or
gas.
PS de Laplace proved that the height u of a capillary surface over a domain � ⊂ R



satisfies the differential equation

H = div

( ∇u√
 + |∇u|

)
= ku + λ, ()

whereH is themean curvature, λ is a constant to be determined by physical condition (vol-
ume of the fluid and boundary conditions) and k is positive (resp. negative) when denser
fluid lies below (resp. above) the interface.
T Young, who considered the case λ = , understood that the capillary surface meets

the tube (or more generally the container) making an angle, called contact angle, which
depends on the liquid and on the material which composes the container and not on the
gravity. For liquids in tubes (i.e. cylindrical containers) we see that the following additional
boundary condition (Young condition) is satisfied:

ν · ∇u√
 + |∇u| = cosα.
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Here ν is the unit normal vector to the tube along the boundary of the surface. It says that
the capillary surface meets the tube in a constant contact angle (equal to α). See Finn [],
for a survey on more recent discoveries about capillarity.
Existence and uniqueness for the solution of capillarity problem for graphs over do-

mains ofRn n≥  (also in the more general form whereH = f , for an assigned function f ),
has been extensively studied in the past, see e.g. Gerhardt [], Lieberman [], Simon and
Spruck [], Spruck [], Uraltseva [].
A more recent series of works (see e.g. [–]) deals with the existence and regularity

of capillary graphs with constant mean curvature in vertical cylinders containing corners
or cusps. Huff and McCuan [] showed the existence of Scherk-type capillary minimal
graphs.
Very recently, Calle and Shahriyari in [] have solved the prescribed mean curvature

equation with a boundary contact angle condition. They show the existence of graphs
over domains inM

n ×R, whereMn is a n-dimensional Riemannian submanifold of Rn+.
In [] Lira and Wanderley show the existence of Killing graphs with prescribed mean
curvature and prescribed contact angle along their boundary in awide class of Riemannian
manifolds endowed with a Killing vector field.
Fall and Mercuri in [] constructed by a perturbation method disk-type minimal sur-

faces embedded in an infinite cylinder in R
 and which intersect its boundary orthogo-

nally. In [] they extended this result to Riemannian manifolds.
In [] Fall showed that, given a bounded domain of R there exist embedded constant

mean curvature (cmc) surfaces contained in� andwhose boundary intersects ∂� orthog-
onally. Also he showed that, given a stable stationary point p for the mean curvature of
∂�, there exists near p a family of embedded surfaces with cmc equal to ε–, which, after
scaling and translation, converges to a hemisphere of radius  as ε → .
In [] Fall andMahmoudi showed that if � is a domain of Rm+ and K a k-dimensional

non-degenerate minimal submanifold, then there exists a family of embedded constant
mean curvature hypersurfaces which, as their mean curvature tends to infinity, concen-
trate along K and intersect ∂� orthogonally.
In this work we show the existence of higher genus minimal capillary surfaces by a

perturbation method. Let B be the unit ball centered at the origin of R. For each
k ∈ [, . . . , +∞) and τ ∈ (, τ), with τ small enough, there exists a surface Sτ of genus k,
embedded in B with non-empty boundary which consists in three simple closed curves
λt , λm, λb which lie in ∂B and such that

⎧⎨
⎩
H(p) = , p ∈ Sτ ,

Ni(p) · νi(p) = ψi(τ ), p ∈ λi, i = t,m,b,
()

where H(p) denotes the mean curvature at the point p; Ni(p) and νi(p) denote, respec-
tively, the unit normal vector to the surface Sτ and to ∂B at p ∈ λi. The functions
(ψt(τ ),ψm(τ ),ψb(τ )) = (ψ(τ ), ,ψ(τ )) are decreasing smooth and non-zero for τ ∈ (, τ).
We will describe them below.
The solution of the previous system is based on the deformation of a compact piece of a

scaled Costa-Hoffman-Meeks minimal surface contained in the unit ball. More precisely
we consider the image by a homothety of ratio τ . Such a surface is denoted by Mk,τ . As
we will explain in Section ., Mk,τ is asymptotic to a top half catenoid, to a bottom half
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catenoid and to a horizontal plane. The functions (ψt(τ ),ψm(τ ),ψb(τ )) are defined to be
the values of the scalar product Ni(p) · νi(p) we obtain if we replace Sτ by the two halves
catenoid and the plane. In particular ψm = .
We provide the first examples of capillary type surfaces with non-trivial topology, having

vanishing mean curvature and locally constant contact angles with the sphere. They are
equal to the contact angles made by the asymptotic catenoids and the plane described
above with the sphere. Such surfaces are obtained by deformation of minimal surfaces by
a function in the space described by Definition ..
Here is the statement of the result we get. The cartesian coordinates in R

 are denoted
by (x,x,x).

Theorem . For each k ∈ [, . . . , +∞), there exists τ ∈R positive and small enough, such
that for each τ ∈ (, τ) there exists a surface Sτ embedded in B, of genus k,whose boundary
∂Sτ ⊂ ∂B is composed by three simple Jordan curves λt , λm, λb and satisfying

⎧⎨
⎩
H(p) = , p ∈ Sτ ,

Ni(p) · νi(p) = ψi(τ ), p ∈ λi.
()

Such surfaces are invariant under the action of the rotation of angle π
k+ about the x-axis,

under the action of the reflection in the x =  plane and under the action of the composition
of a rotation of angle π

k+ about the x-axis and the reflection in the x =  plane.

We observe that for values of τ in the range of validity of our theoremψt(τ ),ψb(τ ) �= . In
other terms the surface cannot make a constant angle equal to π/ with ∂B along λt , λb.
We point out that limτ→ ψi(τ ) = . As τ is the homothety ratio, this says that, as τ tends
to  the limit of Sτ consists in the triple equatorial disk.
The proof can easily be modified in order to handle the case of capillary surfaces with

boundary on a vertical cylinder.
Among the works dealing with capillary surfaces in a ball we cite [] by Ros and Souam.

They showed that a stable minimal capillary surface (that is, stationary surfaces with non-
negative second variation of the area) in a ball of R is a totally geodesic disk or a surfaces
of genus  with boundary having at most  connected components. Consequently, at least
for k > , the surfaces described by Theorem . are unstable.
The interest in capillary surfaces in the unit ball has been rekindled by the recent works

of Fraser and Schoen [, ]. They considered free boundaryminimal surfaces embedded
in the unit ball of Rn, i.e. surfaces which meet orthogonally the boundary of the ball.
Free boundaryminimal submanifolds are critical for the problem of extremizing the vol-

ume among deformations which preserve the ball. Such solutions arise from variational
min/max constructions, and examples include equatorial disks, the (critical) catenoid, as
well as the cone over any minimal submanifold of the sphere. If � is a compact Rieman-
nian surface with ∂� �= ∅ then the Dirichlet-to-Neumann operator maps a function u on
∂� to the normal derivative of the harmonic extension of u to the interior. A submani-
fold properly immersed in the unit ball is a free boundary submanifold if and only if its
coordinate functions are Steklov eigenfunctions with eigenvalue . Using this characteri-
zation they prove the existence of free boundary minimal surfaces in the unit ball of R of
genus  with boundary having k connected components, for any finite k ≥ . The authors
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conjecture the existence of higher genus examples of free boundary embedded minimal
surfaces which have three boundary components and converge to the union of the critical
vertical catenoid and the equatorial disk.
Theminimal surfaces described in Theorem . come in -parameter families, they have

finite genus ≥ , they meet orthogonally the boundary of the ball only along the middle
boundary curve. Furthermore, for any value of the genus, the limit for values of the pa-
rameter close to zero consists in the triple equatorial disk.

2 Preliminaries
The proof of the existence of solutions of the capillarity type problem is based on the
deformation of a compact piece of the minimal surfaces Mk,τ . We describe this family of
surfaces in Section ..
We will show that it is possible to deform a surface � in this family in order to get a

surface satisfying ().More precisely we will prove the existence of a function u defined on
� and of small norm such that its normal graph Su over � has vanishing mean curvature
and the scalar product of the unit normal vectors, (NSu )i · νi, equals ψi at each point of the
ith component of ∂Su, with i ∈ {, , }.
We will adapt to our setting some arguments used in [, ].

2.1 The scaled Costa-Hoffman-Meeks surface
The Costa-Hoffman-Meeks surface of genus k ∈ [, . . . , +∞) embedded in R

 (see []) is
denoted by Mk .
After suitable rotation and translation,Mk enjoys the following properties.
. It has one planar end Em asymptotic to the horizontal plane x = , one top end Et

and one bottom end Eb that are, respectively, asymptotic to the upper end and to
the lower end of a catenoid having the x-axis as axis of rotation. The planar end Em

is located between the two catenoidal ends.
. It is invariant under the action of the rotation of angle π

k+ about the x-axis, under
the action of the reflection in the x =  plane and under the action of the
composition of a rotation of angle π

k+ about the x-axis and the reflection in the
x =  plane.

. It intersects the x =  plane in k +  straight lines, which intersect themselves at the
origin with angles equal to π

k+ . The intersection ofMk with the plane x = const
( �= ) is a single Jordan curve. The intersection of Mk with the upper half space
x >  (resp. with the lower half space x < ) is topologically an open annulus.

The parameterization of the end Ei is denoted by Xi, with i = t,b,m, and the parameter-
ization of the corresponding end Ei,τ of Mk,τ is denoted by Xi,τ . We recall that Mk,τ is the
image ofMk by the homothety of ratio τ .
Now we provide a local description of the surface Mk,τ near its ends and we introduce

the coordinates that we will use.

2.2 The planar end
The planar end Em,τ of the surfaceMk,τ can be parametrized by

Xm,τ (x) :=
(

τx
|x| , τum(x)

)
∈R

, ()
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where x ∈ B̄ρ ()– {} ⊂R
. Here ρ >  is fixed small enough. In the sequel, where neces-

sary, wewill consider onBρ () also the polar coordinates (ρ, θ ) ∈ [,ρ]×S. The function
um satisfies the minimal surface equation, which has the following form:

Hu =
|x|
τ

div

( ∇u
( + |x||∇u|)/

)
= . ()

It can be shown (see []) that the function um can be extended at the origin continuously
by using Weierstrass representation. In particular we can prove that um ∈ C,α(B̄ρ ) and
um = OC,α

b
(|x|k+), where the OCn,α

b
(g) denotes a function that, together with its partial

derivatives of order less than or equal to n + α is bounded by a constant times g . Fur-
thermore, by taking into account the symmetries of the surface, it is possible to show the
function um, in polar coordinates, has to be collinear to cos(j(k + )θ ), with j ≥  and odd.

2.3 The catenoidal ends
The parametrization of the standard catenoid C, whose axis of revolution is the x-axis,
is denoted by Xc. We have

Xc(s, θ ) := (cosh s cos θ , cosh s sin θ , s) ∈R
,

where (s, θ ) ∈R× S. The unit normal vector field to C is given by

nc(s, θ ) :=


cosh s
(cos θ , sin θ , – sinh s). ()

The catenoid C may be divided in two pieces, denoted by C±, which are defined as the
image by Xc of (R± × S). For any τ > , we define the catenoid Cτ as the image of C by
a homothety of ratio τ . Its parametrization is denoted by Xc,τ := τXc. Of course, by this
transformation, the two surfaces correspond to C±. They are denoted by Cτ ,±.
Up to some dilation, we can assume that the two ends Et,τ and Eb,τ of Mk,τ are asymp-

totic to some translated copy of the two halves of the catenoid parametrized by Xc,τ in the
vertical direction. Therefore, Et,τ and Eb,τ can be parametrized, respectively, by

Xt,τ := Xc,τ +wtnc + σt,τ e ()

for (s, θ ) ∈ (s,∞)× S,

Xb,τ := Xc,τ –wbnc – σb,τ e ()

for (s, θ ) ∈ (–∞, –s) × S, where σt,τ ,σb,τ ∈ R, functions wt , wb tend exponentially fast
to  as s goes to ±∞ reflecting the fact that the ends are asymptotic to a catenoidal end.
More precisely it is known that wt =OC,α

b
(τe–(k+)s). Furthermore, taking into account the

symmetries of the surface, it is easy to show the functions wt , wb, in terms of the (s, θ )
coordinates, have to be collinear to cos(j(k + )θ ), with j ∈ N and must satisfy wb(s, θ ) =
–wt(–s, θ – π

k+ ). Furthermore we have σt,τ = σb,τ . In the sequel we will omit the indices t,
b and we will use the notation στ . We assume that στ ≤ κτ , κ being a constant.
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For all ρ < ρ and s > s, we define

Mk,τ (s,ρ) :=Mk,τ –
[
Xt,τ

(
(s,∞)× S

) ∪Xb,τ
(
(–∞, –s)× S

) ∪Xm,τ
(
Bρ()

)]
. ()

The parametrizations of the three ends of Mk,τ induce a decomposition of Mk,τ into
slightly overlapping components: a compact piece Mk,τ (s + ,ρ/) and three noncom-
pact pieces Xt,τ ((s,∞)× S), Xb,τ ((–∞, –s)× S) and Xm,τ (B̄ρ ()).
We define a weighted space of functions onMk,τ .

Definition . Given � ∈ N, α ∈ (, ) and δ ∈ R, the space C�,α
δ (Mk,τ ) is defined to be the

space of functions in C�,α
loc (Mk,τ ) for which the following norm is finite:

‖w‖C�,α
δ (Mk,τ )

:= ‖w‖C�,α (Mk,τ (s+,ρ/)) + ‖w ◦Xm,τ‖C�,α (B̄ρ ())

+ ‖w ◦Xt,τ‖C�,α
δ ([s,+∞)×S) + ‖w ◦Xb,τ‖C�,α

δ ((–∞,–s]×S),

where

‖f ‖C�,α
δ ([s,+∞)×S) = sup

s≥s

(
e–δs‖f ‖C�,α ([s,s+]×S)

)
,

‖f ‖C�,α
δ ((–∞,–s]×S) = sup

s≤–s

(
eδs‖f ‖C�,α ([s–,s]×S)

)

and which are invariant with respect to the reflection in the x =  plane, that is, w(p) =
w(p̄) for all p ∈ Mk,τ , where p̄ := (x, –x,x) if p = (x,x,x), invariant with respect to a
rotation of angle π

k+ about the x axis and to the composition of a rotation of angle π
k+

about the x axis and the reflection in the x =  plane.

We remark that there is no weight on themiddle end. In fact we compactify this end and
we consider a weighted space of functions defined on a two ended surface.
The proof of Theorem . consists of two steps. Firstly we will show that for each choice

of the genus k there exists, for τ sufficiently small, a family of functions u ∈ C,α
δ (Mk,τ ) such

that their normal graph over Mk,τ satisfies the first equation in (). To do that we need to
find the expression of the mean curvature operator for normal graphs of functions de-
fined onMk,τ . This is the aim of following section. Secondly we prove that in the family of
solutions described above there is a function satisfying also the capillarity condition in ().

3 Themean curvature of a graph overMk,τ

It is well known that the mean curvature Hu of the normal graph of a function u over a
minimal surface � can be decomposed as Hu = L�u +Q(u), where L� denotes a linear
second order elliptic operator and Q is a nonlinear differential operator of higher order.
The operator L� is known under the name of Jacobi operator and it is defined as the
linearized of the mean curvature operator. For a minimal surface � in R

 its expression is

L� :=�� + |A� |,

where �� denotes the Laplace-Beltrami operator and |A� | is the norm of the second fun-
damental form on the surface.

http://www.boundaryvalueproblems.com/content/2014/1/130
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As for the majority of minimal surfaces, unfortunately the explicit expression of the
mean curvature operator of the Costa-Hoffman-Meeks surfaces is not known. The knowl-
edge of the geometric behavior of such surfaces (we recall that their ends are asymptotic to
the two halves of a catenoid and to a plane) allows us to get information about the operator
LMk,τ and more generally of the mean curvature operator at the ends of the surfaces.

3.1 Mean curvature operator at the catenoidal ends
The surface parametrized by Xc,τ + wnc is minimal if and only if the function w satisfies
the minimal surface equation

Hw =

τ LCw +Qτ (w) = , ()

LC being the Jacobi operator of the catenoid, i.e.

LCw =


cosh s

(
∂
ssw + ∂

θθw +
w

cosh s

)
,

and

Qτ (w) =


τ cosh s
Q,τ

(
w

τ cosh s

)
+


τ cosh s

Q,τ

(
w

τ cosh s

)
. ()

HereQ,Q are nonlinear second order differential operatorswhich are bounded inCl(R×
S), for every l, and satisfy Q() =Q() = , ∇Q() = ∇Q() = , ∇Q() =  together
with

∥∥Qj(v) –Qj(v)
∥∥
C,α ([s,s+]×S) ≤ c

(
sup
i=,

‖vi‖C,α ([s,s+]×S)

)j–‖v – v‖C,α ([s,s+]×S) ()

for all s ∈ R and all v, v such that ‖vi‖C,α ([s,s+]×S) ≤ . The positive constant c does not
depend on s.
Finally we observe that the operator (cosh s) 

τ
LC maps the functional space

(cosh s)δC,α(
(s, +∞)× S

)
into (cosh s)δC,α(

(s, +∞)× S
)
.

3.2 Mean curvature operator at the planar end
If we linearize the nonlinear equation () we obtain

Luv =
|x|
τ

div

( ∇v√
 + |x||∇u| – |x|∇u

∇u · ∇v√
( + |x||∇u|)

)
. ()

If we consider u = we get an operator which equals, up to amultiplication by τ , the Jacobi
operator of the plane, that is, LR = |x|�. The graph surface of the function u is denoted
by �u and its mean curvature by Hu. Then Hu+v, the mean curvature of the graph of the
function u + v, in terms of Hu, is

Hu+v = Hu + Luv +
|x|
τ

Qu
(|x|∇v, |x|∇v

)
, ()

http://www.boundaryvalueproblems.com/content/2014/1/130
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where Qu satisfies

Qu(, ) = , ∇Qu(, ) = .

Since we assume that �u is a minimal surface, we have Hu = . So we get the following
equation:

Hu+v =
|x|
τ

(
�v +

√
 + |x||∇u|(L̄uv +Qu

(|x|∇v, |x|∇v
)))

, ()

where L̄uv is a second order linear operator with operator with coefficients inOC,α
b
(|x|k+).

We recall that if the function v satisfies the equationHu+v =  with u = um then the graph
of the function τ (um + v) is minimal. Now we are interested in finding the equation which
a function w must satisfy in such a way the surface parametrized by Xm,τ + we, that is
the graph of w over the middle end Em,τ , is minimal. That is equivalent to require that the
graph of τum + w is minimal. Then we can obtain the wanted equation by replacing v by
w/τ in (). So we get

|x|
τ

(

τ

�w +
√
 + |x||∇u|

(

τ
L̄uw +Qu

( |x|
τ

∇w,
|x|
τ

∇w
)))

= . ()

If we set Qτ ,u(·) := |x|
τ

√
 + |x||∇u|Qu( |x|

τ
∇·, |x|

τ
∇·) to simplify the notation, we can

write this equation in the following way:

|x|
τ  �w +

|x|
τ 

√
 + |x||∇u|L̄uw +Qτ ,uτ (w) = . ()

We observe that the operator 
|x|LR = � clearly maps the space C,α(B̄ρ ) into the

space C,α(B̄ρ ).

3.3 Properties of the Jacobi operator ofMk,τ

The Jacobi operator of Mk,τ , up to a multiplicative factor, is asymptotic, respectively, to
the operators |x|� and LC at the planar end and the catenoidal end.
In this subsection we will describe themapping properties of an elliptic operator related

to LMk,τ . It will be used to solve the first equation of ().
The volume form on Mk,τ is denoted by dvolMk,τ . In the parameterization of the ends

introduced above, such form can be written as γt ds dθ and γb dsdθ near the catenoidal
type ends and as γm dx dx near the middle end. Now we can define globally on Mk,τ a
smooth function

γ :Mk,τ −→ [,∞) ()

that is identically equal to τ  onMk,τ (s – , ρ) and equal to γt (resp. γb, γm) on the end
Et,τ (resp. Eb,τ , Em). They are defined in such a way that for (s, θ ) ∈ (s,∞) × S, (s, θ ) ∈
(–∞, –s)× S we have, respectively,

γ ◦Xt,τ (s, θ )∼ τ  cosh s and γ ◦Xb,τ (s, θ )∼ τ  cosh s.

http://www.boundaryvalueproblems.com/content/2014/1/130
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Finally on Bρ we have

γ ◦Xm(x)∼ τ 

|x| .

It is possible to check that

Lτ ,δ : C,α
δ (Mk,τ )−→ C,α

δ (Mk,τ ),

w �−→ γLMk,τ (w)

is a bounded linear operator.
As in [] (see also [] for the same result in a less symmetric setting), using the non-

degeneracy of the Costa-Hoffman-Meeks surfaces shown in [, ], it is possible to show
the following result.

Proposition . If δ ∈ (, ), then the operator Lτ ,δ is surjective and has a kernel of dimen-
sion one.Moreover, there exists a right inverse Gτ ,δ for Lτ ,δ whose norm is bounded.

4 Construction of a family of solutions to HSu = 0
In this section we will prove the existence of a family of embedded minimal surfaces and
which are close to the piece of surfaceMk,τ contained in the unit ball B.
We set

ρτ := τ

and we define sτ to be the value of s such that

(τ cosh s) + (στ + τ s) = . ()

We get

sτ = – ln τ + ln +O(τ ).

We define rτ so that

sτ = ln

(
rτ
τ

)
.

The value of ρτ has been chosen so that the image of x ∈ Bρ̄(), with |x| = ρτ , by the map
X,τ (x) = (τx/|x|, ) ∈ R

 (compare ()) is the circumference �m of radius  in the hori-
zontal plane x = . Moreover, sτ is the value of s for which ±(στ + τ s) is the height of the
curves �t , �b which are the intersection of the unit sphere with the top and bottom halves
of the catenoid parametrized by Cτ and translated vertically by ±στ , respectively.
We defineMT

k,τ to be equal toMk,τ fromwhich we have removed the image of (sτ , +∞)×
S by Xt,τ , the image of (–∞, –sτ )×S by Xb,τ and the image of Bρτ () by Xm,τ . The bound-
ary curves of MT

k,τ do not lie in the unit sphere but they are in a tubular neighborhood of
the curves �t , �b, �m. In the sequel we will use also the cylindrical coordinates (r, θ , z) (of
course z = x). The circumferences �t , �b are contained, respectively, in the horizontal
planes z =±(στ + τ sτ ) and their vertical projection on the z =  plane is the circumference
of radius τ cosh sτ =  – O(τ  ln /τ ). The middle boundary curve of MT

k,τ is located in a

http://www.boundaryvalueproblems.com/content/2014/1/130
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small neighborhood of �m. Points in the middle boundary curve have a height which can
be estimated by O(τ k+).
By using (), (), and () we get easily the following lemma. It describes the region of the

surfaceMk,τ which is a graph over the annular domain A = {(r, θ ) | |r–| ≤ τ } of the x = 
plane.

Lemma. There exists τ >  such that, for all τ ∈ (, τ) an annular part of the ends Et,τ ,
Eb,τ and Em,τ of Mk,τ can be written as vertical graphs over the annulus A of the functions

Zt(r, θ ) = στ + τ ln

(
r
τ

)
+OC,α

b

(
τ ), ()

Zb(r, θ ) = –Zt

(
r, θ –

π

k + 

)
, ()

Zm(r, θ ) =OC,α
b

(
τ

(
r
τ

)–(k+))
. ()

Here (r, θ ) are the polar coordinates in the x =  plane. The functionsOC,α
b
(f ) are defined

in the annulus A and are bounded in C,α
b topology by a constant (independent by f ) mul-

tiplied by f , where the partial derivatives are computed with respect to the vector fields r∂r
and ∂θ .

We will make a slight modification to the parametrization of the ends Et,τ , Eb,τ and Em,τ ,
for s and ρ in a small neighborhood of ±sτ and ρτ , respectively.
The unit normal vector field toMk,τ is denoted by nτ . Firstly we modify the vector field

nτ into a transverse unit vector field ñτ . ñτ is a smooth interpolation of the following vector
fields defined on different pieces of the surface:
• at the top (resp. bottom) catenoidal end, the unit normal vector nc(sτ , ·) (resp.
nc(–sτ , ·)) for s in a small neighborhood of s = sτ (resp. s = –sτ ); we recall that
nc(±sτ , ·) are the unit normal vectors to the translated copy of the halves catenoid
parametrized by Xc,τ ± στ e along the curves �t , �b;

• at the middle planar end, the vertical vector field e for ρ in a small neighborhood of
ρ = ρτ ;

• the normal vector field nτ on the remaining part of the surface.
We observe that at the top end Et,τ , we can give the following estimate:

∣∣τ  cosh s
(
LMk,τ v –

(
τ  cosh s

)–(∂ssv + ∂θθv)
)∣∣ ≤ c

∣∣(cosh s)–v∣∣. ()

This follows easily from () together with the fact that wt decays at least like (cosh s)–

on Et,τ . Similar considerations hold at the bottom end Eb,τ . Near the middle planar end
Em,τ , we observe that the following estimate holds:

∣∣τ |x|–(LMk,τ v – |x|τ–�v
)∣∣ ≤ c

∣∣|x|k+∇v
∣∣. ()

This follows easily from () togetherwith the fact that um decays at least like |x|k+ onEm,τ .
The mean curvature of the graph �u of a function u in the direction of the vector field

ñτ is the image of u by a second order nonlinear elliptic operator:

H(�u) = LMT
k,τ
u + L̃τu +Qτ (u),

http://www.boundaryvalueproblems.com/content/2014/1/130
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where LMT
k,τ

is the Jacobi operator of MT
k,τ , Qτ is a nonlinear second order differential

operator and L̃τ is a linear operator which takes into account the change of the normal
vector field nτ into ñτ .
The operator L̃τ is supported in a neighborhood of {±sτ }×S and of {ρτ }×S. It is pos-

sible to show that the coefficients of L̃τ are uniformly bounded by a constant times τ . First
we observe that 〈ñτ ,nτ 〉 =  +OC,α

b
(τ ) in a neighborhood of {±sτ } × S and of {ρτ } × S

and the result of [] Appendix B show that the change of vector field induces a linear
operator whose coefficients are bounded by a constant times τ .
Aswewill see in the sequel, the function u ∈ C,α

δ (Mk,τ ) which solvesH(�u) = , depends
nonlinearly by a triple of functions defined on the boundary curves of MT

k,τ . Here is the
definition of the functional space we will consider.

Definition . Given k ≥ , α ∈ (, ), the space [Cn,α(S)]sym is defined to be the space
of triples of functions � = (ϕt ,ϕm,ϕb) such that ϕj ∈ Cn,α(S) and even, ϕt is collinear to
cos(j(k + )θ ), with j ≥ ; ϕm is collinear to cos(l(k + )θ ), with l ≥  and odd, ϕb = –ϕt(θ –
π
k+ ), and whose norm, defined below, is finite.

‖�‖[Cn,α (S)]sym := ‖ϕt‖Cn,α (S) + ‖ϕm‖Cn,α (S) + ‖ϕb‖Cn,α (S). ()

Now we consider the triple of functions � = (ϕt ,ϕm,ϕb) ∈ [C,α(S)]sym,

‖�‖[C,α (S)]sym ≤ κτ . ()

We define w� to be the function equal to
. χ+Hϕt (sτ – s, ·) on the image of Xt,τ , where χ+ is a cut-off function equal to  for

s ≤ s +  and identically equal to  for s ∈ [s + , sτ ];
. χ–Hϕb (s + sτ , ·) on the image of Xb,τ , where χ– is a cut-off function equal to  for

s ≥ –s –  and identically equal to  for s ∈ [–sτ , –s – ];
. χmH̃ρτ ,ϕm (·, ·) on the image of Xm,τ , where χm is a cut-off function equal to  for

ρ ≥ ρ and identically equal to  for ρ ∈ [ρτ ,ρ/];
. zero on the remaining part of the surfaceMT

k,τ .
The cut-off functions just introduced must enjoy the same symmetry properties as the
functions in C,α

δ (Mk,τ ). H̃ and H are harmonic extension operators introduced, respec-
tively, in Propositions A. and A..
We will prove that, under appropriates hypotheses, the graph �u overMT

k,τ of the func-
tion u = w� + v, is a surface whose mean curvature vanishes.
The equation to solve is

H(�u) = .

Since we are looking for solutions having the form u = w� + v, we can write it as

LMT
k,τ
(w� + v) + L̃τ (w� + v) +Qτ (w� + v) = .

The resolution of the previous equation is obtained by the one of the following fixed point
problem:

v = T(�, v) ()

http://www.boundaryvalueproblems.com/content/2014/1/130


Morabito Boundary Value Problems 2014, 2014:130 Page 12 of 23
http://www.boundaryvalueproblems.com/content/2014/1/130

with

T(�, v) =Gτ ,δ ◦ Eτ

(
γ
(
–L̃τ (w� + v) –LMT

k,τ
w� –Qτ (w� + v)

))
,

where δ ∈ (, ), the operator Gτ ,δ is defined in Proposition . and Eτ is a linear extension
operator such that

Eτ : C,α
δ

(
MT

k,τ
) −→ C,α

δ (Mk,τ ),

where C,α
δ (MT

k,τ ) denotes the space of functions of C
,α
δ (Mk,τ ) restricted to MT

k,τ . It is de-
fined by Eτ v = v in MT

k,τ , Eτ v =  in the image of [sτ + ,+∞) × S by Xt,τ , in the image of
(–∞, –sτ – ]× S by Xb,τ and in the image of Bρτ / by Xm,τ . Finally Eτ v is an interpolation
of these values in the remaining part ofMk,τ such that

(Eτ v) ◦Xt,τ (s, θ ) = ( + sτ – s)
(
v ◦Xt,τ (sτ , θ )

)
, for (s, θ ) ∈ [sτ , sτ + ]× S,

(Eτ v) ◦Xb,τ (s, θ ) = ( + sτ + s)
(
v ◦Xb,τ (sτ , θ )

)
, for (s, θ ) ∈ [–sτ – ,–sτ ]× S,

(Eτ v) ◦Xm,τ (ρ, θ ) =
(


ρτ

ρ – 
)(

v ◦Xm,τ (ρτ , θ )
)

for (ρ, θ ) ∈ [ρτ /,ρτ ]× S.

Remark . From the definition of Eτ , if supp v∩ (Bρτ – Bρτ /) �= ∅, then
∥∥(Eτ v) ◦Xm,τ

∥∥
C,α (B̄ρ )

≤ cρ–α
τ ‖v ◦Xm,τ‖C,α (Bρ–Bρτ ).

This phenomenon of explosion of the norm does not occur near the catenoidal type ends:

∥∥(Eτ v) ◦Xt,τ
∥∥
C,α ([s,+∞)×S) ≤ c‖v ◦Xt,τ‖C,α ([s,sτ ]×S).

A similar equation holds for the bottom end. In the following we will assume α >  and
close to zero.

The existence of a solution v ∈ C,α
δ (Mk,τ ) for () is a consequence of the following re-

sult, which proves that T(�, ·) is a contraction mapping.

Proposition . Let δ ∈ (, ), α ∈ (, /) and � = (ϕt ,ϕm,ϕb) ∈ [C,α(S)]sym satisfying
() and enjoying the properties given above. There exist constants cκ >  and τκ > , such
that

∥∥T(�, )
∥∥
C,α

δ (Mk,τ )
≤ cκτ / ()

and, for all τ ∈ (, τκ ),

∥∥T(�, v) – T(�, v)
∥∥
C,α

δ (Mk,τ )
≤ cτ /‖v – v‖C,α

δ (Mk,τ )
,

∥∥T(�, v) – T(�, v)
∥∥
C,α

δ (Mk,τ )
≤ cτ /‖� –�‖[C,α (S)]sym ,

where c is a positive constant, for all v, v, v ∈ C,α
δ (Mk,τ ) and satisfying ‖v‖C,α

δ
≤ cκτ /

and for all boundary data �i = (ϕt,i,ϕm,i,ϕb,i) ∈ [C,α(S)]sym, i = , , enjoying the same
properties as �.

http://www.boundaryvalueproblems.com/content/2014/1/130
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Proof We recall that the Jacobi operator associated to Mk,τ , is asymptotic (up to a multi-
plication by /τ ) to the Jacobi operator of the catenoid (respectively, of the plane) plane
at the catenoidal ends (respectively, at the planar end). The function w� is identically zero
far from the ends where the explicit expression ofLMk,τ is not known: this is the reason for
our particular choice in the definition of w�. Then from the definition of w� and thanks
to Proposition . we obtain the estimate

∥∥Eτ (γLMk,τw�)
∥∥
C,α

δ (Mk,τ )

=
∥∥(

γLMT
k,τ

–
(
∂
s + ∂

θ

))
(w� ◦Xt,τ )

∥∥
C,α

δ ([s+,sτ ]×S)

+
∥∥(

γLMT
k,τ

–
(
∂
s + ∂

θ

))
(w� ◦Xb,τ )

∥∥
C,α

δ ([–sτ ,–s–]×S)

+ ρ–α
τ

∥∥(γLMT
k,τ

–�)(w� ◦Xm,τ )
∥∥
C,α ([ρτ ,ρ]×S)

≤ c
∥∥cosh– s(w� ◦Xt,τ )

∥∥
C,α

δ ([s+,sτ ]×S) + c
∥∥cosh– s(w� ◦Xb,τ )

∥∥
C,α

δ ([–sτ ,–s–]×S)

+ cτ–α
∥∥ρk+∇(w� ◦Xm,τ )

∥∥
C,α ([ρτ ,ρ]×S)

≤ cκτ  + cκτ / ≤ cκτ /.

To obtain this estimate we used the following ones:

sup
[s+,sτ ]×S

e–δs∥∥cosh– s(w� ◦Xt,τ )
∥∥
C,α ([s,s+]×S)

≤ c sup
[s+,sτ ]×S

e–δse–(sτ–s)e–s‖φt‖C,α (S)

≤ ce–sτ ‖φt‖C,α (S) ≤ cκτ 

(a similar estimate holds for the bottom end) and

ρ–α
τ

∥∥ρk+∇(w� ◦Xm,τ )
∥∥
C,α ([ρτ ,ρ]×S)

≤ cτ–αρτ‖ϕm‖C,α (S) ≤ cκτ /

together with the fact that sτ = – ln τ + ln +O(τ ) and ρτ = τ , from which e–sτ ≤ cτ .
Using the estimates of the coefficients of L̃τ and the definition of γ (see ()), we obtain

∥∥Eτ (γ L̃τw�)
∥∥
C,α

δ (Mk,τ )
≤ cτ ‖w� ◦Xt,τ‖C,α

δ ([s+,sτ ]×S)

+ cτ ‖w� ◦Xb,τ‖C,α
δ ([–sτ ,–s–]×S)

+ cτ –α‖w� ◦Xm,τ‖C,α ([ρτ ,ρ]×S) ≤ cκτ –α .

As for the last term, we recall that the expression of the operatorQτ depends on the type
of end we are considering (see () and ()). We have

∥∥Eτ

(
γQτ (w�)

)∥∥
C,α

δ (Mk,τ )
≤ cκτ /.

http://www.boundaryvalueproblems.com/content/2014/1/130
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In fact

∥∥Eτ

(
γQτ (w�)

)∥∥
C,α

δ (Mk,τ )

≤ cτ
∥∥∥∥ w�

τ cosh s
◦Xt,τ

∥∥∥∥


C,α
δ/ ([s+,sτ ]×S)

+ cτ
∥∥∥∥ w�

τ cosh s
◦Xb,τ

∥∥∥∥


C,α
δ/ ([–sτ ,–s–]×S)

+ cτ (–α)
∥∥∥∥ |x|

τ
w� ◦Xm,τ

∥∥∥∥


C,α ([ρτ ,ρ]×S)
≤ cκτ /.

As for the second estimate, we recall that

T(�, v) :=Gτ ,δ ◦ Eτ

(
γ
(
–L̃τ (w� + v) –LMk,τw� –Qτ (w� + v)

))
.

Then

∥∥T(�, v) – T(�, v)
∥∥
C,α

δ (Mk,τ )

≤ ∥∥Eτ

(
γ L̃τ (v – v)

)∥∥
C,α

δ (Mk,τ )
+

∥∥Eτ

(
γ
(
Qτ (w� + v) –Qτ (w� + v)

))∥∥
C,α

δ (Mk,τ )
.

We observe that from the considerations above it follows that

∥∥Eε

(
γ L̃τ (v – v)

)∥∥
C,α

δ (Mk,τ )
≤ cτ ‖v – v‖C,α

δ (Mk,τ )

and

∥∥Eτ

(
γ
(
Qτ (w� + v) –Qτ (w� + v)

))∥∥
C,α

δ (Mk,τ )

≤ c‖v – v‖C,α
δ (Mk,τ )

(
τ

∥∥∥∥ w�

τ cosh s
◦Xt,τ

∥∥∥∥
C,α ([s+,sτ ]×S)

+ τ

∥∥∥∥ w�

τ cosh s
◦Xb,τ

∥∥∥∥
C,α ([–sτ ,–s–]×S)

+ τ –α
∥∥∥∥ |x|

τ
w� ◦Xm,τ

∥∥∥∥
C,α ([ρτ ,ρ]×S)

)

≤ cκτ /‖v – v‖C,α
δ (Mk,τ )

.

Then

∥∥T(�, v) – T(�, v)
∥∥
C,α

δ (Mk,τ )
≤ cτ /‖v – v‖C,α

δ (Mk,τ )
.

To get the last estimate it suffices to observe that

∥∥T(�, v) – T(�, v)
∥∥
C,α

δ (Mk,τ )

≤ ∥∥Eτ

(
γ L̃τ (w� –w� )

)∥∥
C,α

δ (Mk,τ )
+

∥∥Eε

(
γ
(
Qε(w� + v) –Qτ (w� + v)

))∥∥
C,α

δ (Mk,τ )

≤ cτ /‖� –�‖[C,α (S)]sym + c‖v‖C,α
δ (Mk,τ )

‖� –�‖[C,α (S)]sym

≤ cτ /‖� –�‖[C,α (S)]sym . �

Theorem . Let δ ∈ (, ), α ∈ (, /) and B := {w ∈ C,α
δ (Mk,τ )|‖w‖C,α

δ
≤ cκτ /}. Then

the nonlinear mapping T(�, ·) defined above has a unique fixed point v in B.
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Proof The previous lemma shows that, if τ is chosen small enough, the nonlinear map-
ping T(�, ·) is a contraction mapping from the ball B of radius cκτ / in C,α

δ (Mk,τ ) into
itself. This value follows from the estimate of the norm of T(�, ). Consequently thanks
to Schäuder fixed point theorem, T(�, ·) has a unique fixed point w in this ball. �

This argument provides a new surface MT
k,τ (�) whose mean curvature equals zero,

which is close toMT
k,τ and has three boundary curves.

The surfaceMT
k,τ (�) is, close to its upper and lower boundary curve, the graph over the

catenoidal ends in the direction given by the vector ñτ of the functions

Ut(r, θ ) =Hϕt

(
sτ – ln

r
τ
, θ

)
+Vt(r, θ ),

Ub(r, θ ) = –Ut

(
r, θ –

π

k + 

)
,

where sτ = – ln τ + ln+O(τ ). Nearby themiddle boundary the surface is the vertical graph
of

Um(r, θ ) = H̃ρτ ,ϕm

(
τ

r
, θ

)
+Vm(r, θ ),

with ρτ = τ . All the functions Vi, i = t,b,m, depend nonlinearly on τ ,�.

Lemma . The function Vi(τ ,ϕi), for i = t,b, satisfies ‖Vi(τ ,ϕi)(·, ·)‖C,α (B̄–B/) ≤ cτ –δ

and

∥∥Vi(τ ,ϕi,)(·, ·) –Vi(τ ,ϕi,)(·, ·)
∥∥
C,α (B̄–B/)

≤ cτ /–δ‖ϕi, – ϕi,‖C,α (S). ()

The function Vm(τ ,ϕm) satisfies ‖Vm(τ ,ϕm)(·, ·)‖C,α (B̄–B/) ≤ cτ / and

∥∥Vm(τ ,ϕm,)(·, ·) –Vm(τ ,ϕm,)(·, ·)
∥∥
C,α (B̄–B/)

≤ cτ /‖ϕm, – ϕm,‖C,α (S). ()

Proof We recall that the functions Vt , Vb, Vm are the restrictions to Et,τ , Eb,τ , Em,τ of a
fixed point v for the operator T(�, ·). The estimates of their norm are a consequence of
Proposition .. Observe that to derive the estimate of the norm of Vt and Vb we use the
better estimate for the norm of the fixed point v which holds at the catenoidal type ends.
Precisely stated: ‖v ◦Xi‖C,α

δ
≤ cκτ  with i = t,b. Then () follows from

∥∥Vi(τ ,ϕi,)(·, ·) –Vi(τ ,ϕi,)(·, ·)
∥∥
C,α (B̄–B/)

≤ ceδsτ
∥∥(
T(�,Vi) – T(�,Vi)

) ◦Xi,τ
∥∥
C,α

δ (�i×S),

for i = t,b, with �t = [s, sτ ] and �b = [–sτ , –s]. To get the estimate () we observe that

∥∥Vm(τ ,ϕm,)(·, ·) –Vm(τ ,ϕm,)(·, ·)
∥∥
C,α (B̄–B/)

≤ c
∥∥(
T(�,Vm) – T(�,Vm)

) ◦Xm,τ
∥∥
C,α ([ρτ ,ρ]×S). �
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Remark . In next section we will use previous result to prove Theorem . under the
additional assumption δ ∈ (, /). Consequently in () it appears a positive power of τ .
The previous result can be reformulated as follows: all of the mappings Vi(τ , ·) are con-
tracting. Furthermore the norm ‖Vi‖ is O(τ 

 ).

5 Proof of Theorem 1.1
The surfaceMT

k,τ (�) we constructed in previous section, has three boundary curves. Such
curves do not lie in the sphere ∂B. Sowe introduce a new surface M̃T

k,τ (�) :=MT
k,τ (�)∩B.

To prove themain theoremwe need to show that there exists� such that also the second
equation of () is satisfied.
We recall that we modified the immersion of MT

k,τ in R
 in order to have the normal

vector ñτ to MT
k,τ equal to the normal vectors nc(±sτ , ·) in a neighborhood of its top and

bottom boundary curves and equal to e in a neighborhood of themiddle boundary curve.
Precisely, at the catenoidal type ends, from (), ñτ in a neighborhood of the boundary
curves equals the vector fields (here we use the basis (�r, �θ ,�z))

nt = (nt,r ,nt,θ ,nt,z) =
(


cosh(sτ )

, ,–
sinh(sτ )
cosh(sτ )

)
,

nb = (nb,r ,nb,θ ,nb,z) =
(


cosh(sτ )

, , +
sinh(sτ )
cosh(sτ )

)
.

Near the boundary curves, the surface M̃T
k,τ (�) is the graph in the direction of the vectors

ni, i = t,m,b, over the ends ofMT
k,τ of the functions Ui(r, θ ) for i = t,m,b.

As a consequence the top and bottom ends of MT
k,τ (�), near the boundary curves, can

be parametrized as follows:

Ũt(r, θ ) =
(
r, θ ,στ + τ ln

(
r
τ

)
+O

(
τ )) +Ut(r, θ )nt ,

where

Ut(r, θ ) =Hϕt

(
sτ – ln

(
r
τ

)
, θ

)
+O

(
τ



)
,

Ũb(r, θ ) =
(
r, θ , –στ – τ ln

(
r
τ

)
+O

(
τ )) –Ub(r, θ )nb,

where

Ub(r, θ ) = –Ut

(
r, θ –

π

k + 

)
, Ũm(r, θ ) :=

(
r, θ ,Um(r, θ )

)
.

Let r̃i be the function of θ defined as

∣∣Ũi(r̃i, θ )
∣∣ = . ()

In other terms r̃i(θ ) is the value of the r-variable for which Ũi(r̃i(θ ), θ ) is the parametriza-
tion of a curve on the sphere ∂B. More precisely it is one of the boundary curves
of M̃T

k,τ (�).
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Using the expression of Ũi we get the following estimate:

∥∥r̃i(θ ) – ri
∥∥
C,α (S) ≤ cτ , ()

where ri denotes rτ for i = t,b and ri =  when i = m. They are the values taken by r for
s = sτ and ρ = ρτ .
In order to compute a unit normal vector to ∂B along the boundary curves of M̃T

k,τ (�)
we will consider cylindrical coordinates (r, θ , z). It is clear that the vector ν̃ = (r, , z) is
orthogonal to ∂B at the point (r, θ , z). So three unit normal vectors to ∂B along the top
(resp. bottom, middle) boundary curve of M̃T

k,τ (�) are obtained replacing r by r̃i(θ ) and z
by Ũi(θ , r̃i) in the formula giving ν̃ . We get

ν̃t =
(
r̃t +Ut(r̃t , θ )nt,r , ,στ + τ ln

(
r̃t
τ

)
+Ut(r̃t , θ )nt,z +O

(
τ )),

ν̃b =
(
r̃b –Ub(r̃b, θ )nb,r , , –στ – τ ln

(
r̃b
τ

)
–Ub(r̃b, θ )nb,z +O

(
τ )),

and ν̃m = (r̃m, ,Um(r̃m, θ ) +O(τ )).
A non-unit normal vector to M̃T

k,τ (�) along its boundary curves is given, in the frame
(�r, �θ ,�z), by

Ñm =
(
–Ñm,r(θ ), –Ñm,θ (θ ), 

)
,

where

Ñm,r(θ ) = ∂rUm(r, θ )|r=r̃m(θ ) , Ñm,θ (θ ) = ∂θUm(r, θ )|r=r̃m(θ ) ;

Ñi = (∂rŨi ∧ ∂θ Ũi)|r=r̃i(θ )

for i = t,b with

∂rŨt =
(
 + ∂rUtnt,r , ,

τ

r
+ ∂rUtnt,z +O

(
τ )),

∂θ Ũt =
(
∂θUtnt,r , , ∂θUtnt,z +O

(
τ )),

∂rŨb =
(
 – ∂rUbnb,r , , –

τ

r
– ∂rUbnb,z +O

(
τ )),

∂θ Ũb =
(
–∂θUbnb,r , , –∂θUbnb,z +O

(
τ )).

We get

Ñi = (Ñi,r , Ñi,θ , Ñi,z),

where

Ñt,r = –
τ

r
– ∂rUtnt,z +O

(
τ ), Ñt,z =  + ∂rUtnt,r ,

Ñt,θ = –∂θUt

(
nt,z –

τ

r
nt,r

)
+O

(
τ )( + ∂rUtnt,r – ∂θUtnt,r),
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Morabito Boundary Value Problems 2014, 2014:130 Page 18 of 23
http://www.boundaryvalueproblems.com/content/2014/1/130

Ñb,r =
τ

r
+ ∂rUbnb,z +O

(
τ ), Ñb,z =  – ∂rUbnb,r ,

Ñb,θ = ∂θUb

(
nb,z +

τ

r
nb,r

)
+O

(
τ )( – ∂rUbnb,r + ∂θUbnb,r).

In Section  we proved the existence of a family of solutions to the first equation of ().
It remains to show the existence of one solution in such a family which satisfies the other
equations in (). It is clear that the last equations in () are equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

At := Ñt ·ν̃t
|Ñt | – Nt ·νt

|Nt | = ,

Am := Ñm · ν̃m = ,

Ab := Ñb·ν̃b
|Ñb| – Nb·νb

|Nb| = .

()

|v| denotes the length of the vector v. If�t ,�b are the intersection curves of the asymptotic
halves catenoid and ∂B, then Nt ,Nb and νt , νb are, respectively, the normal vectors to the
asymptotic halves catenoid and to ∂B along�t ,�b.We observe that νt , νb have unit length.
Such normal vectors can be computed as done for Ñt , Ñb, and ν̃t , ν̃b.
The computation of the scalar product yields

Ñt · ν̃t |r=r̃t (θ ) =
[
–τ + στ + τ ln

(
r
τ

)
+O

(
τ ) + (Ut – r∂rUt)nt,z –

τ

r
Utnt,r

+
(

στ + τ ln

(
r
τ

))
∂rUtnt,r

]
|r=r̃t (θ )

,

Ñb · ν̃b|r=r̃b(θ ) =
[
τ – στ – τ ln

(
r
τ

)
+O

(
τ ) – (Ub – r∂rUb)nb,z –

τ

r
Ubnb,r

+
(

στ + τ ln

(
r
τ

))
∂rUbnb,r

]
|r=r̃b(θ )

.

We can compute Ni · νi by using previous formula: indeed it suffices to assume Ui = 
and to replace r̃i(θ ) by ri. We get

Nt ·νt |r=rt = –τ +στ +τ ln

(
rt
τ

)
+O

(
τ ), Nb ·νb|r=rb = τ –στ –τ ln

(
rb
τ

)
+O

(
τ ).

The square of the length of the normal vectors Ñt , Ñb are

|Ñt| =
(
 +

τ 

r
+ ∂rUt

(
nt,r +

τ

r
nt,z

)

+ (∂rUt) + (∂θUt)
(
nt,z –

τ

r
nt,r

)

+O
(
τ ))

r=r̃t (θ )
,

|Ñb| =
(
 +

τ 

r
+ ∂rUb

(
–nb,r +

τ

r
nb,z

)

+ (∂rUb) + (∂θUb)
(
nb,z +

τ

r
nb,r

)

+O
(
τ ))

r=r̃b(θ )
.

By construction of Ut , Ub and the fact that nt,r ,nb,r = O(τ ), it follows that |Ñt|, |Ñb|
can be estimated as  + τ

r̃t
+O(τ ) and + τ

r̃b
+O(τ ), respectively. If we replace r̃t(θ ), r̃b(θ )
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by rt = rb, and we set Ut = Ub = , we get the values of |Nt|, |Nb|. In conclusion |Ñt|,
|Ñb| are small perturbations of |Nt|, |Nb|.
The equation At = Ñt ·ν̃t

|Ñt | – Nt ·νt
|Nt | =  is equivalent to (Ñt · ν̃t)|Nt| = (Nt · νt)|Ñt|. In view of

previous observations this last equation can be seen as a small perturbation of the simpler
equation |Nt|(Ñt · ν̃t –Nt · νt) = .
The advantage of solving Ñt · ν̃t =Nt · νt is that it reduces to

Tt(ϕt) =
[
(Ut – r∂rUt)nt,z +O

(
τ ) – τ

r
Utnt,r

+
(

στ + τ ln

(
r
τ

))
∂rUtnt,r + τ ln

(
r
rt

)]
|r=r̃t (θ )

= .

Similarly, instead of solving Ab = , we consider the simpler equation Ñb · ν̃b = Nb · νb,
which reduces to

Tb(ϕb) =
[
–(Ub – r∂rUb)nb,z +O

(
τ ) – τ

r
Ubnb,r

+
(

στ + τ ln

(
r
τ

))
∂rUbnb,r + τ ln

(
rb
r

)]
|r=r̃b(θ )

= .

The equation Ñm · ν̃m =  is equivalent to

Tm(ϕm) =
[
Um – r∂rUm +O(τ )

]
|r=r̃m(θ )

= .

To establish the proof we need to find a more explicit expression of ∂rUi. We get easily

∂rUt(r, θ ) = ∂rHϕt

(
sτ – ln

r
τ
, θ

)
+OC,α

b

(
τ



)
= –


r
∂sHϕt (s, θ )|s=sτ –ln r

τ

+OC,α
b

(
τ



)
,

∂rUb(r, θ ) = –∂rUt

(
r, θ –

π

k + 

)
,

∂rUm(r, θ ) = –
τ

r
∂ρH̃ρτ ,ϕm (ρ, θ )|ρ= τ

r
+OC,α

b

(
τ



)
.

Observe that if we evaluate first two functions at r = rτ (= rt = rb) (the value taken by r if
s = sτ ) and third one at r = (= rm) (the value taken by r if ρ = ρτ ) then we get

∂rUt(r, θ )|r=rτ = –

rτ

∂∗ϕt(θ ) +OC,α
b

(
τ



)
,

∂rUm(r, θ )|r= = –∂∗ϕm(θ ) +OC,α
b

(
τ



)
,

∂rUb(r, θ )|r=rτ = –

rτ

∂∗ϕb(θ ) +OC,α
b

(
τ



)
,

where ∂∗ is the operator defined as follows. If φ =
∑

j≥ φj cos(jθ ), then

∂∗φ = –
∑
j≥

jφj cos(jθ ).
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Let us consider the operator

Aτ :
[
C,α(

S
)]

sym → [
C,α(

S
)]

sym,

� = (ϕt ,ϕm,ϕb) →
(
At(ϕt),Am(ϕm),Ab(ϕb)

)
,

see ().
The definition of the space [C,α(S)]sym is similar to definition ., with the unique dif-

ference of the lower regularity.
We want to show the existence of a solution of Aτ (�) = .
We define the operator Tτ : [C,α(S)]sym → [C,α(S)]sym by

� → (
Tt(ϕt),Tm(ϕm),Tb(ϕb)

)
.

Proposition . There exists κ >  such that if κ > κ then there exists τ >  for which,
for each τ ∈ (, τ), then Aτ (�) =  has a solution in Bκ , the ball centered at (, , ) and of
radius κτ  in [C,α(S)]sym.

Proof Let us consider the operator

Iτ :
[
C,α(

S
)]

sym → [
C,α(

S
)]

sym,

� → [(
ϕt + ∂∗ϕt

)
nt,z +O

(
τ ),ϕm + ∂∗ϕm +O

(
τ ), –(

ϕb + ∂∗ϕb
)
nb,z +O

(
τ )].

The operator Iτ can be seen as an approximation ofTτ : indeedwe get Iτ fromTτ omitting
some nonlinear terms and evaluating the remaining ones at ri instead of r̃i(θ ).
Equation Iτ (�) =  has a unique solution, because the operator Id+∂∗ :H(S) → L(S)

is easily seen to be invertible. By elliptic regularity theory this result extends to the operator

Id+∂∗ : C,α(
S

) → C,α(
S

)
.

From () and Lemma . we obtain ‖(Aτ – Iτ )(�)‖[C,α (S)]sym ≤ cτ /, for any � ∈ Bκ ⊂
[C,α(S)]sym. We would like to show existence of a solution to Aτ (�) =  by the Leray-
Schauder degree theory but the nonlinear operator Iτ – Aτ is not compact. We apply the
same technique as in Proposition  of [].
Let us introduce a family of smoothing operators Sq, for q ∈ (, ), defined by

Sq(ψ,ψ,ψ) :=
(
Dqψ,Dqψ,Dqψ

)

with

Dq :
∑
i≥

ai cos(iθ ) →
∑
i≥

i–qai cos(iθ )

for (ψ,ψ,ψ) ∈ [C,α(S)]. The operator Sq satisfies for fixed  < α′ < α < 

∥∥Sq�∥∥
[C,α (S)] ≤ c‖�‖[C,α (S)] ,∥∥� – Sq�

∥∥
[C,α′ (S)] ≤ cqα′–α‖�‖[C,α (S)] ,

()

where c does not depend on q.
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We approximate Aτ by the family of compact operators Aq
τ defined as follows:

Aq
τ := Iτ + Sq ◦ (Aτ – Iτ ).

Now we can apply Leray-Schauder degree theory to prove the existence of a solution�q

to Aq
τ (�) =  in Bκ for τ ∈ (, τ), with τ small enough and κ > κ with κ chosen large

enough.
Since the norm of �q is bounded uniformly in q, we can extract a sequence {qj} con-

verging to  such that {�qj} converges in [C,α′ (S)]sym for any fixed α′ < α. Thanks to the
continuity ofAq

τ and to (), the limit of this sequence converges to a solution ofAτ (�) = 
for all τ ∈ (, τ). �

The zero of Aτ provides the boundary data � for which the surface M̃T
k,τ (�) meets ∂B

in order to make () satisfied. That finishes the proof of Theorem ..

Appendix
Results in this section are about the existence of some harmonic extension operators.
The following result gives a harmonic extension of a function on R

 \Dρ̄ .

Proposition A. There exists an operator

H̃ρ̄ : C,α(
S

) −→ C,α(
S × [ρ̄, +∞)

)
,

such that for each even function ϕ(θ ) ∈ C,α(S), which is L-orthogonal to the constant
function then w = H̃ρ̄,ϕ solves

⎧⎨
⎩

�w =  on S × [ρ̄, +∞),

w = ϕ on S × {ρ̄}.

Moreover,

‖H̃ρ̄,ϕ‖C,α (S×[ρ̄,+∞)) ≤ c‖ϕ‖C,α (S), ()

for some constant c > .

Proof We consider the decomposition of the function ϕ with respect to the basis {cos(iθ )},
that is,

ϕ =
∞∑
i=

ϕi cos(iθ ).

Then the solution wϕ is given by

w(ρ, θ ) =
∞∑
i=

(
ρ̄

ρ

)i

ϕi cos(iθ ).

http://www.boundaryvalueproblems.com/content/2014/1/130


Morabito Boundary Value Problems 2014, 2014:130 Page 22 of 23
http://www.boundaryvalueproblems.com/content/2014/1/130

Since ρ̄

ρ
≤ , then ( ρ̄

ρ
)i ≤ ( ρ̄

ρ
), we can conclude that |w(θ ,ρ)| ≤ c|ϕ(θ )| and then ‖w‖C,α ≤

c‖ϕ‖C,α . �

Proposition A. There exists an operator

H : C,α(
S

) −→ C,α
–

(
S × [, +∞)

)
,

such that for all ϕ ∈ C,α(S), even function and orthogonal to ei, i = ,  in the L-sense, the
function w =Hϕ solves

⎧⎨
⎩
(∂

s + ∂
θ )w =  in S × [, +∞),

w = ϕ on S × {}.

Moreover

‖Hϕ‖C,α
– (S×[,+∞)) ≤ c‖ϕ‖C,α (S),

for some constant c > .

The proof is immediate once we observe that, if ϕ =
∑

j≥ ϕj cos(jθ ), then the solution is
Hϕ =

∑
j≥ e–jsϕj cos(jθ ).
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