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1 Introduction

In this paper, we will study the boundary value problem

(0p (") () = f (& u(t), ' (2), u” (£)), @)
w0)=u'(0)=0,  w(1)= [y k(@) dt, '

and

(0p(u") () = f (& u(t), ' (2), u” (1)), 12)
w'(0)=0,  W0)= g ®)dt, W (1)= [, h(Ou' @) dt,
where ,(s) = s[5, p> 1, [, k(t)dt =1, [y g(t)dt =1, [y h(t)dt =1.

A boundary value problem is said to be a resonance one if the corresponding homoge-
neous boundary value problem has a non-trivial solution. Mawhin’s continuous theorem
[1] is an effective tool to solve this kind of problems when the differential operator is linear,
see [2—-10] and references cited therein. But it does not work for nonlinear cases such as
boundary value problems with a p-Laplacian, which attracted the attention of mathemati-
cians in recent years [11-15]. Ge and Ren extended Mawhin’s continuous theorem [15] and
many authors used their results to solve boundary value problems with a p-Laplacian, see
(16, 17]. In this new theorem, two projectors P and Q must be constructed. But it is difficult
to give the projector Q in many boundary value problems with a p-Laplacian. In this pa-
per, we generalize the extension of the continuous theorem and show that the p-Laplacian
problem is solvable when Q is not a projector. And we will use this new theorem to discuss
problems (1.1) and (1.2), respectively.

In this paper, we will always suppose that
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(Hy) k(¢),g(2), h(t) € L'[0,1] are nonnegative and ||k, = |lg|l1 = |/4]l1 = 1, where ||k]||; :=

[ k()] dt.
(Hy) f(t,u,v,w) is continuous in [0,1] x R3.

2 Preliminaries
Definition 2.1 [15] Let X and Y be two Banach spaces with norms || - ||, || - ||y, respec-
tively. A continuous operator M : X Ndom M — Y is said to be quasi-linear if
(1) ImM := M(X NdomM) is a closed subset of Y,
(i) KerM :={x € X NdomM : Mx = 0} is linearly homeomorphic to R”, n < oo,
where dom M denote the domain of the operator M.

Let X = Ker M and X, be the complement space of Xj in X, then X = X; & X,. Let P:
X — X be a projector and 2 C X an open and bounded set with the origin 6 € €.

Definition 2.2 Suppose N, : Q — Y, 1 €]0,1] is a continuous and bounded operator.
Denote Ny by N.Let X, = {x € QnNdomM : Mx = N,x}. N, is said to be M-quasi-compact
in Q if there exists a vector subspace Y; of Y satisfying dim Y; = dim X; and two operators
Q, Rwith Q:Y — Y3, QY = Y3, being continuous, bounded, and satisfying Q(/ — Q) = 0,
R:Q x [0,1] = X, Ndom M continuous and compact such that for A € [0,1],

(@) I-QN.(Q) CImM C (I-Q)Y,

(b) QN;x =6, 1 €(0,1) & QNx =0,

(c) R(-,0) is the zero operator and R(,A)|x, = (I — P)|x,,

(d) M[P+R(-,2)] = - Q)N;..

Theorem 2.1 Let X and Y be two Banach spaces with the norms || - ||x, || - ||y, respectively,
and let Q@ C X be an open and bounded nonempty set. Suppose

M:XNdomM — Y

is a quasi-linear operator and that N, : Q — Y, A € [0,1] is M-quasi-compact. In addition,
if the following conditions hold:

(C1) Mx #Nyx,Vx € 0QNdomM, A € (0,1),
(Cy) deg{/ON,Q2NKerM,0} #0,

then the abstract equation Mx = Nx has at least one solution in dom M N Q, where N = Nj,
J:Im Q — Ker M is a homeomorphism with J(0) = 0.

Proof The proof is similar to the one of Lemma 2.1 and Theorem 2.1 in [15]. ]
We can easily get the following inequalities.

Lemma 2.1 For any u,v > 0, we have
1 (/)p(” +V) < (/)p(”) + QDp(V)’ l<p=2.
(2) @plu+v) <28%(g,(u) + 9,(v), p = 2.

In the following, we will always suppose that g satisfies 1/p + 1/q = 1.
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3 The existence of a solution for problem (1.1)
Let X = C?[0,1] with norm |jx|| = max{||#lc |2 llecs |#" |c}, ¥ = C[0,1] x C[0,1] with
norm [|(y1, y2) || = max{||y1 /oo, 32 llcc}, Where ||y]loc = max;eo,] 1¥(£)]. We know that (X, || -]|)
and (Y, ]| - ||) are Banach spaces.

Define operators M : X NdomM — Y, N : X — Y as follows:

| @y N R ORIOREO)
T(,") () | * 0 ’

where Ty = ¢, y € C[0,1], ¢ satisfying

1 1 s
K —cdr)dsdt=0,
/0 ((t)/; <pq</0 y(r)—c r) sdt =0 31)

domM = {u € X | g,(u") € C'[0,1],u(0) = u”"(0) = 0}.

Lemma3.1 Fory e C[0,1], thereis only one constant c € R such that Ty = c with |c| < ||¥]le
and that T : C[0,1] — R is continuous.

Proof Fory e C[0,1], let

1 1 s
F(c) =/0 k(t)/ (pq(/o (y(r) —c) dr) dsdt.

Obviously, F(c) is continuous and strictly decreasing in R. Take a = minejo 1) y(£), b =
maxefo] ¥(t). It is easy to see that F(a) > 0, F(b) < 0. Thus, there exists a unique con-

stant c € [a, b] such that F(c) = 0, i.e. there is only one constant ¢ € R such that Ty = ¢ with

lel < Iylloo-
For y1,y, € C[0,1], assume Ty, = ¢1, Tys = 3. By k(¢) > 0, fol k(t)dt =1 and ¢, being

strictly increasing, we obtain, if ¢ — ¢1 > max,co,1)(y2(£) — y1(2)), then

0= /Olk(t)/tlgoq(/os(yz(r)—cz) dr> dsdt

1 1 s
- [k | soq( / [(yl(r)—cl)+(yz(r)—yl(r)—(cz—cl))dr]) dsdt
0 t 0

1 1 s
</0 k(t)‘/t wq(/o (yl(r) —c1) dr> dsdt = 0.

This is a contradiction. On the other hand, if ¢; — ¢; < min;e[o 17 (y2(2) — 91(¢)), then

1 1 s
0= /0 k(t)/; @q (/0 (yz(r) - cz) dr) dsdt

1 1 s
- / k() f wq( f [(y1<r)—c1)+(yz(r)—yl(r)—(cz—cl))dr]> dsdt
0 t 0

1 1 s
>/0 k(t)/t wq(/o (yl(r) —cl) dr> dsdt = 0.
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This is a contradiction, too. So, we have min;c[o,1)(y2(t) = y1(2)) < ¢2 — 1 < max;eqo1](y2(2) —
y1(2)), i.e. |ca —c1]l < 11y2 = Ylloo- S0, T : C[0,1] — R is continuous. The proof is com-
pleted. d

It is clear that u € dom M is a solution if and only if it satisfies Mu = Nu, where N = Nj.

For convenience, let (g, b)! := [Z]
Lemma 3.2 M is a quasi-linear operator.
Proof It is easy to see that KerM = {bt | b € R} := X;.

For u € X Ndom M, if Mu = (y, c)}, then ¢ satisfies (3.1). On the other hand, if y € C[0,1],
Ty = c, take

u(t) = /0 (£—5)pq (/0 y(r) dr) ds.

By a simple calculation, we get u € X N dom M and Mu = (y,¢)t. Thus
ImM = {(y,0)* | y € C[0,1], ¢ satisfies (3.1)}.

By the continuity of T', we find that ImM C Y is closed. So, M is quasi-linear. The proof is
completed. O

Lemma3.3 T(c)=c¢, Ty+c)=THy)+c¢, T(cy) =cT(y), ce R, y € C[0,1].
Proof The proof is simple. Therefore, we omit it. O

Take a projector P: X — X; and an operator Q: Y — Y; as follows:

(Pu)(t) =/ (0)t, Q)" = (0, Ty1 — Ty)",

where Y] = {(0,c)! | c € R}. Obviously, QY = Y7, and dim ¥; = dim X.
By the continuity and boundedness of T, we can easily see that Q is continuous and
bounded in Y. It follows from Lemma 3.3 that Q( — Q)(y,y1)" = (0,0)%, y,3 € C[0,1].
Define an operator R: X x [0,1] — X; as

R(u, A)(t) = /0 (t-9)pq </o kf(r, u(r), u'(r), u”(r)) dr) ds,

where KerM & X; = X. By (H;) and the Arzela-Asscoli theorem, we can easily see that
R:Qx[0,1] = X, NdomM is continuous and compact, where  C X is an open bounded

set.

Lemma 3.4 Assume that Q2 C X is an open bounded set. Then N, is M-quasi-compact
in Q.
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Proof 1t is clear that ImP = KerM, QN;x =6, 1 € (0,1) & QNx = 6 and R(-,0) = 0. For
ueQ,

0 =T[Af (& u(e), u'(8), u”"(2))]

_| Meu@u@u" @) | o
T[Af (2, u(t), u'(£),u” (2))] '

(1_ Q)N)LM _ |:)\.f(t,u(t),u’(t), u//(t)):| 3 |: 0 :|

Since ImM C Ker Qand y = Qy+ (I-Q)y, we obtain ImM C (I-Q)Y. Thus, (I - Q)N,(Q) C
ImM C (I-Q)Y.
Foru e X, = {u € QNdomM : Mu = N)u}, we get

R(u, M) = ‘/0 (t-9)p, (/0 Af(r,u(r),u (r),u (r)) dr) ds
- [0 [ o)) as
0 0
=u(t)-u'(0)t = - P)u,
i.e. Definition 2.2(c) holds. For u € Q, we have

A (&, u(t), u'(£), u” (2))

M[Pu+ R(u,2)] = [TW@, (), ' (6), " (1)

:| = (1— Q)N)LM

So, Definition 2.2(d) holds. Therefore, Nj is M-quasi-compact in Q. The proof is com-
pleted. d

Theorem 3.1 Assume that the following conditions hold.

(Hs) There exists a nonnegative constant K such that one of (1) and (2) holds:
(1) Bf(t,A,B,C)>0,t€[0,1], |B| >K,A,C€eR,
(2) Bf(t,A,B,C)<0,te[0,1],|B| >K,A,CeR.

(Hy) There exist nonnegative functions a(t), b(t), c(t), e(t) € L'[0,1] such that

[f(t,%,9,2)| < a®)g,(Ix]) + b, (Iy]) + c®pp(l2l) +e(t), t€[0,1],x,%,z€R,

where @y(||ally + 1blly + llcll) < 2277, if 1 < p <25 9, (2P 2 ||ally + 22721b]l1 + licllh) < L, if
p=2.

Then boundary value problem (1.1) has at least one solution.
In order to prove Theorem 3.1, we show two lemmas.

Lemma 3.5 Suppose (H3) and (Hy) hold. Then the set
Q= {u € domM | Mu = Nyu, A € (0,1)}

is bounded in X.
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Proof For u € 1, we have QN, u = 0, i.e. Tf (¢, u(t), u'(t), u”(¢)) = 0. By (Hs), there exists a
constant £y € [0,1] such that |#/(to)| < K. Since u(t) = fot u'(s)ds, u'(t) = u/'(ty) + ftg u’(s)ds,
we have

’u(t)’ < ”u'”oc, ‘u'(t)‘ <K+ ”u””oo, te[0,1]. (3.2)

It follows from Mu = N, u, (Hy), and (3.2) that

|I/l”(t)| _

@q (/0 Af(s, u(s), v (s), u”(s)) ds)

1
< (pq(/(; a(t)gop(|u|) + b(t)(pp(|u’|) + c(t)gop(’u”|) +e(t) dt)

< @g[(llally + 1b11)@p(K + [ "] ) + el ("] ) + el ]-
If1<p <2, by Lemma 2.1, we get
" ()] < 04 (B + Argp([|0”] ) < 277 [0q(B1) + g (AD) [ ],

thus

-2
1.0 = T
1-2172¢,4(Ay)

where By = (|laly + [|b]11)@p(K) + llell, Ay = llally + 1Bl + llc]h.
If p > 2, by Lemma 2.1, we get

u"(6)] < @q(Ba + Asgpp (||| ) < [9a(Bo) + 0q(A) [ ],

thus

o), < 252
T 1-94(A9)

where By = 2P72([lall1 + |1bl11)¢p(K) + llell1, A2 = 2P"2(|ally + 1611) + llcllz.
These, together with (3.2), mean that ; is bounded in X. O

Lemma 3.6 Assume (H3) holds. Then
Q0 = {u e KerM | QNu = 0}
is bounded in X, where N = Nj.

Proof For u € Q,, we have u = bt and Tf (¢, bt, b,0) = 0. By (Hs), we get |b| < K. So, 2, is
bounded. The proof is completed. d

Proof of Theorem 3.1 Let Q2 = {u € X | ||u|| < r}, where r is large enough such that K < r <
+ooand 2 D Q.
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By Lemmas 3.5 and 3.6, we know Mu # N, u, u € domM N3 and QNu # 0, u € KerMN
Q2.
Let H(u,8) = pdu + (1 — 8)JQNu, 8 € [0,1], u € KerM N'Q, where / : ImQ — KerM is a

homeomorphism with J(0, b)- = bt, p = {171 :ﬁ Eg:;g)) t111?)1132

Define a function Sgn(x) = {*, 2%

For u € Ker M N 9L2, we have u = bt #0. Thus
H(u,8) = pdbt + (1 - 8)(~Tf (¢, bt, b, 0))¢.

If6 =1, H(u,1) = pbt #0.1If § = 0, by QNu # 0, we get H(u,0) =JQN(bt) #0. For 0 < § <1,
we now prove that H(u, §) # 0. Otherwise, if H(u, §) = 0, then

é
Tf (¢, bt, b, 0) = I'O—Sb. (3.3)
Since |lu|| = r > K, we have |b| > K. Thus, T[bf(t, bt,b,0)] = bTf(t,bt,b,0) = %bz. So,
we have Sgn(bf (¢, bt, b,0)) = Sgn{T'[bf (¢, bt, b,0)]} = Sgn(%bz) = Sgn(p). A contradiction
with the definition of p. So, H(,8) #0, u € KerM N 92, § € [0,1].
By the homotopy of degree, we get

deg(JQN, @ NKer M, 0) = deg(H(-,0), 2 N Ker M, 0)

= deg(H(-,1), 2 N Ker M, 0) = deg(pl, 2N KerM,0) #0.

By Theorem 2.1, we can see that Mu = Nu has at least one solution in Q. The proof is
completed. d

Example Let us consider the following boundary value problem at resonance:

(pp(u")) (t) = gtsina® + =y* + £ sinz> + cost, 3.4)
u(0) =u"(0) =0, (1) = 2f01 tu'(t) dt, .
where p = 4.
Corresponding to problem (1.1), we have g = %, a(t) = ét, b(t) = %, c(t) =3, e(t) = cost,
k(t) = 2t.
Take K = 4. By a simple calculation, we find that the conditions (H;)-(H4) hold. By The-
orem 3.1, we obtain the result that problem (3.4) has at least one solution.

4 The existence of a solution for problem (1.2)
Let X = C?[0,1] with norm |||l = max{|||ls, || |oc l|2¢" lloc}, ¥ = C[0,1] x C[0,1] x C[0,1]
with norm [[(y1,y2,y3)Il = max{[|y1llco, 1¥2llc0: [l¥3llcc}, Where [lylloc = maxeoq) [¥(2)]. We
know that (X, || - ||) and (Y, || - ||) are Banach spaces.

Define operators M : X NdomM — Y, N, : X — Y as follows:

(p(u))' (2) Mt u(t), u' (), u"(t))
Mu = | Ti(pp") () |,  Nau= 0 .

To(p(u"))' (2) 0

Page 7 of 12
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where T1y = c1, Toy = 3, y € C[0,1], c1, ¢y satisfy

/Olg(t)/ot%(/osy(r)—cl dr) dsdt=0,
/01 e ft o ( fo - dr) dsdt =0, .

domM = {u € X | g,(u") € C'[0,1],u"(0) = 0}.

Lemma 4.1 Fory € C[0,1], there is only one constant c; € R such that T;y = ¢; with |c;| <
I¥loo- And T; : C[0,1] — R are continuous, i =1,2.

The proof is similar to Lemma 3.1.
It is clear that u € dom M is a solution if and only if it satisfies Mu = Nu, where N = Nj.

a
For convenience, let (a,b,c)T := |:bi|_
c

Lemma 4.2 M is a quasi-linear operator.

Proof It is easy to get KerM = {a + bt | a,b € R} := X;.
For u € X N domM, if Mu = (y, c1,¢)7, then ¢, ¢y satisfy (4.1). On the other hand, if
y € C[0,1], T1y = c1, Toy = ¢y, take

u(t) = /0 (t-9)pq (/0 y(r) dr) ds.

By simple calculation, we get u € X N dom M and Mu = (y,c;,¢)”. Thus
ImM = {(y, c,e2)T |y € C[0,1], ¢, ¢y satisfy (4.1)}.

By the continuity of T}, i = 1,2, we see that ImM C Y is closed. So, M is quasi-linear. The
proof is completed. d

Take a projector P: X — X; and an operator Q: Y — Y as follows:
(Pu)(t) = M(O) + u/(o)t’ Q(yryl’yZ)T = (01 lel - Tl_yr szz - sz)T,

where Y; = {(0,¢1,¢2)7 | c; e R,i =1,2}. Obviously, QY = Y, and dim Y; = dim Xj.

By the continuity and boundedness of T}, i = 1,2, we can easily see that Q is continuous
and bounded in Y. It follows from Lemma 3.3 that Q(Z — Q)(y, y1,%2)” = (0,0,0)7, 5,91,y €
Clo,1].

Define an operator R: X x [0,1] = X, as

R(u, M)(t) = /0 (t-9)p, (./o )»f(r, u(r), v (r), u”(r)) dr) ds,

where KerM @ X; = X. By (H) and the Arzela-Asscoli theorem, we can easily see that
R:Qx[0,1] = X, NdomM is continuous and compact, where  C X is an open bounded

set.

Page 8 of 12
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Lemma 4.3 Assume that Q2 C X is an open bounded set. Then N, is M-quasi-compact
in Q.

Proof 1Tt is clear that ImP = KerM, QN;x =0, 1 € (0,1) & QNx =6 and R(-,0) = 0. For

ucQ,
[Af (@t ult), u' (), u'(t) 0
(I~ QNu = 0 — |~ u), w (8), ' (8))
0 ~ToAf (¢, u(t), u'(t), u” (1))

[ (8, u(e), ' (2), u (8))
= | TiAf(t, u(t),u'(t),u”"(t)) | € ImM.
| ToAf (& u(8), u'(£), u” (2))

Since ImM C KerQand y = Qy+(I-Q)y, we obtainImM C (I-Q)Y. Thus, (/- Q)N,(Q) C
ImM C (I-Q)Y.
Foru e ¥, = {u € QNdomM : Mu = Nyu}, we get

R(u, M) = /(; (t-9)pq (/(; Af(r,u(r),u (r),u (r)) dr) ds
- [ e=9( [ ) ) as
=u(t) —u(0)—u/(0)t=(I - P)u,
i.e. Definition 2.2(c) holds. For u € €, we have
A (& u(e), u'(t), u”(t))
M[Pu + R(u,k)] = | ToAf (& u(®), u/'(¢),u”(t)) | =T - QN u.
(®)

u'(
Torf (8, u(t), u' (), u” (t))

Thus, Definition 2.2(d) holds. Therefore, N is M-quasi-compact in €. The proof is com-
pleted. O

Theorem 4.1 Assume that the following conditions hold:

(Hs) There exists a nonnegative constant L such that if |u(t)| > L, t € [0,1] then either
Tlf(t, u(t), u' (), u”(t)) #0
or
Tof (& u(e),u'(8),u” (¢)) # 0.

(He) There exist nonnegative constants Ky, Ky such that one of (1) and (2) holds:
1)

Bf(t,A,B,C)>0, te[0,1],|B|>K;,A,CeR,
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and

Af(t,A,B,C)>0, te[0,1],|B| <Ky, |Al>K;y, CeR.

Bf(t,A,B,C)<0, te]0,1],|B|>K,A,CeR,
and
Af(t,A,B,C) <0, tel0,1],|A]> Ky, |B| <K, CeR.
(H;) There exist nonnegative functions a(t), b(t), c(t), e(t) € L'[0,1] such that
[f(t.%9,2)| < a(O)ep(Ix]) + b(Oes (1) + c(Op(I2]) +e(t),  t€[0,1],%yz€R,

where gg(llally + 1Bl + llclly) < 2279, if 1 < p < 25 9,27 [lally + 277211l + llcly) < 1, if
p>2.

Then boundary value problem (1.2) has at least one solution.
In order to prove Theorem 4.1, we show two lemmas.

Lemma 4.4 Suppose (Hs)-(Hy) hold. Then the set
Q= {u e domM | Mu = Ny u, A € (0,1)}
is bounded in X.

Proof For u € 21, we have QN,u = 0, i.e. Tif (¢, u(t), v/ (t),u"(¢)) =0, i = 1,2. By (Hs) and
(Hg), there exist constants £y, € [0,1] such that |u(ty)| < L, |#/(t;)] < Ki. Since u(t) =
u(to) + fé u'(s)ds, u' () = u' () + f; u'(s) ds, then

’u(t)| <L+ ||u’Hoo, ‘u/(t)| <K+ ||u”||oo, t €[0,1]. (4.2)

It follows from Mu = N, u, (H;), and (4.2) that

|u//(t)| —

®q (/0 Af(s, u(s), u/(s)’u”(s)) ds)

1
< <ﬂq(/0 a@®)py(|ul) + b, (|t]) + c)pp(|”]) +e(t) dt>

= ¢q(laligp(Ki+ L+ [u"] ) + Mol (K + "] )

+llelligy (]| ) + llell).

If1 < p <2, by Lemma 2.1, we get

|M//(t)‘ < ¢q(B1 +A1‘Pp(||””“oo)) <2172 [‘pq(Bl) +@q(A1) ||”” ”oo]’
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thus

-2
1.0 = gy
1- 2q_2¢q(Al)

where By = ||alligp(Ki + L) + [[bl11¢p(K1) + llelly, Ay = llally + 1Dl + llcllr-
If p > 2, by Lemma 2.1, we get

'O = 04(B2 + Az ("] ) = [04(B2) + 04 (A2) ] . ]

thus

7 (pq(BZ)
”Lt ”oo = l_wq(A2),

where By = 2772 ||all1¢p(Ky + L) + 2772||b||19, (K3) + llell, Az = 227> (|ally + 272(|B]ly + [icllr.
These, together with (4.2), mean that ©; is bounded in X. O

Lemma 4.5 Assume (Hg) holds. Then
Qy = {u € KerM | QNu = 0}
is bounded in X, where N = Nj.

Proof For u € Q,, we have u = a + bt and Q(Nu) = 0. By (Hs), we see that there exists a
constant £y € [0,1] such that |u(ty)| = |a + bty| < Ky, |4/(t)] = |b] < K7. So, 2, is bounded.
The proof is completed. d

Proof of Theorem 4.1 Let Q = {u € X | ||u|| < r}, where r is large enough such that Kj + K; <
r<+ooand QD Q; UQ,.

By Lemmas 4.4 and 4.5, we know Mu # N, u, u € domMN 32 and QNu # 0, u € KerMN
Q2.

Let H(u,8) = pdu + (1 — 8)JQNu, § € [0,1], u € KerM N Q, where J : InQ — KerM is a
homeomorphism with /(0,a,b)T =a + bt, p = {Il iﬁ Eﬁggg)) 2(;1132

Take the function Sgn(x) is the same as the one in Proof of Theorem 3.1.

For u € Ker M N 92, we have u = a + bt # 0. Thus
H(u,8) = pd(a + bt) + 1 = 8)(~Tf (t,a + bt,b,0) — T»f (t,a + bt, b,0)¢).

If8 =1, H(u,1) = p(a + bt) #0.If § = 0, by QNu # 0, we get H(u,0) = JQN(a + bt) # 0. For
0 < 8 <1, we now prove that H(u, §) # 0. Otherwise, if H(u,8) = 0, then

8 )
Tif(t,a + bt, b,0) = 1'0—861, Tof (t,a + bt, b, 0) = 1’)—51). (4.3)
Since ||u|| = max{||la + bt| w0, |b|} = ¥ > Ki + K3, we have either |b| > K; or ||a + bt||« >
K + K. If |b| > K3, then T,bf(t,a + bt,b,0) = bT,f(t,a + bt,b,0) = %bz. So, we have
Sen(bf(¢,a+bt,b,0)) = Sgn(T2bf (t,a+bt,b,0)) = Sgn(%lﬂ) = Sgn(p). This is a contradic-
tion with the definition of p. If |b| < Kj, then ||a + bt| « > K; + Ky. Thus mine[o,1] |a + bt| >
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K; and Sgn(a) = Sgn(a + bt). By Thaf (t,a + bt,b,0) = aT f(t,a + bt,b,0) = %az, we get
Segn(Ti(a + br)f (t,a + bt, b,0)) = Sgn(T1af (t,a + bt, b,0)) = Sgn(%az) = Sgn(p). This is a
contradiction with the definition of p, too. So, H(u,8) #0, u € KerM N 3%, § € [0,1].

By the homotopy of degree, we get

deg(JQN, @ NKer M, 0) = deg(H(-,0), 2 N Ker M, 0)

= deg(H(-,1), 2 N KerM, 0) = deg(pl, 2 N Ker M, 0) #O0.

By Theorem 2.1, we find that (1.2) has at least one solution in . The proof is com-
pleted. O
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