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Abstract
This paper considers the Cauchy problem of solutions for a class of sixth order 1-D
nonlinear wave equations at high initial energy level. By introducing a new stable set
we derive the result that certain solutions with arbitrarily positive initial energy exist
globally.
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1 Introduction
In this paper, we consider the Cauchy problem for the following -D nonlinear wave equa-
tion of sixth order:

utt – auxx + uxxxx + uxxxxtt = f (ux)x, (x, t) ∈ R× (,∞), (.)

u(x, ) = u(x), ut(x, ) = u(x), x ∈R, (.)

where f (u) = b|u|p, b >  and p >  are constants, u(x) and u(x) are given initial data, and
a >  is a given constant satisfying certain conditions to be specified later.
When Rosenau [] was concerned with the problem of how to describe the dynamics

of a dense lattice, he discovered Equation (.) by a continuum method. Meanwhile one-
dimensional homogeneous lattice wave propagation phenomena can also be described by
Equation (.). Since then the well-posedness of Equation (.) have been considered by
many authors, we refer the reader to [–] and the references therein.
Recently, the authors in [] first considered theCauchy problem for Equation (.). By the

contraction mapping principle, they proved the existence and the uniqueness of the local
solution for the Cauchy problem of Equation (.). By means of the potential well method,
they discussed the existence and nonexistence of global solutions to this problem at the
sub-critical and critical initial energy level E()≤ d. So it is natural for us to ask what the
weak solution for problem (.)-(.) behaves at sup-critical initial energy level E() > .
In this paper we intend to extend the existence of global solutions in [] with arbitrarily
positive initial energy. By using the potential well method [–] and introducing a new
stable set we show that if the initial data satisfy some conditions, then the corresponding
local weak solution with arbitrarily positive initial energy exists globally.
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2 Some assumptions and preliminary lemmas
In this section we give some assumptions and preliminary results to state the main results
of this paper. Throughout the present paper, just for simplicity, we denote Lp(R) andHs(R)
by Lp and Hs, respectively, with the norm ‖ · ‖p = ‖ · ‖Lp(R), ‖ · ‖ = ‖ · ‖L(R) and the inner
product (u, v) =

∫
R
uvdx.

For the Cauchy problem (.), (.) we introduce the energy functional

E(t) =


(‖ut‖ + a‖ux‖ + ‖uxx‖ + ‖uxxt‖

)
+

b
p + 

∫
R

|ux|pux dx (.)

and the Nehari functional

I(t) ≡ I(u) = a‖ux‖ + ‖uxx‖ + b
∫
R

|ux|pux dx. (.)

Moreover we define a new stable set, which will be used to obtain the existence of a global
solution with arbitrarily positive initial energy,

W =
{
u ∈H(R) | I(u) > ‖ut‖ + ‖uxxt‖

}
. (.)

We show the following local existence theorem, which has been given in [].

Theorem . [] Suppose that 
 < s < p+, u(x, ) ∈Hs, ut(x, ) ∈Hs. Then problem (.)-

(.) admits a unique local solution u(x, t) defined on a maximal time interval [,T) with
u(x, t) ∈ C(Hs, [,T)).Moreover if

sup
t∈[,T)

(∥∥u(x, t)∥∥Hs +
∥∥ut(x, t)∥∥Hs

)
<∞,

then T =∞.

3 Themain result and proof
In order to help the readers quickly get the main idea of the present paper, we show the
main theorem in the beginning of this section.

Theorem . Let  ≤ s < p + , u(x),u(x) ∈ Hs be given and let (.) hold. Assume that
E() > , u ∈W and the initial data satisfy

‖u‖ + ‖uxx‖ + (u,u) + (uxx,uxx) +
(p + )
p + 

E() < . (.)

Then the existence time of a global solution for problem (.)-(.) is infinite.

In what follows, we show a preliminary lemma about the monotonicity of the functional
‖u(x, t)‖ + ‖uxx(x, t)‖, which will be used to prove the invariance of the new stable setW
under the flow of problem (.)-(.).

Lemma . Let u(x),u(x) ∈H be given and u(x, t) be the solution of Equation (.) with
initial data (u,u). Assume that E() >  and the initial data satisfy Equation (.), then
the map {t �→ ‖u(t)‖ + ‖uxx(t)‖} is strictly decreasing as long as u(x, t) ∈W .

http://www.boundaryvalueproblems.com/content/2014/1/31


Shen et al. Boundary Value Problems 2014, 2014:31 Page 3 of 6
http://www.boundaryvalueproblems.com/content/2014/1/31

Proof Let

F(t) =
∥∥u(t)∥∥ +

∥∥uxx(t)∥∥, (.)

then we get

F ′(t) = (u,ut) + (uxx,uxxt) (.)

and

F ′′(t) = (u,utt) + ‖ut‖ + (uxx,uxxtt) + ‖uxxt‖. (.)

Note that by testing Equation (.) with u we have

(utt ,u) + (uxxxxtt ,u) + a‖ux‖ + ‖uxx‖ = –
(
f (ux),ux

)
for t ∈ [,∞).

Then, Equation (.) becomes

F ′′(t) = ‖ut‖ + ‖uxxt‖ – I(u). (.)

Furthermore, from u(t) ∈ W we have F ′′(t) <  for t ∈ [,Tmax). Obviously from E() > 
and (.) we can get


∫
R

uu dx + 
∫
R

uxxuxx dx < ,

which implies F ′() = (u,u)+(uxx,uxx) < . It is easy to see that F ′(t) < F ′() < , namely,
F ′(t) < . Therefore, we find that the map {t �→ ‖u(t)‖ + ‖uxx(t)‖} is strictly decreasing.

�

Subsequently we show the invariance of the new stable setW under the flow of problem
(.)-(.), which plays a key role in proving existence of global solutions for problem (.)-
(.) at high initial energy level E() > .

Lemma . (Invariant set) Let u(x),u(x) ∈ H be given and u(x, t) be a weak solution of
problem (.)-(.) with maximal existence time interval [,T), T ≤ +∞. Assume that
the initial data satisfy (.). Then all solutions of problem (.)-(.) with E() >  belong
toW , provided u ∈W .

Proof We prove u(t) ∈W . If it is false, let t ∈ (,T) be the first time that

I
(
u(t)

)
=

∥∥ut(t)∥∥ +
∥∥uxxt(t)∥∥, (.)

namely,

I
(
u(t)

)
> ‖ut‖ + ‖uxxt‖ for t ∈ [, t).
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Let F(t) be defined as (.) above. Hence by Lemma ., we see that F(t) and F ′(t) are
strictly decreasing on the interval [, t). And then by (.), for all t ∈ (, t), we have

F(t) < ‖u‖ + ‖uxx‖ < –(u,u) – (uxx,uxx) –
(p + )
p + 

E().

Therefore from the continuity of ‖u(t)‖ + ‖uxx(t)‖ in t we get

F(t) < ‖u‖ + ‖uxx‖ < –(u,u) – (uxx,uxx) –
(p + )
p + 

E(). (.)

On the other hand, by (.) and (.) we can obtain

E() = E(t) =


(∥∥ut(t)∥∥ + a

∥∥ux(t)∥∥ +
∥∥uxx(t)∥∥ +

∥∥uxxt(t)∥∥)

+
b

p + 

∫
R

∣∣ux(t)∣∣pux(t)dx
=


(∥∥ut(t)∥∥ +

∥∥uxxt(t)∥∥) + 
p + 

I
(
u(t)

)

+
(


–


p + 

)(
a
∥∥ux(t)∥∥ +

∥∥uxx(t)∥∥).

Recalling (.) we have

E() =
(


+


p + 

)(∥∥ut(t)∥∥ +
∥∥uxxt(t)∥∥)

+
(


–


p + 

)(
a
∥∥ux(t)∥∥ +

∥∥uxx(t)∥∥)

≥ p + 
(p + )

(∥∥ut(t)∥∥ +
∥∥uxxt(t)∥∥). (.)

Then from the following equalities:

∥∥ut(t)∥∥ =
∥∥ut(t) + u(t)

∥∥ –
∥∥u(t)∥∥ – 

(
u(t),ut(t)

)
,

∥∥uxxt(t)∥∥ =
∥∥uxxt(t) + uxx(t)

∥∥ –
∥∥uxx(t)∥∥ – 

(
uxx(t),uxxt(t)

)

and (.), we can derive

E()≥ A
∥∥ut(t) + u(t)

∥∥ +A
∥∥uxxt(t) + uxx(t)

∥∥ –A
∥∥u(t)∥∥

–A
∥∥uxx(t)∥∥ – A

(
u(t),ut(t)

)
– A

(
uxx(t),uxxt(t)

)
≥ –A

(∥∥u(t)∥∥ +
∥∥uxx(t)∥∥) – A

(
(u,u) + (uxx,uxx)

)
,

where A = p+
(p+) . Or equivalently

F(t) ≥ –(u,u) – (uxx,uxx) –
(p + )
p + 

E(), (.)

which contradicts the first inequality of (.). This completes the proof. �
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At this point we can prove the global existence for the solution of problem (.)-(.)
with arbitrarily positive initial energy.

Proof of Theorem . From Theorem . there exists a unique local solution of problem
(.)-(.) defined on amaximal time interval [,T). Let u(t) be the weak solution of prob-
lem (.)-(.) with E() > , u ∈W and (.). Then from Lemma . we have u(x, t) ∈W ,
namely,

I
(
u(t)

)
> ‖ut‖ + ‖uxxt‖ for t ∈ [,T). (.)

Therefore from (.)-(.) and (.), we can obtain

E() = E(t) =


(‖ut‖ + a‖ux‖ + ‖uxx‖ + ‖uxxt‖

)
+

b
p + 

∫
R

|ux|pux dx

=


(‖ut‖ + ‖uxxt‖

)
+

p – 
(p + )

(
a‖ux‖ + ‖uxx‖

)
+


p + 

I(u)

>
p + 

(p + )
(‖ut‖ + ‖uxxt‖

)
+

p – 
(p + )

(
a‖ux‖ + ‖uxx‖

)
,

which implies

u(x, t),ut(x, t) are bounded in C(,T;Hs).
Hence from Theorem . it follows that T = ∞ and the solution of problem (.)-(.)
exists globally. This completes the proof of Theorem .. �

Remarks
As we all know, the global existence and finite time blow-up results of solutions for prob-
lem (.)-(.) at the sub-critical and critical initial energy level E() ≤ d were obtained
in [], where E() is the total initial energy and d is the depth of the introduced potential
well. The present paper derives some sufficient conditions on the initial data such that the
solution exists globally at the sup-critical initial energy level E() > . However, to the best
of our knowledge there is no result as regards the blow-up result of solutions with arbi-
trary positive initial energy for the Cauchy problem (.)-(.); obviously this is an open
problem. Indeed we made a try to treat this issue at the same time, however, we did not
derive the invariant of an unstable set as a result of the lack of a Poincaré inequality.
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